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Abstract

Classical Finite Volume methods for multi-dimensional problems include stabilization (e.g.
via a Riemann solver), that is derived by considering several one-dimensional problems in
different directions. Such methods therefore ignore a possibly existing balance of contri-
butions coming from different directions, such as the one charaterizing multi-dimensional
stationary states. Instead being preserved, they are usually diffused away by such methods.
Stationarity preserving methods use a better suited stabilization term that vanishes at the
stationary state, allowing the method to preserve it. This work presents a general approach
to stationarity preserving Finite Volume methods for nonlinear conservation/balance laws.
It is based on a multi-dimensional extension of the global flux approach. The new methods
are shown to significantly outperform existing ones even if the latter are of higher order of
accuracy and even on non-stationary solutions.

Keywords: Stationarity preservation, Global flux, Finite Volume, Multi-dimensional
well-balancing, Hyperbolic equations

1. Introduction

This paper focuses on the numerical solution of nonlinear hyperbolic systems of conser-
vation laws in two dimensions:

∂tq + ∂xf + ∂yg = 0, (1)

where q, f and g are the vectors of conservative variables and fluxes. Numerical methods for
hyperbolic partial differential equations (PDEs) need numerical diffusion to achieve entropy
stability and in order to deal with solutions characterized by strong gradients. The majority
of numerical methods for multi-dimensional problems, though, are developed following a
dimension-by-dimension approach, meaning that the numerical diffusion is usually derived
in a one-dimensional framework and that the diffusion term associated to an edge (or a face,
in 3D) usually involves only two states. Standard numerical methods with one-dimensional
Riemann solvers typically introduce a diffusion term of the type

∂tq + ∂xf + ∂yg = ∆x∂x(νx∂xq) + ∆y∂y(νy∂yq), (2)
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where ∆x and ∆y provide the size of the discretization, and νx and νy represent the diffusion
coefficients, which are often chosen proportional to the spectral radius of the flux Jacobian.
This one-dimensional approach does not take into account possible multi-dimensional fea-
tures of the numerical solution, such as the stationary states characterized by a balance of
contributions coming from different directions [8]. For equation (1), stationary states are
governed by

∂xf + ∂yg = 0. (3)

For classical methods, with the two-dimensional diffusion term designed following one-dimensional
approaches, the solution will be completely diffused instead of being kept stationary [9, 11].
In contrast to Equation (3), the discrete stationary states are characterized by the much
more restrictive conditions ∂xf = 0 and ∂yg = 0. States where ∂xf ̸= 0 is balanced by −∂yg
is not a stationary state of the numerical method.

This can be prevented by choosing more sophisticated diffusion operators [40, 45, 28, 39].
Such methods are called stationarity preserving [8]. More recent developments of ad-hoc
diffusion operators were developed for geostrophic equilibria in the linear and nonlinear case
[4, 5]. A connection to these equilibria in the context of low Mach number limit of the
Euler equations, which is related to the long-time limit of linear acoustics, was provided in
[30, 31] through the preservation of discrete divergence with ad-hoc functional spaces. Early
examples of stationarity preserving methods for nonlinear conservation laws can be found
in [7]. So far, however, no general theory for the agnostic detection of stationary states of
nonlinear multi-dimensional hyperbolic partial differential equations is available.

The method presented in this work is based on the global flux [27, 16, 18] approach
initially introduced for hyperbolic balance laws in one dimension,

∂tq + ∂xf = s, (4)

with the original goal of developing well-balanced methods [3, 12, 17], and the treatment of
source terms present in the mathematical model. The global flux has already been successfully
applied to different contexts and numerical methods [19, 20, 23, 35, 36, 32] to preserve one
dimensional equilibria.

The idea of the global flux consists in rewriting the source term as a flux R:

R :=

∫ x

sdx. (5)

In this framework, equation (4) can be recast as

∂tq + ∂x(f −R) = 0, (6)

where discrete steady states satisfy the relation

∂x(f −R) = 0 ⇔ f −R ≡ F0, (7)

with F = f − R the so-called global flux and F0 = F (x0) for a given x0 in the domain.
In the same spirit, a similar approach that integrates the Coriolis term into an apparent
bathymetry term was also developed in [14].

2



The concept of well-balancing is a particular case of the preservation of general stationary
solutions. The overarching idea is to design numerical schemes in which the artificial diffusion
vanishes at relevant equilibria. The development of well-balanced schemes in one-dimensional
problems has reached high levels of maturity in the last decades, but the multi-dimensional
extensions are often tackled with trivial dimension-by-dimension approaches [19, 21, 38],
which only allows the preservation of 1D-like equilibria. In [11], some of the authors presented
a way of achieving multi-dimensional stationarity preservation through global flux in the
context of a 2D linear problem, by considering that

∂tq + ∂xf + ∂yg = ∂tq + ∂x∂y

(∫ y

f dy

)
+ ∂yg

= ∂tq + ∂xf + ∂y∂x

(∫ x

g dx

)
= 0.

(8)

By combining the two derivatives, the two-dimensional formulation of the conservation law
(1) can be written as

∂tq + ∂xf + ∂yg = ∂tq + ∂x∂y(F +G) = 0, (9)

by defining

F :=

∫ y

f dy, G :=

∫ x

g dx. (10)

The new divergence operator ∂x∂y(F+G) now is easy to preserve at the discrete level. Thanks
to this formulation, it becomes also straightforward to consider multi-dimensional balance
laws with source terms,

∂tq + ∂xf + ∂yg = s. (11)

In this case, the source flux R can be defined as

R :=

∫ x ∫ y

sdxdy, (12)

and directly included in the global flux. Setting

F = F +G−R, (13)

the multi-dimensional global flux form of the problem now becomes again

∂tq + ∂xyF = 0. (14)

In this work, we present how this idea can be used to design first-order finite volume meth-
ods preserving multi-dimensional steady states, not known a priori, for general nonlinear
hyperbolic PDEs. Moreover, a thorough analysis of the method is presented for linear
problems showing a link with other stationarity preserving methods, as well as a discrete en-
ergy estimate. The approach proposed here naturally leads to the introduction of nonlinear
genuinely multi-dimensional fluxes at cell corners, which have been shown to provide
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fundamental enhancements in the numerical solutions, and enjoy many theoretical properties
([26, 10]). However, differently from previous works, the formulation proposed here naturally
leads to corner fluxes, without any hypotheses on the type of quadrature. This approach
is a starting point for the development of new families of stationarity preserving high-order
methods based on high-degree polynomial reconstruction [22, 23], or discontinuous Galerkin
methods [35, 46].

The paper is organized as follows. In section 2, we present the examples of PDEs that will
be considered when assessing the performance of the method experimentally. In section 3,
we recall the global flux method in a one-dimensional framework for hyperbolic balance laws.
In section 4, we present the extension of the global flux method to two-dimensional nonlinear
hyperbolic PDEs. Here, we discuss the finite volume formulation, the stabilization technique,
boundary conditions, the treatment of source terms, as well as stability and consistency of
the method for a linear model. In section 5, we present the standard finite volume method
with piecewise constant and piecewise linear reconstructions used for comparison with the
global flux method. Several numerical experiments are presented in section 6 to show the
performance of the method. Finally, we draw some conclusions in section 7.

2. Mathematical models

The numerical method presented in this work is rather general and, in order to show
its potential, we exemplify it on several mathematical models described by both linear and
nonlinear hyperbolic systems. In particular, herein we will focus on three systems: linear
acoustics, Euler equations for gas dynamics and the shallow water equations. For all of them,
we focus on two-dimensional problems.

2.1. Linear acoustic system

The system of linear acoustic is a simple model that directly embeds non-trivial divergence-
free steady states. It can be written in the following 2D and vectorial forms as:

∂tu+ ∂xp = 0,

∂tv + ∂yp = 0,

∂tp+ ∂xu+ ∂yv = 0,

{
∂tv +∇p = 0,

∂tp+∇ · v = 0,
(15)

where p is the pressure and v = (u, v) is the velocity. The system can also be written in the
compact form (1) with

q =

uv
p

 , f =

p0
u

 , g =

0p
v

 . (16)

The steady states of this system are given by

∂tq ≡ 0 ⇔ ∇ · v ≡ 0 and p ≡ p0 = const. (17)
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2.2. Euler equations

The Euler equations are a simplification of the full Navier-Stokes system that do not
include viscosity effects. Their use is widespread for the simulation of compressible gas
dynamics. The system can be written in vectorial form as:

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ · (ρv ⊗ v + pI) = 0,

∂t(ρE) +∇ · (ρHv) = 0,

(18)

having denoted by ρ the density, by v the velocity field, by E = e+ ∥v∥2/2 the specific total
energy, being e the specific internal energy and I is the identity matrix. Finally, the total
specific enthalpy is H = h + ∥v∥2/2, with h = e + p/ρ the specific enthalpy. To close the
system, we use the classical perfect gas equation of state p = (γ − 1)ρe with γ the constant
ratio of specific heats (γ = 1.4 for air).

The nonlinear system of Euler equations can also be recast in the compact form (1) with

q =


ρ
ρu
ρv
ρE

 , f =


ρu

ρu2 + p
ρuv
ρHu

 , g =


ρv
ρuv

ρv2 + p
ρHv

 . (19)

Steady states of the Euler equations are more complex but, after some manipulations, the
smooth steady states can be characterized by the following relations:

∇ · (ρv) = 0, (ρv · ∇)v +∇p = 0, v · ∇H = 0. (20)

2.3. Shallow water system

The Saint-Venant or shallow water equations describe the dynamics of hydrostatic free
surface waves influenced by gravity. This model is valid under the hypothesis of very large
wavelengths, or very shallow depths, and is applied in various engineering fields, including
river and estuarine hydrodynamics, urban flood management, and tsunami risk assessment.
In particular, when working with large scale problems, this simplified model becomes crucial
to speed-up the computational time.

The system can be written in vectorial form as:{
∂th+∇ · (hv) = 0,

∂t(hv) +∇ ·
(
hv ⊗ v + 1

2
gh2I

)
= −gh∇b,

(21)

where h is the water height, v the velocity field, b is the bathymetry and g is the gravity
constant. The system can also be written in the classical compact notation (11) with

q =

 h
hu
hv

 , f =

 hu
hu2 + 1

2
gh2

huv

 , g =

 hv
huv

hv2 + 1
2
gh2

 , s =

 0
−gh∂xb
−gh∂yb

 . (22)

This system admits a large variety of equilibria depending on the interaction between the
flux and the source. The most studied equilibria in the context of well-balanced methods
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are the so-called “lake at rest” states, which are characterized by a constant free surface
level η := h + b ≡ η0 and a zero velocity v ≡ 0. However, in the presence of a non-flat
bathymetry, the system can also admit non-trivial equilibria, which are characterized by a
non-zero velocity and a non-flat free surface level:

∇ · (hv) = 0 (v · ∇)v + g∇(h+ b) = 0 (23)

Several works have been devoted to the study of these equilibria in one dimension or in
a quasi-1D framework [37, 35, 21]. In this work, we are interested in truly multi-dimensional
well-balanced schemes that are capable of preserving all these equilibria at the discrete level.

