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Abstract

In this work, we present a high-order finite volume framework for the numerical
simulation of shallow water flows. The method is designed to accurately cap-
ture complex dynamics inherent in shallow water systems, particularly suited for
applications such as tsunami simulations. The arbitrarily high-order framework
ensures precise representation of flow behaviors, crucial for simulating phenomena
characterized by rapid changes and fine-scale features. Thanks to an ad-hoc refor-
mulation in terms of production-destruction terms, the time integration ensures
positivity preservation without any time-step restrictions, a vital attribute for
physical consistency, especially in scenarios where negative water depth recon-
structions could lead to unrealistic results. In order to introduce the preservation
of general steady equilibria dictated by the underlying balance law, the high-
order reconstruction and numerical flux are blended in a convex fashion with a
well-balanced approximation, which is able to provide exact preservation of both
static and moving equilibria. Through numerical experiments, we demonstrate
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the effectiveness and robustness of the proposed approach in capturing the intri-
cate dynamics of shallow water flows, while preserving key physical properties
essential for flood simulations.

Keywords: well-balancing, moving steady solutions, positivity preservation,
high-order accuracy, flood simulations, shallow water, WENO

1 Introduction

The Saint-Venant equations, also known as the shallow water (SW) equations, char-
acterize the behavior of hydrostatic free surface waves influenced by gravity. These
nonlinear hyperbolic partial differential equations (PDEs) are applicable under the
assumption of either very large wavelengths or very shallow depths. They find exten-
sive use across engineering domains, including river and estuarine hydrodynamics,
urban flood management, and tsunami risk evaluation. The numerical approxima-
tion of the SW equations remains a highly active area of research. Numerous
original methods have been developed across various contexts and settings: finite
volume [5, 23, 49, 21, 11, 38, 37, 16, 68, 10, 47, 48, 18, 19], continuous and dis-
continuous finite element [34, 29, 69, 12, 62, 61, 6, 66, 39, 4, 7, 65], residual
distribution [58, 57, 56, 55, 2, 3], and so on.

The ultimate goal of these approaches is to provide reliable and physically meaning-
ful simulations for real-world applications, while demanding minimal computational
resources. High-order methods are particularly suitable in this context, as they
are able to achieve smaller errors within coarser discretizations. Furthermore, an
effective strategy for designing numerical methods with reduced errors is through
structure-preserving techniques. These techniques aim to replicate additional consis-
tency conditions beyond those explicitly defined by the system of equations themselves.
For the SW equations, the focus is on preserving positive water heights, equilibrium
or stationary states, and implementing entropy conservation or dissipation methods.
First, the SW equations with source terms are known to admit a family of stationary
solutions, which are characterized by a balance between flux divergence and source
terms. This concept is connected with that of a well-balanced (WB) discretization,
typically characterized by its ability to replicate one or more of these equilibria at
the discrete level [10, 9, 15, 24, 25, 40, 8, 17]. This WB property is crucial for com-
plex, time-dependent simulations, as discretization errors due to the non-preservation
of stationary regions could accumulate over time. Second, in the context of flood sim-
ulations, it is a necessity to have provably positive discretizations, avoiding negative
water heights. To obtain a provably positive reconstruction in the context of high-
order weighted essentially non-oscillatory [60] (WENO) schemes, an effective positive
limiter has been introduced and further developed in [70, 54]. As proven in these refer-
ences, this limiter achieves the preservation of positive reconstruction, but it restricts
the CFL condition, for classical SSPRK [26] schemes, to the weight of the Gauss-
Lobatto quadrature rule of the corresponding space accuracy (e.g., 1/12 for fifth-order
schemes). To circumvent this issue, unconditionally positivity preserving time-stepping
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strategies [42, 18] for the SW equations have been proposed, based on a suitable refor-
mulation of the finite volume semi-discretization in terms of production-destruction
terms. These approaches are based on the modified Patankar trick [53, 30, 31, 51]. The
linearly implicit nature of this approach allows for a relaxation of the aforementioned
time-step constraint at a reasonable computational cost.