3. Global flux for 1D balance laws

In this section, we recall the main principle of the global flux method and its initial usage
in a 1D framework. Consider a general nonlinear balance law (4) and define a global flux F
as

F = f −
∫ x

sdx, (24)

such that (4) can now be written in a quasi-conservative form as

∂tq + ∂xF = 0. (25)

Steady states given by ∂tq = 0 are equivalently characterized by the condition ∂xF = 0 ⇔
F ≡ F0 ∈ R.

In a finite volume framework, the computational domain Ω is split into N cells and the

equation (4) is integrated over each cell Ci =
[
xi− 1

2
, xi+ 1

2

]
:

d

dt
q̄i +

F̂i+ 1
2
− F̂i− 1

2

∆x
= 0, (26)

where the cell average is defined as

q̄i :=
1

∆x

∫ x
i+1

2

x
i− 1

2

q dx. (27)

The numerical global flux F̂i+ 1
2
is considered to be a function of the two values of the global

flux FL
i+ 1

2

and FR
i+ 1

2

reconstructed at both sides of interface xi+ 1
2
. For piecewise constant

reconstructions of the global flux one simply has FL
i+ 1

2

= Fi and FR
i+ 1

2

= Fi+1.

Remark 1 (Numerical global flux). It is important to underline that structure preservation

can only be achieved if the interface global flux F̂i+ 1
2
depends only on global fluxes {Fj}j∈Z

in the cells, and not on the values {qj}j∈Z of the conservative variables. This is due to the
fact that, at equilibria, only global fluxes are constant while conservative variables may vary.
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In our previous work [23], we employed the following upwind flux:

F̂i+ 1
2
= 1+FL

i+ 1
2
+ 1−FR

i+ 1
2

where 1± := L−11 ± signΛ

2
L, (28)

where L is the matrix of left eigenvectors of the flux Jacobian ∂qf , and signΛ is the diagonal
matrix of the sign of the eigenvalues of the flux Jacobian, evaluated using any (average) state
at the interface1.

For the development of the global flux method, a consistent approximation of R :=
∫ x

s dx
is necessary to define F = f − R. This integral can be computed in a recursive manner,
starting from the beginning of the domain, by integrating the source in each element. To
simplify the description of the method, we will assume that q and s are constant in each cell,
therefore the source integral can be computed as

Ri :=

∫ xi−1

s dx︸ ︷︷ ︸
Ri−1

+

∫ x
i− 1

2

xi−1

s dx+

∫ xi

x
i− 1

2

s dx = Ri−1 +
∆x

2
s̄i−1 +

∆x

2
s̄i. (29)

Hence, the global flux will now depend on both the conservative flux and the source term

Fi = f(q̄i)−Ri = f(q̄i)−Ri−1 −
∆x

2
(s̄i−1 + s̄i). (30)

Similarly, the recursive procedure gives us the following values for Fi−1 and Fi+1:

Fi−1 = f(q̄i−1)−Ri−1, (31)

Fi+1 = f(q̄i+1)−Ri−1 −∆x

(
1

2
s̄i−1 + s̄i +

1

2
s̄i+1

)
. (32)

It can be noticed that, when considering a simple numerical flux

F̂i+ 1
2
(Fi,Fi+1) = Fi (33)

equation (26) can be recast as

d

dt
q̄i = −Fi − Fi−1

∆x
= −f(q̄i)− f(q̄i−1)

∆x
+

s̄i + s̄i−1

2
, (34)

which shows already a difference with respect to the classical finite volume method, where
the source term would be treated in a centered way.

When the upwind numerical flux (28) is used, one has (having temporarily made the
dependence of 1± on the interface explicit)

d

dt
q̄i = −Fi − Fi−1

∆x
(35)

= −
1−
i+ 1

2

f(q̄i+1) + (1+
i+ 1

2

+ 1−
i− 1

2

)f(q̄i)− 1+
i− 1

2

f(q̄i−1)

∆x
(36)

+ (1+
i+ 1

2

+ 1−
i+ 1

2

− 1−
i− 1

2

)
s̄i + s̄i−1

2
+ 1−

i+ 1
2

s̄i + s̄i−1

2
+ (1+

i+ 1
2

+ 1−
i+ 1

2︸ ︷︷ ︸
=1

− (1+
i− 1

2

+ 1−
i− 1

2

)︸ ︷︷ ︸
=1

)Ri−1,

1In principle, therefore, one should write 1±
i+ 1

2

to make clear that they differ from interface to interface;

we do not make this depends explicit to ensure readability
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where the contribution from Ri−1 cancels out even if 1± depend on the interface, since they
nevertheless add up to 1 on each of them.

Remark 2 (Compactness of global fluxes). It can be noticed that, although the global flux in
(30) is defined globally with Ri−1 that depends on previous values, the time residual (34) shows
that the stencil is actually compact due to the cancellation of these terms. A full analogy with
compact residual distribution methods on a dual cell is presented later in section 4.5.

4. Global flux for multi-dimensional hyperbolic PDEs

4.1. Numerical method

When dealing with multi-dimensional conservation laws, non-trivial equilibria arise also
in absence of a source term in the equation. For steady states ∂tq = 0, it is no longer just
∂xf = 0 that follows, but instead the divergence ∂xf + ∂yg = 0, which in general might have
many solutions.

In this section, we will show how to extend the global flux method to multi-dimensional
conservation and balance laws. We start by rewriting (1) as (9) using the definitions in (10)
to obtain

∂tq + ∂xyF = 0. (37)

with the global flux F := F +G. Then, integration of (14) over the cell Ci,j =
[
xi− 1

2
, xi+ 1

2

]
×[

yj− 1
2
, yj+ 1

2

]
yields

∆x∆y
d

dt
q̄i,j + F (t, xi+ 1

2
, yj+ 1

2
)− F (t, xi− 1

2
, yj+ 1

2
)− F (t, xi+ 1

2
, yj− 1

2
) + F (t, xi− 1

2
, yj− 1

2
) = 0,

(38)

where the cell average is defined as

q̄i,j :=
1

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

q dxdy.

We therefore are led to introduce the numerical corner fluxes F̂i± 1
2
,j± 1

2
that then allow to

write the evolution equation as

d

dt
q̄i,j +

F̂i+ 1
2
,j+ 1

2
− F̂i− 1

2
,j+ 1

2
− F̂i+ 1

2
,j− 1

2
+ F̂i− 1

2
,j− 1

2

∆x∆y
= 0. (39)

Recall that the global flux F is obtained by integrating the physical fluxes and the source, see
equations (10), (12), and (13). In practice, the integrated fluxes F and G are computed by
performing integrals along, respectively, the y and x directions in a 1D fashion. In particular,
the value of Fi in the barycenter of a given cell i can be computed recursively starting from
the beginning of the domain, similarly to section 3, as

Fi,j =

∫ yj−1

f dy +

∫ yj

yj−1

f dy = Fi,j−1 +
∆y

2
(fi,j−1 + fi,j), ∀i, (40)
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Ci−1,j+1 Ci,j+1 Ci+1,j+1

Ci−1,j Ci,j Ci+1,j

Ci−1,j−1 Ci,j−1 Ci+1,j−1

(a) Main grid

Ci,j+1 Ci+1,j+1

Ci,j Ci+1,j

(b) Dual grid

Figure 1: Cell labeling for the 2D grid.

where, for a first order method, trapezoidal rule is accurate enough. Similarly, Gi can be
computed as

Gi,j =

∫ xi−1

g dx+

∫ xi

xi−1

g dx = Gi−1,j +
∆x

2
(gi−1,j + gi,j), ∀j. (41)

When dealing with hyperbolic PDEs with source terms, as for the shallow water equations
in section 2.3, the integral of the source term R :=

∫ x ∫ y
s dxdy can also be embedded into

the global flux. Similarly, R can be recursively defined as

Ri,j =

∫ xi−1
∫ yj−1

s dydx+

∫ xi

xi−1

∫ yj

yj−1

s dydx = Ri−1,j−1+
∆x∆y

4
(si−1,j−1 + si−1,j + si,j−1 + si,j) ,

(42)
for every i, j. More details about the treatment of source terms for the shallow water equa-
tions 2.3, are given in section 4.6.

4.2. Numerical corner fluxes
The conservative formulation obtained using global fluxes (39) requires the definition

of numerical corner fluxes to update cell averages. This definition is better achieved by
considering the evolution of all the cells neighbouring a given node. To this end it is preferable
to recast (39) as

d

dt
q̄i,j +

F̂ (i,j)

i+ 1
2
,j+ 1

2

+ F̂ (i,j)

i− 1
2
,j+ 1

2

+ F̂ (i,j)

i+ 1
2
,j− 1

2

+ F̂ (i,j)

i− 1
2
,j− 1

2

∆x∆y
= 0. (43)

where we have added the superscript (i,j) to account for the fact that the signs used in the
formula involve the flux balance for q̄i,j. They thus are interpreted as depending on the
orientation of the corner normal for the four cells (i + ℓ, j + r) for ℓ, r ∈ {0, 1} with respect
to the corner (i+ 1

2
, j + 1

2
), defined by

n
(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

:=

(
(−1)ℓ+1

(−1)r+1

)
, i.e., (44)

n
(i,j)

i+ 1
2
,j+ 1

2

:=

(
−1
−1

)
,n

(i+1,j)

i+ 1
2
,j+ 1

2

:=

(
1
−1

)
, n

(i,j+1)

i+ 1
2
,j+ 1

2

:=

(
−1
1

)
, n

(i+1,j+1)

i+ 1
2
,j+ 1

2

:=

(
1
1

)
. (45)
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Thus nc
p is a normal at corner p pointing into cell c. Corner normals and corner fluxes

alongside a modified concept of conservation associated to corners rather than edges are used
e.g. in [10] for general polygonal grids, where they are shown to be crucial for structure
preservation. There, corner normals are defined as the average of the two edge-normals
adjacent to the node, scaled with the respective edge lengths. We believe that the definition
above is sufficient in the context of Cartesian meshes.

We further define the scalar n
(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

as

n
(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

= n(n
(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

) = (−1)ℓ+1(−1)r+1 = (−1)ℓ+r, (46)

where n(n) := nxny is the product of the two components.
The reinterpreted definition of the corner fluxes above requires a different setting com-

pared to the classical one, and appears in the context of genuinely multi-dimensional Riemann
solvers using more than two states as input (see e.g. [6, 25, 26] and references therein).

Next, we aim at defining the notion of the numerical global flux in the multi-dimensional
context as generally as possible. Then, we elucidate the conditions imposed on the functional
form of the numerical flux by consistency, conservation, and preservation os steady states.
We define the numerical corner fluxes at the corner (i + 1

2
, j + 1

2
) with respect to the four

cells (i+ ℓ, j + r) with ℓ, r ∈ {0, 1} as

F̂ (i+ℓ,j+r)

i+ 1
2
,j+ 1

2

= F̂ (Fi,j,Fi,j+1,Fi+1,j,Fi+1,j+1; q̄i,j, q̄i,j+1, q̄i+1,j, q̄i+1,j+1|n(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

).

We can now formulate local consistency as

F̂ (F ,F ,F ,F ; q, q, q, q|n) = F n(n). (47)

A stronger property is the steady state preservation requirement which can be expressed as

F̂ (F ,F ,F ,F ; q̄i,j, q̄i,j+1, q̄i+1,j, q̄i+1,j+1|n(i,j)

i+ 1
2
,j+ 1

2

) = F n
(i,j)

i+ 1
2
,j+ 1

2

. (48)

Remark 3 (Steady state subspace). Following [11], it will be shown below that steady state
preservation may be actually already proven if

F ∗
i,j = F + αi + βj (49)

for any two data distributions α and β, such that α only depends on i and β only on j. In
this case, a conservation property more general of (48) reads

F̂ (i,j)

i+ 1
2
,j+ 1

2

(F ∗
i,j,F

∗
i,j+1,F

∗
i+1,j,F

∗
i+1,j+1; q̄i,j, q̄i,j+1, q̄i+1,j, q̄i+1,j+1|n(i,j)

i+ 1
2
,j+ 1

2

) = F n
(i,j)

i+ 1
2
,j+ 1

2

.

(50)
This condition will be used also in the consistency analysis of Section 4.5.

Conservation cannot be expressed by face in this framework, as in standard finite volume
methods. It is instead formulated at corners as follows:

F̂ (i,j)

i+ 1
2
,j+ 1

2

+ F̂ (i+1,j)

i+ 1
2
,j+ 1

2

+ F̂ (i,j+1)

i+ 1
2
,j+ 1

2

+ F̂ (i+1,j+1)

i+ 1
2
,j+ 1

2

= 0. (51)
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Having established the necessary conditions that the numerical global fluxes have to
satisfy, we next propose a particular choice. As in [26], we define numerical global fluxes as
the sum of a consistent central flux plus a diffusion term D. In the present paper, corner
fluxes are obtained extending to quadrilaterals the multi-dimensional Osher-Solomon flux
proposed in [26], and combining it with the recent work [11] on global flux compatible SUPG
stabilization. We define the numerical corner flux around the corner (xi+ 1

2
, yj+ 1

2
), which

involves the cells Ci,j, Ci+1,j, Ci,j+1 and Ci+1,j+1 (see figure 1). The same principle is applied
to the other corners. We set

F̂ (i,j+1)

i+ 1
2
,j+ 1

2

= F i+ 1
2
,j+ 1

2
n
(i,j+1)

i+ 1
2
,j+ 1

2

+D(i,j+1)

i+ 1
2
,j+ 1

2

, F̂ (i+1,j+1)

i+ 1
2
,j+ 1

2

= F i+ 1
2
,j+ 1

2
n
(i+1,j+1)

i+ 1
2
,j+ 1

2

+D(i+1,j+1)

i+ 1
2
,j+ 1

2

,

F̂ (i,j)

i+ 1
2
,j+ 1

2

= F i+ 1
2
,j+ 1

2
n
(i,j)

i+ 1
2
,j+ 1

2

+D(i,j)

i+ 1
2
,j+ 1

2

, F̂ (i+1,j)

i+ 1
2
,j+ 1

2

= F i+ 1
2
,j+ 1

2
n
(i+1,j)

i+ 1
2
,j+ 1

2

+D(i+1,j)

i+ 1
2
,j+ 1

2

,

(52)

where

F i+ 1
2
,j+ 1

2
=

1

4
(Fi,j + Fi+1,j + Fi+1,j+1 + Fi,j+1)

is the average of the global fluxes at the corner.
To define the numerical dissipation we consider corner dual cells, as depicted on the right

on figure 1. The conservation condition (51) requires that

D(i,j)

i+ 1
2
,j+ 1

2

+D(i+1,j)

i+ 1
2
,j+ 1

2

+D(i,j+1)

i+ 1
2
,j+ 1

2

+D(i+1,j+1)

i+ 1
2
,j+ 1

2

= 0.

To define the corner dissipation, we cannot proceed as in [26], since this would break the
stationarity preserving property. Instead, we take inspiration from the streamline upwind
stabilization (SUPG), studied in the global flux context in [11]. To this end, on the dual cell

C̃i+ 1
2
,j+ 1

2
we compute SUPG stabilizing terms

D(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

:=D(F̃i+ 1
2
,j+ 1

2
, q̄i+ 1

2
,j+ 1

2
|n(i+ℓ,j+r)

i+ 1
2
,j+ 1

2

)

=α∆

∫
C̃

i+1
2 ,j+1

2

(
1

∆x
Jx∂ξφℓ,r +

1

∆y
Jy∂ηφℓ,r

)
∂ξηF̃i+ 1

2
,j+ 1

2
dξdη,

(53)

where F̃i+ 1
2
,j+ 1

2
is a bi-linear Q1 reconstruction of the global flux on the dual cell from the four

adjacent values Fi,j, Fi+1,j, Fi,j+1, Fi+1,j+1. Here, J
x and Jy are the Jacobians of the fluxes

f and g computed in the average value q̄i+ 1
2
,j+ 1

2
=

qi,j+qi+1,j+qi,j+1+qi+1,j+1

4
. ∆ =

√
∆x2+∆y2√

2
is

the characteristic mesh size, and α = 1/λm with λm the maximal spectral radius of the flux
Jacobians computed with the average state of the four reconstructed values at the corner.
The φℓ,r for ℓ, r ∈ {0, 1} in the above definition are the standard bi-linear finite element basis

functions on the quadrilateral C̃ defined by

φℓ,r(ξ, η) =
1

4
(1 + (−1)ℓ+1ξ)(1 + (−1)r+1η), (54)

i.e.,

φ0,0(ξ, η) =
1

4
(1− ξ)(1− η), φ1,0(ξ, η) =

1

4
(1 + ξ)(1− η)

φ0,1(ξ, η) =
1

4
(1− ξ)(1 + η), φ1,1(ξ, η) =

1

4
(1 + ξ)(1 + η)

(55)
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on the reference element ξ, η ∈ [−1, 1]. With this, we can explicitly evaluate the streamline
upwind dissipation terms as

D(F̃ , q̄|n) = α∆

4

(
nx

∆x
Jx +

ny

∆y
Jy

)
Φ(F̃ ), (56)

i.e.,

D(i,j+1)

i+ 1
2
,j+ 1

2

=
α∆

4

(
− Jx

∆x
+

Jy

∆y

)
Φi+ 1

2
,j+ 1

2
, D(i+1,j+1)

i+ 1
2
,j+ 1

2

=
α∆

4

(
+

Jx

∆x
+

Jy

∆y

)
Φi+ 1

2
,j+ 1

2
,

D(i,j)

i+ 1
2
,j+ 1

2

=
α∆

4

(
− Jx

∆x
− Jy

∆y

)
Φi+ 1

2
,j+ 1

2
, D(i+1,j)

i+ 1
2
,j+ 1

2

=
α∆

4

(
+

Jx

∆x
− Jy

∆y

)
Φi+ 1

2
,j+ 1

2
,

(57)

with

Φi+ 1
2
,j+ 1

2
:= Φ(F̃i+ 1

2
,j+ 1

2
) := Fi+1,j+1 − Fi,j+1 − Fi+1,j + Fi,j =

∫
C̃

i+1
2 ,j+1

2

∂xyF̃i+ 1
2
,j+ 1

2
dxdy .

(58)
The next sections are devoted to the analysis of some properties of the scheme obtained

with the above definitions, as well as some enhancements.

4.3. Compactness of the method

Taking into account only the central flux, without the diffusion, one obtains

d

dt
q̄i,j = −

F̂ (i,j)

i+ 1
2
,j+ 1

2

+ F̂ (i,j)

i− 1
2
,j+ 1

2

+ F̂ (i,j)

i+ 1
2
,j− 1

2

+ F̂ (i,j)

i− 1
2
,j− 1

2

∆x∆y
(59a)

= −
F i+ 1

2
,j+ 1

2
n
(i,j)

i+ 1
2
,j+ 1

2

+ F i− 1
2
,j+ 1

2
n
(i,j)

i− 1
2
,j+ 1

2

+ F i+ 1
2
,j− 1

2
n
(i,j)

i+ 1
2
,j− 1

2

+ F i− 1
2
,j− 1

2
n
(i,j)

i− 1
2
,j− 1

2

∆x∆y
(59b)

= −
F i+ 1

2
,j+ 1

2
− F i− 1

2
,j+ 1

2
− F i+ 1

2
,j− 1

2
+ F i− 1

2
,j− 1

2

∆x∆y
. (59c)

Define

F i+ 1
2
,j+ 1

2
=

1

4
(Fi,j + Fi+1,j + Fi,j+1 + Fi+1,j+1) (60)

Gi+ 1
2
,j+ 1

2
=

1

4
(Gi,j +Gi+1,j +Gi,j+1 +Gi+1,j+1) (61)

such that F i+ 1
2
,j+ 1

2
= F i+ 1

2
,j+ 1

2
+Gi+ 1

2
,j+ 1

2
, and use the recursions (40)–(41) to obtain

F i+ 1
2
,j+ 1

2
− F i+ 1

2
,j− 1

2
=

∆y

8
(fi+1,j+1 + 2fi+1,j + fi+1,j−1) +

∆y

8
(fi,j+1 + 2fi,j + fi,j−1). (62)
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We find an analogous formula for F i− 1
2
,j+ 1

2
− F i− 1

2
,j− 1

2
, such that in the end

d

dt
q̄i,j = − 1

2∆x
⟨fi+1,· − fi−1,·⟩j −

1

2∆y
⟨g·,j+1 − g·,j−1⟩i (63)

with the average

⟨ai,·⟩j :=
1

4
(ai,j+1 + 2ai,j + ai,j−1). (64)

One observes that all the global fluxes drop out and the central part of the method is local.
Next, we turn to the numerical stabilization. Defining

ΦF
i+ 1

2
,j+ 1

2
= Fi+1,j+1 − Fi,j+1 − Fi+1,j + Fi,j (65)

ΦG
i+ 1

2
,j+ 1

2
= Gi+1,j+1 −Gi,j+1 −Gi+1,j +Gi,j (66)

such that Φi+ 1
2
,j+ 1

2
= ΦF

i+ 1
2
,j+ 1

2

+ ΦG
i+ 1

2
,j+ 1

2

, and using again the recursions (40)–(41), one

obtains

ΦF
i+ 1

2
,j+ 1

2
=

∆y

2
(fi+1,j+1 + fi+1,j − fi,j+1 − fi,j). (67)

An analogous formula is valid for ΦF
i− 1

2
,j+ 1

2

, and also

ΦG
i+ 1

2
,j+ 1

2
=

∆x

2
(gi+1,j+1 + gi,j+1 − gi+1,j − gi,j). (68)

One observes again that all the global fluxes drop out.
The Jacobians involved in the update of qi,j are evaluated at the four corners, such that

the method with only the numerical stabilization reads

d

dt
q̄i,j = −

D(i,j)

i+ 1
2
,j+ 1

2

+D(i,j)

i− 1
2
,j+ 1

2

+D(i,j)

i+ 1
2
,j− 1

2

+D(i,j)

i− 1
2
,j− 1

2

∆x∆y

= − 1

∆x∆y

α∆

4

[(
−
Jx
i+ 1

2
,j+ 1

2

∆x
−

Jy

i+ 1
2
,j+ 1

2

∆y

)
Φi+ 1

2
,j+ 1

2
+

(
Jx
i− 1

2
,j+ 1

2

∆x
−

Jy

i− 1
2
,j+ 1

2

∆y

)
Φi− 1

2
,j+ 1

2

+

(
−
Jx
i+ 1

2
,j− 1

2

∆x
+

Jy

i+ 1
2
,j− 1

2

∆y

)
Φi+ 1

2
,j− 1

2
+

(
Jx
i− 1

2
,j− 1

2

∆x
+

Jy

i− 1
2
,j− 1

2

∆y

)
Φi− 1

2
,j− 1

2

]
.