In this paper, we deal with the possibility of integrating the additional preserva-
tion of general static and moving equilibria into the arbitrary high-order positivity
preserving framework introduced in [18]. To achieve this, we suitably modify the spa-
tial discretization relying on ideas presented in [9]. In particular, we perform a convex
blending between the original discretization and aWB one, able to exactly capture gen-
eral families of equilibria. The approach is able to tackle challenging flood simulations,
proving to be a good candidate for real-life applications.

The paper is structured as follows. We first introduce the multidimensional SW
system in Section 2. Then, the high-order WB positive numerical scheme is detailed
in Section 3, where the space discretization is discussed, and in Section 4, where
we present the production-destruction formulation in combination with high-order
modified Patankar time schemes. The results of the numerical validation are reported
in Section 5. Finally, Section 6 is left for conclusions and further developments.

2 Shallow water equations

The two-dimensional SW equations consist in a hyperbolic system of PDEs, extensively
used in many applications to describe the behavior of water flows. Their Eulerian
formulation on a space domain Ω ⊆ R2, assuming no friction and a time-independent
bathymetry, reads

∂u

∂t
+

∂F

∂x
(u) +

∂G

∂y
(u) = S(x, y,u), ∀(x, y) ∈ Ω, ∀t ∈ [0, Tf ], (2.1)

where conserved variables, fluxes and source term are respectively given by

u =

 h
hu
hv

 , S(x, y,u) = −gh

 0
∂b
∂x (x, y)
∂b
∂y (x, y)

 ,

F(u) =

 hu

hu2 + g h2

2
huv

 , G(u) =

 hv
huv

hv2 + g h2

2

 ,

(2.2)

with h being the water height, u and v the velocity components of the flow along the x
and y directions respectively, g the gravitational constant, and b(x, y) the bathymetry.
We also introduce the free surface water level η := h+ b, and the discharge variables
along the two directions x and y, defined as qx := hu and qy := hv respectively.

Notable properties of the SW equations, which have been drawing the interest of
the scientific community in recent years and which play a central role in the context
of this paper, are the positivity of the water height and the existence of non-trivial
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steady solutions. In the context of numerical schemes preserving moving equilibria,
one is interested in a detailed capturing of steady solutions satisfying

∂u

∂t
≡ 0 ⇔ ∂F

∂x
(u) +

∂G

∂y
(u) = S(x, y,u), ∀(x, y) ∈ Ω ⊆ R2, ∀t ∈ [0, Tf ]. (2.3)

The simplest and most known steady solution is the so-called “lake at rest” given by

u = v = 0, η ≡ η0 ∈ R+
0 , ∀ (x, y) ∈ Ω, ∀t ∈ [0, Tf ]. (2.4)

Generally speaking, steady solutions are not known in closed-form and they are char-
acterized by the analytical balance (2.3). The smooth steady solutions tackled in this
work are the pseudo-monodimensional states in the form

∂

∂s
qs = 0,

∂

∂s

(
q2s
2h2

+ g(h+ b)

)
= 0,

(2.5)

where s is a general handle for the x or the y variable. For more information on these
steady solutions, the reader is referred for instance to [46]. For what follows, it is useful
to define the so-called equilibrium variables

Es(x, y,u) =

[
qs

q2s
2h2 + g(h+ b)

]
. (2.6)

After (2.5), steady solutions are characterized by Es(x, y,u) being constant in space.
The system of PDEs under consideration is discretized using the Method of Lines

(MOL), a numerical approach that treats space and time independently. In particular,
space and time discretizations are the main focus of the next two sections.

3 Well-balanced space discretization

This section is dedicated to the space discretization. First, in Section 3.1, we describe
our classical, non-well-balanced high-order discretization. Then, Section 3.2 is devoted
to the generalization of a strategy to achieve a high-order well-balanced (WB) dis-
cretization, which was introduced in a one-dimensional setting in [9]. Here, we
generalize this technique for a two-dimensional WENO framework, applying the basic
idea dimension by dimension. The underlying principle consists in a simple blending
between a high-order discretization and a WB discretization to be used where a steady
state is detected. The main strengths of this approach are its low cost (no nonlinear
equations need to be solved) and its ease of use (it consists in multiplying the recon-
struction by a suitable coefficient). We emphasize that the resulting scheme will be
able to capture and preserve all the moving 1D steady solutions given by (2.5), and
not just the so-called lake at rest solution, where velocity vanishes.
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3.1 Basic high-order discretization

The computational domain Ω is discretized in a Cartesian fashion via Nx ×Ny non-
overlapping control volumes

Ωi,j = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2],

with uniform spatial steps ∆x = xi+1/2 − xi−1/2 and ∆y = yj+1/2 − yj−1/2.
Finite volume methods are based on deriving a system of ordinary differential

equations (ODEs) for the cell averages of the solution in each control volume Ωi,j

Ui,j(t) :=
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

u(x, y, t) dxdy.