(69)

To give the spirit of the method, assume for the moment, however, that the Jacobians
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are evaluated on same state. Then, the numerical stabilization becomes

d

dt
q̄i,j = − 1

∆x∆y

α∆

4

[
Jx

∆x

(
−Φi+ 1

2
,j+ 1

2
+ Φi− 1

2
,j+ 1

2
− Φi+ 1

2
,j− 1

2
+ Φi− 1

2
,j− 1

2

)
(70)

+
Jy

∆y

(
−Φi+ 1

2
,j+ 1

2
− Φi− 1

2
,j+ 1

2
+ Φi+ 1

2
,j− 1

2
+ Φi− 1

2
,j− 1

2

)]
=

α∆

2

[
Jx

∆x2
⟨fi+1,· − 2fi,· + fi−1,·⟩j +

Jx

4∆x∆y
(gi+1,j+1 − gi−1,j+1 − gi+1,j−1 + gi−1,j−1)

(71)

+
Jy

4∆x∆y
(fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1) +

Jy

∆y2
⟨g·,j+1 − 2g·,j + g·,j−1⟩i

]
.

Here, the average ⟨·⟩ introduced in (64) has been used again.
Finally, the method can be expressed in classical flux form

d

dt
qi,j +

f̂i+ 1
2
,j − f̂i− 1

2
,j

∆x
+

ĝi,j+ 1
2
− ĝi,j− 1

2

∆y
= 0. (72)

This demonstrates that additionally to the notion (51), the method is also conservative in
the classical sense. The numerical flux through the edge (i+ 1

2
, j) reads

f̂i+ 1
2
,j =

1

2
⟨fi+1,· + fi,·⟩j −

α∆

2

Jx
i+ 1

2
,j+ 1

2

Φi+ 1
2
,j+ 1

2
+ Jx

i+ 1
2
,j− 1

2

Φi+ 1
2
,j− 1

2

2∆x∆y
. (73)

In a quasi-1D situation, i.e. when nothing depends on j and when g = 0, the flux is

f̂i+ 1
2
=

1

2
(fi+1 + fi)−

α

2
Jx
i+ 1

2
(fi+1 − fi). (74)

With this, next we discuss the interplay between the numerical stabilization and stationarity
preservation.

4.4. Analysis of the method for the linear acoustic system

In this section, we focus on the analysis of the new numerical method by analysing the
numerical diffusion that allows to achieve stationarity preservation, and obtaining an energy
estimate.

4.4.1. Numerical diffusion and stationarity preservation

We start by considering the linear acoustic system, but similar results can be shown for
nonlinear problems. A classical dimensionally split finite volume scheme with a local Lax-
Friedrichs numerical flux provides the following discretization of the linear acoustic system:

d

dt
p+Dxu+Dyv =

λm∆x

2
Dxxp+

λm∆y

2
Dyyp,

d

dt
u+Dxp =

λm∆x

2
Dxxu,

d

dt
v +Dyp =

λm∆y

2
Dyyv,

(75)
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Figure 2: Finite difference-like stencils for global flux differential operators.

where D represent the discrete derivative operators given by

(Dxq)i,j =
qi+1,j − qi−1,j

2∆x
, (Dxxq)i,j =

qi+1,j − 2qi,j + qi−1,j

∆x2
, (76)

and similarly for Dy and Dyy. As can be noticed, the stencil used in this discretization is a
simple 5-points stencil.

Contrary to this, the stencils involved in the new first order global flux method, equipped
with SUPG corner fluxes as described above, includes the cell itself and its eight neighbors
(9-points stencil):

d

dt
p+ D̄xu+ D̄yv =

α∆

2
(D̄xxp+ D̄yyp),

d

dt
u+ D̄xp =

α∆

2

(
D̄xxu+Dxyv

)
,

d

dt
v + D̄yp =

α∆

2

(
Dxyu+ D̄yyv

)
,

(77)

where the new finite difference operators are given by the stencils in figure 2. D̄x and D̄xx are
standard discrete first and second order derivatives in x, but including a particular averaging
in y direction, introduced in (64) as ⟨ai,·⟩j := 1

4
(ai,j+1 + 2ai,j + ai,j−1). These operators have

first appeared in [40] and then in virtually all subsequent works on stationarity and vorticity
preservation for linear acoustics on Cartesian grids, e.g. in [40, 45, 28, 39, 34, 8].

In [11] these finite difference operators appeared naturally as Kronecker products of uni-
direction operators: Dxy = Dx ⊗DyIy, D̄xx = Dxx ⊗DyIy etc., with matrices Iy responsible
for the integration and DyIy being the particular averaging matrix corresponding to ⟨·⟩.

One observes that the diffusion operators for the velocity no longer depend on second
derivatives of individual components, but instead on the gradient of the divergence operator.
Although this characteristic of the scheme is more readily visible for a simplified model like
the linear acoustic system (77), similar considerations can be drawn also for more complex
nonlinear systems, as is obvious from (71).

Remark 4 (Numerical diffusion for nonlinear problems). For the shallow water equations,
the first order global flux method with SUPG corner fluxes leads to the following discrete
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evolution equations:

d

dt
h+ D̄xfh + D̄ygh =

α∆

2
(D̄xxfhu +Dxyghu) +

α∆

2
(Dxyfhv + D̄yyghv),

d

dt
hu+ D̄xfhu + D̄yghu =

α∆

2
(gh̄− ū2)(D̄xxfh +Dxygh)−

α∆

2
ūv̄(Dxyfh + D̄yygh)+

+ α∆ū(D̄xxfhu +Dxyghu) +
α∆

2
v̄(Dxyfhu + D̄yyghu) +

α∆

2
ū(Dxyfhv + D̄yyghv),

d

dt
hv + D̄xfhv + D̄yghv =

α∆

2
(gh̄− v̄2)(Dxyfh + D̄yygh)−

α∆

2
ūv̄(D̄xxfh +Dxygh)+

+ α∆v̄(Dxyfhv + D̄yyghv) +
α∆

2
v̄(D̄xxfhu +Dxyghu) +

α∆

2
ū(D̄xxfhv +Dxyghv),

(78)

where we considered constant Jacobians defined in an average state q̄ = (h̄, h̄ū, h̄v̄) to regroup
the terms in a compact form. For notational convenience, we have introduced the terms fhu
and ghu to denote the fluxes for the momentum equation in hu, and similarly for the other
equations. Again, we obtain diffusion terms that depends on the gradient of the divergence
operator, which is essential for stationarity preservation.

4.4.2. Semi-discrete energy stability

In this section, we focus on the semi-discrete energy estimates for the linear acoustic
system. In particular, in the continuous setting, it can be easily proven that the conserved
energy of the system is E = u2+v2

2
+ p2

2
, by multiplying (15) by qT , summing the three

equations and integrating over the whole domain Ω:∫
Ω

[qT∂tq + qTJ∇q]dx =

∫
Ω

[u∂tu+ u∂xp+ v∂tv + v∂yp+ p∂tp+ p∂xu+ p∂yv]dx

=
d

dt

∫
Ω

[
u2 + v2

2
+

p2

2

]
dx+

∫
∂Ω

pv · ndS (79)

where the second term is zero for periodic boundary conditions. In our discrete framework,
we would like to prove that

d

dt

∫
Ω

[
u2 + v2

2
+

p2

2

]
dx ≤ 0.

To do that, we will write the new differential operators introduced above in a tensor
product form to split the contributions from the two dimensions, for more details see [11],

D̄x = (D+M−)⊗ (M+M−) , D̄xx = (D+D−)⊗ (M+M−) ,

D̄yy = (M+M−)⊗ (D+D−) , Dxy = (D+M−)⊗ (D+M−)

where the derivative, D, and average, M , operators are defined as

D+ =


−1 1 0 . . .
0 −1 1 . . .

. . . . . .

. . . 0 −1 1
1 . . . 0 −1

 , M+ =


1
2

1
2

0 . . .
0 1

2
1
2

. . .
. . . . . .

. . . 0 1
2

1
2

1
2

. . . 0 1
2

 , (80)
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with periodic boundary conditions, and by

D− = −DT
+ =: D and M− = MT

+ =: M.

Proposition 5 (Semi-discrete energy inequality). The following semi-discrete energy in-
equality holds,

d

dt

∑
i,j

Ei,j ≤ 0. (81)

Proof. The central part of the method preserves the energy since, e.g. uT D̄xp + pT D̄xu =
uT D̄xp + uT D̄T

x p = 0 up to boundary terms. The evolution of the energy of the system is
thus entirely given by the numerical stabilization as follows:

2

α∆

d

dt

∑
i,j

Ei,j = pT D̄xxp+ pT D̄yyp+ uT D̄xxu+ uTDxyv + vTDxyu+ vT D̄yyv, (82)

where the terms on the right-hand side can be recast as

pT D̄xxp = pT (D+D−)⊗ (M+M−) p = −∥(D ⊗M)p∥2 ≤ 0,

pT D̄yyp = pT (M+M−)⊗ (D+D−) p = −∥(M ⊗D)p∥2 ≤ 0,

uT D̄xxu = uT (D+D−)⊗ (M+M−)u = − [(D ⊗M)u]T [(D ⊗M)u] ,

uTDxyv = uT (D+M+)⊗ (M−D−) v = − [(D ⊗M)u]T [(M ⊗D)v] ,

vTDxyu = vT (M+D+)⊗ (D−M−)u = − [(M ⊗D)v]T [(D ⊗M)u] ,

vT D̄yyv = vT (M+M−)⊗ (D+D−) v = − [(M ⊗D)v]T [(M ⊗D)v] ,

where the mixed operator was manipulated thanks to MD = DM . Hence, the semi-discrete
energy is found to decrease:

2

α∆

d

dt

∑
i,j

Ei,j ≤ − [(D ⊗M)u]T [(D ⊗M)u+ (M ⊗D)v]− [(M ⊗D)v]T [(D ⊗M)u+ (M ⊗D)v]

= −∥(D ⊗M)u+ (M ⊗D)v∥2 ≤ 0.

This is a discrete version of

∫
Ω

v · ∇(∇ · v) dx = −
∫
Ω

(∇ · v)2dx+ boundary terms.

4.5. Analogy with Residual Distribution and discrete steady states

The recent work of [26] has provided a general analysis of the relations between multi-
dimensional finite volume methods with point fluxes and residual distribution schemes.
Earlier, it has been shown in [2] that residual distribution schemes can be reformulated
in terms of a global flux finite volume method. This section elaborates on these aspects for
the global flux finite volume approach proposed here. This allows us to give more details on
the discrete steady states of the method in a more general setting.
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Following the last reference we start from the conservation condition (51) at each corner.
Consider, instead of (52), the following ansatz for the numerical global flux, given by the
trace of the cell (global) flux plus a fluctuation:

F̂ (i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= Fi,jn
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

+ Φ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

, ℓ,m ∈ {0, 1}. (83)

All the properties of the numerical flux can be translated into requirements on the fluc-
tuations Φ

(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

. The most interesting ones are related to conservation and stationarity

preservation. Corner conservation is written by using the above ansatz in (51), which leads
to the requirement

Φ
(i,j)

i+ 1
2
,j+ 1

2

+ Φ
(i+1,j)

i+ 1
2
,j+ 1

2

+ Φ
(i+1,j+1)

i+ 1
2
,j+ 1

2

+ Φ
(i,j+1)

i+ 1
2
,j+ 1

2

= −
∑

ℓ,m∈{0,1}

Fi+ℓ,j+mn
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= −Φi+ 1
2
,j+ 1

2
,

where Φi+ 1
2
,j+ 1

2
is the global flux integral on the corner dual cell as defined in (58). By virtue

of (83), defining a corner flux is thus equivalent to defining a residual distribution scheme
satisfying ∑

ℓ,m∈{0,1}

Φ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= −Φi+ 1
2
,j+ 1

2
. (84)

This analogy goes much further, and it is in fact a full equivalence. In particular, we can
prove the following facts.

Proposition 6 (Equivalence with RD). Consider the multi-dimensional global flux finite
volume method (43), with numerical fluxes written in terms of fluctuations (58). Then,

1. the multidimensional finite volume global flux method (43) with piecewise constant data
is equivalent to the Residual Distribution scheme

∆x∆y
d

dt
q̄i,j + Φ

(i,j)

i+ 1
2
,j+ 1

2

+ Φ
(i,j)

i+ 1
2
,j− 1

2

+ Φ
(i,j)

i− 1
2
,j+ 1

2

+ Φ
(i,j)

i− 1
2
,j− 1

2

= 0 , (85)

with fluctuations Φ
(i,j)

i± 1
2
,j± 1

2

verifying the conservation condition (84) at each corner (i±
1
2
, j ± 1

2
);

2. the finite volume global flux method (43) with average flux F̂ (i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= F i+ 1
2
,j+ 1

2
n
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

,

∀ ℓ,m ∈ {0, 1} is equivalent to the residual distribution scheme with fluctuations

Φ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= (F i+ 1
2
,j+ 1

2
− Fi+ℓ,j+m)n

(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

3. the finite volume method including the numerical dissipation in (52), defined by the
streamline upwind terms (57), is equivalent to the residual distribution scheme defined
by

Φ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= (F i+ 1
2
,j+ 1

2
− Fi+ℓ,j+m)n

(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

− 1

4
δ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

Φi+ 1
2
,j+ 1

2
, ℓ,m ∈ {0, 1}

with δ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= α∆
(
(−1)ℓ Jx

∆x
+ (−1)m Jy

∆y

)
according to (57);
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4. both the centered and the stabilized method are steady state preserving with respect to
global fluxes of the type (49). In particular, they both admit discrete steady solutions
verifying

Φi+ 1
2
,j+ 1

2
= 0 ∀i, j ;

5. both the centered and the stabilized method are formally second order accurate at steady
state for smooth enough solutions.

Proof. The first fact is a consequence of the identity n
(i,j)

i+ 1
2
,j+ 1

2

+n
(i,j)

i− 1
2
,j+ 1

2

+n
(i,j)

i+ 1
2
,j− 1

2

+n
(i,j)

i− 1
2
,j− 1

2

=

0, so when replacing (83) in (43) we obtain immediately (85): Using (85) or (43) to represent
the scheme is absolutely equivalent. The second and third properties are obtained by simply
subtracting from the average flux, and from (52) the cell contributions to obtain the corres-
ponding fluctuations.

Concerning the discrete kernel property, consider first the average flux without extra
dissipation, and compute explicitly the sum of the corner contributions:

F i+ 1
2
,j+ 1

2
n
(i,j)

i+ 1
2
,j+ 1

2

+ F i+ 1
2
,j− 1

2
n
(i,j)

i+ 1
2
,j− 1

2

+ F i− 1
2
,j+ 1

2
n
(i,j)

i− 1
2
,j+ 1

2

+ F i− 1
2
,j− 1

2
n
(i,j)

i− 1
2
,j− 1

2

=
Fi+1,j+1 − Fi+1,j−1 − Fi−1,j+1 + Fi−1,j−1

4
(86)

=
1

4

(
Φi+ 1

2
,j+ 1

2
+ Φi− 1

2
,j+ 1

2
+ Φi+ 1

2
,j− 1

2
+ Φi− 1

2
,j− 1

2

)
. (87)

This shows that Φi+ 1
2
,j+ 1

2
= 0 is in the kernel of the average flux method. The same is true

for the stabilized scheme for which we can write after assembly around cell i, j∑
ℓ,m∈{−1,1}

[
F i+ ℓ

2
,j+m

2
n
(i,j)

i+ ℓ
2
,j+m

2

− 1

4
δ
(i,j)

i+ ℓ
2
,j+m

2

Φi+ ℓ
2
,j+m

2

]
=

∑
ℓ,m∈{−1,1}

1

4

[(
I− δ

(i,j)

i+ ℓ
2
,j+m

2

)
Φi+ ℓ

2
,j+m

2

] (88)

So to prove point 4., we just check that Φi+ 1
2
,j+ 1

2
= 0 is also a consequence of the steady

state preservation condition of Remark 3 in (50). For Fi,j = F + αi + βj as in (49), in each
dual cell

Φi+ 1
2
,j+ 1

2
= F + αi+1 + βj+1 − F − αi − βj+1 − F − αi+1 − βj + F + αi + βj = 0

and thus F̂ (i+ℓ,j+m)

i+ 1
2
,j+ 1

2

= F . Finally, the second-order consistency at steady state is a con-

sequence of results for residual distribution schemes with bounded distribution coefficients
on linear and bi-linear elements (see [24, 42, 1] and references therein). Second-order accuracy

at steady state thus follows from the boundedness of the coefficients 1/4, and (I−δ
(i+ℓ,j+m)

i+ 1
2
,j+ 1

2

)/4

which appear in the equivalent forms of the scheme (87) and (88).

The switch from conservative finite volume to residual distribution methods contains
some nuances on which we would like to comment. In particular, the proof uses two different
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writings of the average flux scheme. This may be confusing as to which is the proper form to
use. The confusion is originated from the fact that for this simple case, due to cancellation,
the same global assembly can be obtained from several different local contributions, not all
fitting into the same conservation framework. For example, the proof shows that the scheme

∆x∆y
d

dt
q̄i,j +

Φi+ 1
2
,j+ 1

2

4
+

Φi+ 1
2
,j− 1

2

4
+

Φi− 1
2
,j+ 1

2

4
+

Φi− 1
2
,j− 1

2

4
= 0 (89)

is equivalent to the average flux scheme. In light of (85), this may lead to the conclusion,

that the definition Φ
(i,j)

i+ 1
2
,j+ 1

2

= Φi+ 1
2
,j+ 1

2
/4 is a viable one; which is, however, wrong. Such

a definition is not acceptable here, as it does not satisfy the local conservation constraint
(84), which has a minus on the right hand side. This change of sign is related to the differ-
ence between internal and exterior oriented normals. Scheme (89) can also be shown to be
conservative in the classical cell-vertex residual distribution framework, with the appropriate
conservation constraint. On Cartesian meshes, this mismatch cancels out and one ends up
with the same discretization after assembly. However, on general meshes the change in sign
must be carefully accounted for (see e.g. [26]), and the appropriate local conservation and
consistency conditions respected. In particular, the central RD (89) can indeed be written
in a flux form, but the numerical flux has a much more involved expression than the simple
average flux. The interested reader can refer to the last reference, and to [2] for more details.

4.6. Source modification to preserve solutions at rest

This subsection has the goal of providing a direct way to embed bathymetry source
terms typical of the shallow water system with bottom topography. For simplicity, this part
revolves around this PDE system, but the same approach can be also applied for other cases.
In particular, the goal is to achieve stationarity preservation for motionless equilibria, i.e.
lake at rest preservation, coming from the balance between the hydrodynamic pressure and
bottom topography, which is present in both 1D and 2D configurations:

1D:

{
h(x) + b(x) ≡ η0,

u(x) ≡ 0,
2D:

{
h(x, y) + b(x, y) ≡ η0,

u(x, y) = v(x, y) ≡ 0.
(90)

As also shown in section 3, in a 1D global flux framework ([23]) it has been proposed to
integrate the source terms within the flux derivative, thus obtaining a quasi-conservative
formulation of the PDE:{

∂th+ ∂xqx = 0,

∂tqx + ∂x

(
q2x
h
+ g h2

2

)
= −gh∂xb,

=⇒

{
∂th+ ∂xqx = 0,

∂tqx + ∂x

(
q2x
h
+ g h2

2
+
∫ x

gh∂ξbdξ
)

= 0.

(91)
However, contrary to classical source terms, the bathymetry term shall be treated differently
given the presence of its derivative. To achieve consistency and well-balancedness for the
high order method, in [23] the integral of the bathymetry source is considered to jump at
each interface. In the current low order framework the approach amounts to

Rx
i =

∫ xi

gh∂ξb dξ =

∫ xi−1

gh∂ξbdξ +

∫ xi

xi−1

gh∂ξbdξ = Rx
i−1 + g

hi + hi−1

2
(bi − bi−1), (92)
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where the second integral has been computed using a consistent approximation of ∂ξb, while
for the h a simple trapezoidal rule has been used.

The same approach can also be developed for 2D systems, including the the source term
containing ∂x in the x-flux, and the one containing ∂y in the y-flux. Starting from equation
(21), we can integrate the source terms present in the momentum equation as follows:

∂th+ ∂x(hu) + ∂y(hv) = 0

∂t(hu) + ∂x

(
hu2 + g h2

2
+
∫ x

gh∂ξb dξ
)
+ ∂y (huv) = 0,

∂t(hv) + ∂x (huv) + ∂y

(
hv2 + g h2

2
+
∫ y

gh∂ηb dη
)
= 0.

(93)

Proposition 7 (Lake at rest preservation). The 2D global flux scheme of the system (93)
with the source term quadrature provided in equation (92) is exactly well-balanced for the lake
at rest solution (90).

Proof. To prove that the family of equilibria (90) is exactly preserved when u = v ≡ 0
and η = h + b ≡ η0, Since the mixed terms depend only on the velocity and thus vanish,
the two momentum equations can be treated separately for the x and y contribution. In
particular we want to show that given a zero velocity and constant free surface elevation,
fi,j + Rx

i,j = fi−1,j + Rx
i−1,j, ∀j. Without loss of generality, we will show this result only for

the x direction.
By substitution of the relevant quantities, we obtain

fi +Rx
i − fi−1 −Rx

i−1 = g
h2
i − h2

i−1

2
+ g

hi + hi−1

2
(bi − bi−1) (94)

= g
hi + hi−1

2
(ηi − ηi−1) = 0, ∀j, (95)

where the last equality holds when ηi = ηi−1 ≡ η0, with ηi = hi + bi.