The first step to obtain such a system is to integrate (2.1) over Ωi,j , thus getting

dUi,j(t)

dt
+

1

∆x
(Fi+1/2,j(t)− Fi−1/2,j(t)) +

1

∆y
(Gi,j+1/2(t)−Gi,j−1/2(t)) = Si,j(t),

(3.1)
where Si,j is the source term average

Si,j(t) :=
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

S(x, y,u) dxdy,

and Fi+1/2,j and Gi,j+1/2 are the averages of the fluxes over the cell boundaries

Fi+1/2,j(t) :=
1

∆y

∫ yj+1/2

yj−1/2

F(u(xi+1/2, y, t)) dy,

Gi,j+1/2(t) :=
1

∆x

∫ xi+1/2

xi−1/2

G(u(x, yj+1/2, t)) dx.

So far, Equation (3.1) has been exactly derived from (2.1). However, in order to obtain
the numerical scheme, we need to discretize the fluxes and the source averages.

To that end, we rely on the following ingredients: a high-order reconstruction of
the conservative variables in each control volume (WENO [60] in our case), consistent
quadrature formulas to discretize all integrals (Gauss-Legendre with Q points in our
case), and suitable numerical fluxes to compute the fluxes in the boundary integrals
(described later on). In the remainder of this section, we drop the time dependency
to shorten notation.

Let us first focus on the discretization of the fluxes averages and, more in detail,
on Fi+1/2,j , as Gi,j+1/2 is obtained similarly. Once the reconstruction in each control
volume has been performed, at each quadrature point yq ∈ [yj−1/2, yj+1/2] of each edge
xi+1/2 we have two high-order reconstructed values for u, corresponding to xL

i+1/2 and
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xR
i+1/2, which will be referred to as the left and right high-order extrapolated values

uL
i+1/2,q = uHO(xL

i+1/2, yq) and uR
i+1/2,q = uHO(xR

i+1/2, yq).

By applying a consistent quadrature rule, the flux in the x-direction reads

Fi+1/2,j ≈
Q∑

q=1

wqF̂(u
L
i+1/2,q,u

R
i+1/2,q),

where F̂ is a consistent numerical flux, and wq is the normalized quadrature weight

associated to the quadrature node yq. The choice of F̂ is discussed in Section 3.2.
The high-order source term averages are computed as

Si,j ≈
Q∑

q=1

Q∑
p=1

wqwpS(xq, yp,u
HO(xq, yp)),

with a surface quadrature obtained as the tensor product of the classical 1D quadrature
used for the edges and uHO being the local reconstruction of the solution in the cell.

Despite its robustness in capturing discontinuities, while minimizing the oscilla-
tions, the WENO reconstruction may provide some negative reconstructed values for
the water height, especially close to dry regions. Such negative water heights are not
physically admissible, and in fact will immediately lead to the simulation crashing.
In order to avoid such an issue, we adopt for the water height reconstruction the
positivity limiter introduced in [54] and further discussed in [70].

As shown in [67], provable positivity preservation for the water height, in the
context of this framework, is subjected to severe CFL constraints, when adopting
standard time integration techniques. In particular, assuming a simple forward Euler
time-stepping and a Lax-Friedrichs numerical flux, the limit CFL guaranteeing pos-
itivity preservation is CFLFE := wLobatto

1 , where wLobatto
1 is the first weight of the

adopted high-order Gauss-Lobatto quadrature rule. This corresponds to CFLFE =
1/12 for a quadrature of order 5. The restriction gets even worse as the order of
accuracy increases, e.g., we have CFLFE = 1/20 for a quadrature of order 7. The
adoption of high-order SSPRK methods slightly relaxes the constraint, but not signifi-
cantly. Indeed, for instance, using the SSPRK(5, 4) discretization relaxes the condition

to CFLSSPRK(5,4) = 1.508CFLFE. The adopted time discretization, described in
Section 4, allows us to drop such limitations and to run simulations at any CFL with-
out violating the positivity constraint on the water height. Due to the explicit nature
of the time scheme used for the discharge equations, however, the (far less restrictive)
stability constraint CFL ≤ 1 of explicit schemes applies.