4.7. Compatible boundary conditions

Boundary conditions play an essential role in the practical application of numerical meth-
ods. Let us for example consider the usual ghost cell approach. In a classical dimension-by-
dimension finite volume method, homogeneous Neumann boundary conditions on the state
variables can be simply enforced by copying the state. This is somewhat consistent with
the internal treatment based on one dimensional Riemann fluxes using two states. However,
this approach cannot be steady state preserving since it is not based on the global flux. One
should consider corner fluxes on the boundaries, and choose the ghost states consistently with
the equilibrium condition. Here, we construct compatible Neumann boundaries based on the
discrete constraint Φcorner = 0, which we have shown to be the relevant multi-dimensional
characterization of our discrete steady states. Compatible transmissive conditions require
this relation to be verified by the ghost cells at each boundary corner.

Let us consider the right boundary domain (see figure 3). We can impose FN+1,j−1 :=
FN,j−1 for all j on the global fluxes, instead of computing the state variables as for classical
homogeneous Neumann conditions. Then, we can use use directly the global flux at the
boundary corners. This will lead to the following relation

ΦN+ 1
2
,j− 1

2
= FN+1,j − FN,j − FN+1,j−1 + FN,j−1 = 0, (96)
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i+ 1
2
, j + 1

2

i+ 1
2
, j − 1

2

FN−1,j+1 FN,j+1 FN+1,j+1

FN−1,j FN,j FN+1,j

FN−1,j−1 FN,j−1 FN+1,j−1

Figure 3: Ghost cell labelling: ghost cells are highlighted in blue.

which gives a steady state solution.
On corner ghosts, similarly, one has to impose FNx+1,Ny+1 := FNx,Ny+1, if also on the top

side transmissive conditions must be imposed, this will results in

FNx+1,Ny+1 = FNx,Ny+1 = FNx+1,Ny = FNx,Ny .

Similar ideas can be used also for other boundary types, but in our experience transmissive
conditions are the most critical to correctly maintain the internal structure, since they in-
volve no external data, which provide some link to the correct solution for other boundary
conditions.

When seeking to preserve steady states, it is crucial to ensure that the number of equations
imposed—either by boundary conditions or by the steady state equations—does not exceed
the number of unknowns, or that these equations are mutually compatible.

The steady state conditions enforced by Φi+ 1
2
,j+ 1

2
for i = 0, . . . , Nx and j = 0, . . . , Ny

introduce Neq(Nx + 1)(Ny + 1) linearly independent constraints on NeqNxNy unknowns q̄i,j
(for i = 1, . . . , Nx, j = 1, . . . , Ny). To satisfy these extra constraints, Neq(2Nx + 2Ny +
4) ghost cell values are introduced. This leaves Neq(Nx + Ny + 3) equations that can be
specified at the boundaries, typically through Dirichlet conditions. Homogeneous Neumann
conditions, as previously discussed, are compatible with the internal constraints and do not
introduce additional equations. Therefore, the Neq(Nx+Ny+3) remaining degrees of freedom
correspond to at most two sides where Dirichlet boundary conditions can be imposed, and if
not consecutive sides, they should not have all corners included.

In summary, when seeking equilibria, the boundary conditions must be compatible with
the internal constraints. It is only possible, and necessary, to impose complete Dirichlet
conditions on (at most) two boundaries. In this respect, this work is changing the perspective
on this issue. For many years, schemes similar to the one obtained here have been considered
as flawed due to the existence of the steady states characterized by proposition 6. This is
due to the fact that spurious oscillating modes may also satisfy the condition Φi+1/2,j+1/2 = 0
∀i, j (see e.g. [42, 1] and references therein). However, this is only true if one considers the
problem locally, which is a wrong way to define multidimensional steady states as they must
include boundary conditions. If these are imposed in a compatible manner, spurious modes
can be controlled. This work, as well as the work discussed in [11], contributes to rectifying
this notion.
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5. Standard finite volume scheme used for comparison

In this section, we present the standard finite volume (FV) scheme used for comparison
with the novel global flux (GF) scheme in the numerical experiments presented in section 6.
The classical finite volume formulation for the 2D nonlinear hyperbolic problem (11) can be
written by integrating it in the cell Ci,j:

d

dt
q̄i,j +

f̂i+ 1
2
,j − f̂i− 1

2
,j

∆x
+

ĝi,j+ 1
2
− ĝi,j− 1

2

∆y
= s̄i,j, (97)

where the numerical flux f̂i+ 1
2
,j is computed through the local Lax-Friedrichs (or Rusanov)

flux:

f̂i+ 1
2
,j =

1

2

(
fL
i+ 1

2
,j
+ fR

i+ 1
2
,j

)
− λm

2

(
qR
i+ 1

2
,j
− qL

i+ 1
2
,j

)
, (98)

where

fL
i+ 1

2
,j
= f(qL

i+ 1
2
,j
), fR

i+ 1
2
,j
= f(qR

i+ 1
2
,j
), (99)

and similarly for the others. The source term is computed by integrating the source term
over the cell Ci,j:

s̄i,j =
1

∆x∆y

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

sdxdy. (100)

In this work, we are going to compare the first order global flux scheme against the standard
finite volume with both piece-wise constant (first order accurate) and piece-wise linear (second
order accurate) reconstructions. Since the solution update can be performed in a dimension-
by-dimension way, we can focus only on the x-direction for simplicity. For piece-wise constant
reconstruction, the left and right states at interface i+ 1

2
simply are

qL
i+ 1

2
,j
= q̄i,j, qR

i+ 1
2
,j
= q̄i+1,j, ∀j. (101)

While in the second order case, the left and right states are computed through a piece-wise
linear reconstruction of the solution as

q̃(x, y) = q̄i,j + (x− xi) (∂xq)i,j + (y − yj) (∂yq)i,j , x, y ∈ Ci,j. (102)

Hence, the left and right states at interface i+ 1
2
are

qL
i+ 1

2
,j
= q̄i,j +

∆x

2
(∂xq)i,j , qR

i+ 1
2
,j
= q̄i+1,j −

∆x

2
(∂xq)i+1,j , ∀j. (103)

Here, the slopes (∂xq)i,j are evaluated using the generalized minmod limiter [41]:

(∂xq)i,j = minmod

(
ϑ
q̄i+1,j − q̄i,j

∆x
,
q̄i+1,j − q̄i−1,j

2∆x
, ϑ

q̄i,j − q̄i−1,j

∆x

)
, (104)
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where ϑ is used to control the amount of dissipation. In particular, the larger ϑ is, the sharper
and more oscillatory the reconstruction will be. For the simulations presented in section 6,
when not specified, we set the parameter ϑ = 1.3. The same approach has been used along
the y direction.

The classical minmod function is defined as

minmod(a, b, c) =


min(a, b, c), if a, b, c > 0,

max(a, b, c), if a, b, c < 0,

0, otherwise.

(105)

6. Numerical experiments

In this section, the goal is to show the performance of the new global flux scheme (GF)
when compared to the classical finite volume first order (FV-1) and second order (FV-2)
approaches presented in section 5. Several test cases are presented to study the impact
of the method on both linear and nonlinear hyperbolic problems: linear acoustics, shallow
water and the Euler equations. The numerical experiments are performed taking the gravity
g = 9.812, for the shallow water system, and the ratio of specific heats γ = 1.4 for the Euler
system. All convergence analyses are performed on a set of nested quadrilateral meshes with
Nx = Ny = 20, 40, 80, 160, 320. Time integration is performed through classical explicit Euler
and second order Runge-Kutta methods.

6.1. Linear acoustic system

6.1.1. Stationary vortex

The first test case considered here concerns the simulation of the linear acoustic system.
The initial condition is a compactly supported vortex centered in (x0, y0) = (0.5, 0.5) defined
on the square [0, 1]× [0, 1] with periodic boundary conditions, which is given by

p(x, y) = 1,

u(x, y) = (y − y0)f(ρ(x, y)),

v(x, y) = −(x− x0)f(ρ(x, y)),

with ρ(x, y) =

√
(x−x0)2+(y−y0)2

r0
, where r0 = 0.45, f(ρ) = γ(1+cos(πρ))2 and γ = 12π

√
0.981

r0
√
315π2−2048

.

This vortex is taken from the work [44], where its derivation is described. This initial condi-
tion is a steady state of the aocustic system.

In table 1, the errors computed with the L2 norm and convergence rates are shown.
As can be noticed, the GF method outperforms the standard FV-1 and FV-2 methods in
terms of discretization errors. Although the GF is in principle first order accurate due to the
piece-wise constant reconstruction, a superconvergence behavior is experienced for stationary
solutions (compare Proposition 6). Hence, the GF method is not only able to preserve the
vortex structure, but does so at second order accuracy. In particular, this is evident when
increasing the final time of the simulation, as shown in figure 4. Classical methods like FV-1
and FV-2 are not able to preserve the vortex structure for long times, due to their numerical
dissipation that spoils the final solution.
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Table 1: Linear acoustic system: vortex (tf = 1). L2 error and order of accuracy ñ for FV-1, FV-2 and GF.

p u v

Nx, Ny L2 ñ L2 ñ L2 ñ

FV-1

20 3.51E-05 – 6.51E-02 – 6.51E-02 –
40 4.58E-05 -0.38 5.42E-02 0.26 5.42E-02 0.26
80 2.71E-05 0.75 3.97E-02 0.44 3.97E-02 0.44
160 1.06E-05 1.35 2.54E-02 0.64 2.54E-02 0.64
320 3.34E-06 1.66 1.47E-02 0.79 1.47E-02 0.79

FV-2

20 4.31E-04 – 2.58E-02 – 2.58E-02 –
40 2.54E-04 0.76 6.12E-03 2.07 6.12E-03 2.07
80 6.37E-05 1.99 1.61E-03 1.93 1.61E-03 1.93
160 1.29E-05 2.30 4.46E-04 1.84 4.46E-04 1.84
320 2.73E-06 2.24 1.25E-04 1.83 1.25E-04 1.83

GF

20 4.72E-05 – 3.95E-04 – 3.95E-04 –
40 4.53E-05 0.05 9.17E-05 2.10 9.17E-05 2.10
80 1.95E-05 1.21 2.26E-05 2.01 2.26E-05 2.01
160 6.42E-06 1.60 5.58E-06 2.01 5.58E-06 2.01
320 1.85E-06 1.79 1.38E-06 2.01 1.38E-06 2.01
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Figure 4: Linear acoustic system: vortex. Isocontours of the velocity norm obtained with FV-1, FV-2 and
GF after a long time integration (tf = 200).
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6.2. Euler equations

6.2.1. Isentropic vortex

In this section, we test the proposed method on a smooth isentropic vortex [29]. The
initial condition is given in terms of primitive variables and it consists in superposition of a
homogeneous background flow and a perturbation:

(ρ, u, v, p) = (1 + δρ, u0 + δu, v0 + δv, 1 + δp) .

The test case is set up in a [0, 10] × [0, 10] domain with periodic boundary conditions and
vortex radius r =

√
(x− 5)2 + (y − 5)2. The vortex strength is ϵ = 5, and the entropy

perturbation is assumed to be zero. Given these hypotheses, the perturbations on velocity
and temperature can be written as[

δu
δv

]
=

ϵ

2π
exp

(
1− r2

2

)[
−(y − 5)
(x− 5)

]
, δT = −(γ − 1)ϵ2

8γπ2
exp(1− r2).

It follows that the perturbations on density and pressure read

δρ = (1 + δT )
1

γ−1 − 1, δp = (1 + δT )
γ

γ−1 − 1.

This test case is a stationary solution of the Euler equations.
In table 2, the convergence analysis for the isentropic vortex is presented by comparing the

FV-1, FV-2 and GF methods by running the simulation of a static vortex, i.e. u0 = v0 = 0,
until a final time tf = 1. As observed above, the GF shows superconvergent behavior with
order 2. In terms of discretization errors, it outperforms not only the classical piecewise
constant finite volume method, but also the second-order approach equipped with a linear
reconstruction. Even after very long simulations times (see figure 5) the new GF method
is able to maintain the vortex, while the first order FV-1 dissipates everything away, and
FV-2 significantly distorts the vortex structure and still diffuses it more than GF. Observe
that the nonlinearity of the equations makes this test significantly more challenging than the
corresponding test for linear acoustics, where in particular advection is not present.

In table 3, the convergence analysis for a moving isentropic vortex is presented with
u0 = v0 = 1 and a final time tf = 10. Here we can directly observe that the GF method
is indeed first order accurate, as expected, since the reconstruction is piecewise constant.
No superconvergence is observed in this case, as the solution is not stationary. The results
show an relevant improvement of the GF method over the FV-1 in both discretization errors
and convergence rates, while the FV-2 method is, in this case, the best since it is able to
achieve second order accuracy. In figure 6, the solution at the final time is shown for the
three methods.

6.2.2. Perturbation of the isentropic vortex

In this section, we present a test case for the Euler equations that consists in a perturb-
ation of the isentropic vortex presented in the previous section. The initial conditions for
the three schemes FV-1, FV-2 and GF are taken as the final results qeq of the respective
simulations run until final time tf = 50 with a 80× 80 mesh.

26



Table 2: Euler equations: isentropic vortex with u0 = v0 = 0 (tf = 1). L2 error and order of accuracy ñ for
FV-1, FV-2 and GF methods.

ρ ρu ρv ρE

Nx, Ny L2 ñ L2 ñ L2 ñ L2 ñ

FV-1

20 3.58E-01 – 6.77E-01 – 6.77E-01 – 1.16E+00 –
40 2.47E-01 0.53 4.40E-01 0.62 4.40E-01 0.62 8.29E-01 0.48
80 1.49E-01 0.72 2.59E-01 0.76 2.59E-01 0.76 5.15E-01 0.68
160 8.33E-02 0.84 1.43E-01 0.85 1.43E-01 0.85 2.91E-01 0.82
320 4.42E-02 0.91 7.56E-02 0.91 7.56E-02 0.91 1.56E-01 0.90

FV-2

20 1.06E-01 – 2.05E-01 – 2.00E-01 – 4.32E-01 –
40 3.62E-02 1.55 6.74E-02 1.60 6.71E-02 1.57 1.20E-01 1.85
80 1.07E-02 1.76 1.93E-02 1.80 1.95E-02 1.78 2.91E-02 2.04
160 2.39E-03 2.16 5.58E-03 1.78 5.61E-03 1.79 7.04E-03 2.04
320 5.12E-04 2.22 1.39E-03 2.00 1.39E-03 2.01 1.56E-03 2.17

GF

20 1.52E-02 – 3.67E-02 – 3.67E-02 – 4.59E-02 –
40 5.95E-03 1.35 1.15E-02 1.67 1.15E-02 1.67 1.54E-02 1.57
80 1.76E-03 1.76 3.06E-03 1.90 3.06E-03 1.90 4.35E-03 1.82
160 4.69E-04 1.90 7.87E-04 1.96 7.87E-04 1.96 1.16E-03 1.90
320 1.21E-04 1.95 2.00E-04 1.97 2.00E-04 1.97 3.02E-04 1.94

Table 3: Euler equations: isentropic vortex with u0 = v0 = 1 (tf = 10). L2 error and order of accuracy ñ for
FV-1, FV-2 and GF methods.

ρ ρu ρv ρE

Nx, Ny L2 ñ L2 ñ L2 ñ L2 ñ

FV-1

20 6.50E-01 – 1.54E+00 – 1.54E+00 – 3.12E+00 –
40 6.21E-01 0.06 1.46E+00 0.07 1.46E+00 0.07 3.01E+00 0.05
80 5.82E-01 0.09 1.31E+00 0.15 1.31E+00 0.15 2.83E+00 0.09
160 5.13E-01 0.18 1.06E+00 0.30 1.07E+00 0.29 2.48E+00 0.19
320 4.01E-01 0.35 7.58E-01 0.49 7.63E-01 0.49 1.92E+00 0.36

FV-2

20 5.29E-01 – 1.07E+00 – 1.12E+00 – 2.48E+00 –
40 2.45E-01 1.10 4.42E-01 1.28 4.84E-01 1.21 1.17E+00 1.08
80 6.55E-02 1.90 1.26E-01 1.80 1.37E-01 1.81 2.82E-01 2.04
160 1.85E-02 1.82 3.22E-02 1.97 3.42E-02 2.00 6.03E-02 2.22
320 3.38E-03 2.45 7.49E-03 2.10 8.12E-03 2.07 1.28E-02 2.23

GF

20 5.46E-01 – 1.30E+00 – 1.13E+00 – 2.58E+00 –
40 4.44E-01 0.30 1.02E+00 0.34 7.71E-01 0.55 2.10E+00 0.29
80 3.18E-01 0.48 6.96E-01 0.56 4.92E-01 0.64 1.53E+00 0.45
160 1.99E-01 0.67 4.12E-01 0.75 2.96E-01 0.73 9.73E-01 0.65
320 1.12E-01 0.82 2.24E-01 0.87 1.68E-01 0.81 5.55E-01 0.80

27



0 2 4 6 8 10
x

0

2

4

6

8

10

y

rho

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhou

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhov

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhoE

0 2 4 6 8 10
x

0

2

4

6

8

10

y

norm vel

0.9823840

0.9823915

0.9823990

0.9824065

0.9824140

0.9824215

0.9824290

0.9824365

0.9824440

0.00020

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00020

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.000055

0.000080

0.000105

0.000130

0.000155

0.000180

0.000205

0.000230

0.000255

0.000280

+2.465

0.000006

0.000036

0.000066

0.000096

0.000126

0.000156

0.000186

0.000216

0.000246

0.000276

(a) FV-1

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rho

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhou

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhov

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhoE

0 2 4 6 8 10
x

0

2

4

6

8

10

y

norm vel

0.696

0.728

0.760

0.792

0.824

0.856

0.888

0.920

0.952

0.984

0.300

0.225

0.150

0.075

0.000

0.075

0.150

0.225

0.300

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

1.76

1.84

1.92

2.00

2.08

2.16

2.24

2.32

2.40

2.48

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(b) FV-2

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rho

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhou

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhov

0 2 4 6 8 10
x

0

2

4

6

8

10

y

rhoE

0 2 4 6 8 10
x

0

2

4

6

8

10

y

norm vel

0.49

0.55

0.61

0.67

0.73

0.79

0.85

0.91

0.97

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

0.92

1.12

1.32

1.52

1.72

1.92

2.12

2.32

2.52

0.000

0.075

0.150

0.225

0.300

0.375

0.450

0.525

0.600

0.675

(c) GF

Figure 5: Euler equations: isentropic vortex with u0 = v0 = 0. Isocontours of the velocity norm obtained
with FV-1, FV-2 and GF after a long time integration (tf = 200).
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Figure 6: Euler equations: isentropic vortex with u0 = v0 = 1. Isocontours of the velocity norm obtained
with FV-1, FV-2 and GF at tf = 10.
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Figure 7: Euler equations: perturbation of the isentropic vortex. Isocontours of the ρ − ρeq norm obtained
with FV-1, FV-2 and GF at final time tf = 2 with a 80× 80 mesh.

Then, we add to the initial conditions a density perturbation δρ centered in (4, 4) of the
form:

δρ = Ae−
(x−4)2+(y−4)2

σ2

where A = 5 · 10−3 and σ = 0.8. The simulation is run until a final time t = 2 to compare
the effect of the numerical viscosity on the evolution of the perturbation.

In figure 7, we show the density contour plot at the final time for the three methods. The
GF method is able to capture the perturbation sharply, while the FV-1 and FV-2 methods
have discretization errors too large to capture it properly. By looking at the isocontours
scales, it is clear that the perturbation is completely dissipated for the FV-1 method, while
for the FV-2 method the perturbation is still visible but with a much larger error compared
to the expected solution.

6.2.3. Sod’s circular problem

Here, we test the robustness of the global flux method on the Euler equations for the Sod
circular problem. The problem is a two-dimensional extension of the classical shock tube
problem. The simulation is performed on a domain [−1, 1]× [−1, 1] and the initial condition
is given by

Q(x, 0) =

{
Qi if r ≤ R,

Qe if r > R,

with r =
√
x2 + y2. The circle of radius R = 0.5 is centered in the origin and separates

the inner state Qi from the outer state Qe, where Q = (ρ, u, v, p). The initial conditions are
given by Qi = (1, 0, 0, 1) and Qe = (0.125, 0, 0, 0.1). For a reference solution of this problem,
we refer to [13].

To have a smoother initial condition, the two states are connected by a smooth transition
region given by an erfc function defined as

ζ(r) =
1

2
erfc

(
r −R

δ

)
,
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Figure 8: Euler equations: Sod’s circular problem. Numerical results obtained on a 400 × 400 mesh with
FV-1, FV-2 and GF methods run until a final time tf = 0.2.
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where δ = 0.01. Therefore, we can define the smoothed initial condition as

Q(r, 0) = ζ(r)Qi + (1− ζ(r))Qe.

The simulation is run until final time tf = 0.2 before the shock waves reach the boundaries.
In figure 8, we present the numerical results obtained on a 400× 400 mesh with the three

methods FV-1, FV-2 and GF. For all situations, we show the density contour plot at the final
time, along with a slice of the density and vertical velocity on the x = 0 axis. It can be noticed
that, among all three simulations, the GF performs much better than the standard first order
scheme and it is clearly comparable to a second order one. It is able to sharply capture the
three waves, which are smoothed out by the classical FV-1. GF also avoids oscillations at
the beginning of the rarefaction, while the FV-2 shows small oscillations. On the foot of the
rarefaction, the GF show sharper results, while it is a little more diffusive on the contact
discontinuity with respect to the FV-2. On the shock, the GF does not oscillate, while the
FV-2 shows minimal oscillations and is a little more sharply representing the discontinuity.

This test case not only allows us to show the robustness of the method to deal with
unsteady shock propagation. It also provides interesting insights into its low dissipation even
though the method has not been designed to have any particular properties on unsteady
solutions.

6.2.4. Kelvin-Helmholtz instability

The last test case we present for the Euler system is a smooth Kelvin-Helmholtz instability,
introduced in [33] to study the ability of a numerical scheme to cope with low Mach number
flow and to assess qulitatively the numerical diffusion of the method. There is a large body
of work available in the literature concerning the shortcomings of classical Finite Volume
methods in the subsonic regime (see e.g. [9]). The effect of stabilizing diffusion becomes
bigger as the Mach number decreases, making it necessary to use highly resolved grids in
order to capture the features of the flow. Numerical methods that are not low Mach number
compliant typically also stabilize Kelvin-Helmholtz setups in an artificial way.

The simulations are performed in the domain [0, 2]× [−1/2, 1/2] until a final time tf = 80.
The initial condition is given by the following primitive variables:

ρ = γ +H(y) r, u = M H(y), v = δM sin(2πx), p = 1,

where the Mach number parameter is M = 10−2 and we use r = 10−3 and δ = 0.1. The
function H(y) is defined as,

H(y) =


− sin

(
π
ω

(
y + 1

4

))
, if − 1

4
− ω

2
≤ y < −1

4
+ ω

2
,

−1, if − 1
4
+ ω

2
≤ y < 1

4
− ω

2
,

sin
(
π
ω

(
y − 1

4

))
, if 1

4
− ω

2
≤ y < 1

4
+ ω

2
,

1 else,

where ω = 1/16. Observe that the shear flow is smooth such that for short times, there exists
a solution to which numerical methods converge upon mesh refinement ([33]).

In figure 9, we present the numerical results obtained with FV-1, FV-2 and GF for
the Kelvin-Helmholtz instability arising from the aforementioned initial conditions. The
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Figure 9: Euler equations: Kelvin-Helmholtz instability. Density isocontours are presented for a set of nested
meshes to compare FV-1 (top), FV-2 (middle) and GF (bottom).
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simulations are performed on a set of 4 nested grids from a 64×32, the coarsest, to 512×256,
the finest.

The FV-1 scheme is not able to capture any of the features arising from the instability.
No vortices form, since FV-1 is not low Mach number compliant.

Much improved results are obtained using the FV-2 with a linear reconstruction of the
conservative variables. Here, the higher order of accuracy helps to overcome excessive diffu-
sion at this Mach number and for this simulation time. However, the structures still appear
diffused and would need even more resolution for the vortex details to be captured.

Very differently from these methods, the GF method is able to capture all details of the
flow very accurately. Already on the coarsest mesh, the fluid structures start to appear and
develop. Here, some spurious vortices are visible, which are a known artefact of virtually any
numerical method (see e.g. [15]). When increasing the resolution, the fluid features converge
to the expected solution found in other references [33]. Comparison to the results obtained
with low Mach compliant methods studied in [33] shows that the GF method is at least as
good.

It has been suggested in [8] that numerical methods for the Euler equations whose lin-
earization (= method for linear acoustics) is stationarity preserving, are low Mach number
compliant. A nonlinear stationarity preserving method naturally has this property, and some
experimental examples of this behaviour can also be found in [7]. Thus, even though we set
out to improve the performance of the numerical method at stationary state, here we observe
that this property is beneficial even for solutions far away from it.

6.3. Shallow water system

6.3.1. Potential flow

The first test case implemented for the shallow water equations is an equilibrium (see [43])
characterized by a known exact solution, for which it is possible to perform a convergence
analysis. The initial condition is a potential flow defined on the square [−1, 1]× [−1, 1] with
Dirichlet boundary conditions, which is given by

h(x, y) = (x− x0)(y − y0) + C,

u(x, y) = (x− x0),

v(x, y) = −(y − y0)

where C = 3/2 and (x0, y0) = (0, 0). The 2D equilibrium is achieved thanks to a special
bathymetry given by

b(x, y) =
1

g

(
30− x2 + y2

2

)
− xy − C.

The solution of this potential flow is shown in figure 10, and the convergence rates com-
puted at final time tf = 1 are presented in table 4, demonstrating the improvement brought
about by the global flux formulation. Again, since the setup is stationary, superconvergence
is observed. Moreover, the new method is even able to outperform FV-2.
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Figure 10: Shallow water system: potential flow. Reference solution of the conservative variables.

Table 4: Shallow water system: potential flow (tf = 1). L2 error and order of accuracy ñ for FV-1, FV-2
and GF.

h hu hv

Nx, Ny L2 ñ L2 ñ L2 ñ

FV-1

20 1.54E-02 – 1.57E-01 – 1.71E-01 –
40 8.25E-03 0.89 1.08E-01 0.53 1.11E-01 0.62
80 4.30E-03 0.94 6.60E-02 0.71 6.43E-02 0.78
160 2.18E-03 0.97 3.68E-02 0.84 3.47E-02 0.88
320 1.10E-03 0.99 1.95E-02 0.91 1.80E-02 0.94

FV-2

20 2.49E-04 – 1.06E-03 – 1.47E-03 –
40 5.26E-05 2.24 2.61E-04 2.02 3.25E-04 2.17
80 1.09E-05 2.27 7.11E-05 1.87 8.17E-05 1.99
160 2.24E-06 2.28 1.86E-05 1.93 2.06E-05 1.98
320 4.81E-07 2.21 4.69E-06 1.98 5.17E-06 1.99

GF

20 1.15E-04 – 4.29E-04 – 1.11E-03 –
40 2.69E-05 2.09 1.01E-04 2.08 2.39E-04 2.21
80 6.49E-06 2.05 2.46E-05 2.03 5.50E-05 2.11
160 1.59E-06 2.02 6.08E-06 2.01 1.32E-05 2.05
320 3.95E-07 2.01 1.51E-06 2.00 3.24E-06 2.02
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Table 5: Shallow water system: lake at rest (tf = 0.1). L2 error and order of accuracy ñ for FV-1 and FV-2
schemes with the novel GF.

h hu hv

Nx, Ny L2 ñ L2 ñ L2 ñ

FV-1

20 7.13E-03 – 4.67E-02 – 3.61E-02 –
40 2.79E-03 1.35 2.42E-02 0.95 2.04E-02 0.82
80 1.20E-03 1.22 1.21E-02 1.00 1.10E-02 0.89
160 5.46E-04 1.12 5.99E-03 1.00 5.71E-03 0.94
320 2.60E-04 1.06 2.98E-03 1.00 2.91E-03 0.97

FV-2

20 2.92E-03 – 2.17E-03 – 2.26E-03 –
40 6.76E-04 2.10 3.65E-04 2.57 3.94E-04 2.51
80 1.60E-04 2.07 7.58E-05 2.26 8.10E-05 2.28
160 3.87E-05 2.04 1.70E-05 2.15 1.78E-05 2.18
320 9.50E-06 2.02 4.02E-06 2.08 4.13E-06 2.11

GF

20 4.50E-16 – 6.24E-15 – 6.36E-15 –
40 9.71E-16 – 1.36E-14 – 1.31E-14 –
80 1.58E-15 – 3.03E-14 – 3.29E-14 –
160 3.38E-15 – 8.62E-14 – 8.67E-14 –
320 6.47E-15 – 2.28E-13 – 2.29E-13 –

6.3.2. Lake at rest

In this section, we test the well-balanced property, proven in section 4.6, of the global
flux method for lake at rest solutions of the shallow water system. The problem is set in a
rectangular domain [0, 1] × [0, 1] with periodic boundary conditions. The initial and exact
solution is given by

h(x, y) = 1− b(x, y), u(x, y) = v(x, y) ≡ 0,

where the bathymetry is defined as

b(x, y) = 0.1 sin(2πx) cos(2πy).

In table 5, a convergence study is presented at final time tf = 0.1. As expected, thanks to the
well-balanced property of the global flux method, the GF is able to achieve machine precision
errors. The standard FV-1 and FV-2 methods show only the classical first and second order
convergence slopes. In figure 11, we present the comparison between the well-balanced GF
method and the non-well-balanced FV-1 and FV-2 methods.

6.3.3. 2D supercritical equilibria

We consider two fully multi-dimensional steady states of the shallow water system, char-
acterized by constant momentum in supercritical regimes. However, contrary to the one-
dimensional version of such equilibria [23, 21], no exact solution is known for the simulations
presented in this section. For this reason, the numerical results obtained through the three
schemes will be compared qualitatively. The problems are simulated on a rectangular domain
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Figure 11: Shallow water system: lake at rest. Numerical results for the lake at rest solution on the coarse
mesh 40× 40 at final time tf = 0.1 obtained with FV-1, FV-2 and GF.
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Figure 12: Shallow water system: 2D supercritical equilibria. Numerical results obtained with FV-1, FV-2
and GF to steady state for Nx = Ny = 450.

[0, 25] × [0, 8], and are made fully multi-dimensional by employing a 2D bathymetry that is
a function of both x and y, given by

b(x, y) =

1
5

(
1−

(
r(x,y)

2

)2)
, where r(x, y) < 2

0, elsewhere

with r(x, y) =
√

(x− x0)2 + (y − y0)2 and (x0, y0) = (10, 4). The initial conditions of the
first problem are given by

h(x, y, 0) = 2− b(x, y), qx(x, y, 0) = 24, qy(x, y, 0) = 0.

Inlet boundary conditions (equal to the initial conditions) are imposed on the left boundary
of the domain, and outlet (homogeneous Neumann) on the right. Top and bottom of the
domain are periodic boundaries. In figure 12, we present the numerical solutions for the
conservative variables when the numerical steady state is reached (time residual close to
machine precision). All simulations are performed on a mesh of 450 × 450 elements. GF
is able to capture and resolve sharply the many shocks appearing behind the bathymetry
bump. Although the mesh resolution for this case is quite fine, FV-1 still presents a highly
diffused result. An improvement is experienced when using the linear reconstruction for
FV-2, although all the waves still appear as smooth transitions. However, the results of the
classical methods still remain significantly inferior to those of GF, which captures all waves
sharply in much fewer cells.

As a second problem, and in order to test the robustness of the method, we also consider
a crooked supercritical equilibrium with the same bathymetry but different initial conditions:

h(x, y, 0) = 2− b(x, y), qx(x, y, 0) = 24, qy(x, y, 0) = 4π.
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Figure 13: Shallow water system: 2D crooked supercritical equilibria. Numerical results obtained with FV-1,
FV-2 and GF to steady state for Nx = Ny = 450.

In this case, left and bottom boundaries are inlet boundaries, while right and top are outlets.
It should be noticed, that this test case is even more challenging than the one shown before
since no part of the fluid is aligned with the background Cartesian mesh. In figure 13, the
results obtained for the conservative variables are presented, where the same conclusion about
the quality of the result of the GF method can be drawn as for the previous test. All the
physical features of the equilibria are well captured, while they are significantly more diffused
by the FV-1 and FV-2 methods.

7. Conclusions and perspectives

In this work, we have presented a new way to derive finite volume methods for nonlinear
multi-dimensional hyperbolic systems, which is based on the global flux approach (9), in-
troduced in [11]. It is a general way to obtain stationarity preserving schemes for nonlinear
problems. Besides its generality, the method is also able to achieve superconvergence on
steady problems. Despite a focus on stationary states during its design, we observe highly
accurate solutions for unsteady multi-dimensional problems, outperforming standard first
and even second-order finite volume methods.

This work opens the way to several future developments. In particular, the extension
of the finite volume formulation to high order methods by using high-degree polynomial re-
construction techniques like WENO [29] is a natural next step, following the work on the
1D global flux WENO approach introduced in [23]. Moreover, the first order finite volume
method can also be seen as the starting point to develop a new family of multi-dimensional
high order discontinuous Galerkin methods based on the global flux formulation. More
investigations will also be dedicated to the extension of the method to deal with mathem-
atical models characterized by curl-free solutions, like the Maxwell equations. Extending,
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for instance, the observation that stationarity preserving methods are also low Mach number
compliant, theoretical work will include further analysis of the method in unsteady situations.
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