3.2 Well-balanced blending

We now describe the WB strategy, which makes possible the capture of steady states
characterized by constant equilibrium variables (2.6). The key idea comes from the
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following remark: for the simulation of a steady solution, a well-balanced scheme is
exact, and therefore has a better accuracy than any high-order scheme. For unsteady
simulations, high-order schemes are more accurate, and should be used whenever the
solution is not steady. To achieve a seamless switch between high-order and well-
balanced schemes, we propose a simple blending between the two. This blending is
performed according to a suitable steady solution indicator, defined below.

For simplicity, we only derive the reconstruction along the x-direction. The exten-
sion to the y-direction is easily performed following a dimension by dimension
approach. We replace the reconstructed variables at the interfaces by the convex
combination between the high-order extrapolated values and the cell averages

ũL
i+1/2,q = (1− θi+1/2,j)Ui,j + θi+1/2,ju

L
i+1/2,q,

ũR
i+1/2,q = (1− θi+1/2,j)Ui+1,j + θi+1/2,ju

R
i+1/2,q,

(3.2)

where θi+1/2,j is a steady state indicator. On the one hand, it should vanish when
the equilibrium variables (2.6) are constant in space; in this case, the modified recon-
structed values ũL

i+1/2,q are equal to the cell averages Ui,j . On the other hand, when

far from any equilibrium, ũL
i+1/2,q should be an approximation of order P , where P is

the order of the discretization (herein, P = 5).
Following [9], we define θi+1/2,j by

θi+1/2,j =
εi+1/2,j

εi+1/2,j +
(

∆x
Ci+1/2,j

)P ,

with
εi+1/2,j := ∥Ex(xi+1, yj , θi+1/2,j)− Ex(xi, yj , θi+1/2,j)∥,

where Ci+1/2,j is a quantity independent of ∆x, which is here chosen, at a given time
iteration, as the time residual difference at the previous iteration

Ci+1/2,j :=
1

2

(
Un

i+1,j −Un−1
i+1,j

∆t
+

Un
i,j −Un−1

i,j

∆t

)
.

We remark that, at equilibrium Ci+1/2,j → 0, hence θi+1/2,j → 0 as well resulting in
the low-order WB reconstruction.

Similarly, the source term discretization is defined as

S̃i,j =
1

2

(
θi−1/2,j + θi+1/2,j

)
Si,j

+
1

2

((
1− θi−1/2,j

)
SWB
i−1/2,j +

(
1− θi+1/2,j

)
SWB
i+1/2,j

)
,

where SWB
i−1/2,j and SWB

i+1/2,j represent WB discretizations of the source term at the

interfaces described in [46].
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In order to ensure stability in the context of unsteady wet-dry simulations, we
found experimentally useful to introduce, with respect to the classical approach [9, 46],
a similar convex combination in the flux definition

F̂(uL
i+1/2,q,u

R
i+1/2,q) = (1− θi+1/2,j)F̂

WB(uL
i+1/2,q,u

R
i+1/2,q)

+ θi+1/2,jF̂
LF(uL

i+1/2,q,u
R
i+1/2,q),

where F̂WB represents the WB approximate Riemann solver presented in [46], while
F̂LF is a robust local Lax-Friedrichs numerical flux reading

F̂LF(uL,uR) =
1

2

(
F(uR) + F(uL)

)
− 1

2
smax

(
uR + uL

)
,

where smax is the spectral radius of the normal flux Jacobian of system (2.1).
Remark 1. The discretized terms SWB

i−1/2,j, S
WB
i+1/2,j and F̂WB are designed in such a

way to guarantee an exact equilibrium with respect to steady states in the form (2.6),
when taking in input the cell averages. The reader can easily verify that, when a steady
state of this type is considered, then all θi+1/2,j are equal to 0 and the scheme reduces to
the WB version. Indeed, the modified reconstruction (3.2) degenerates to the cell aver-
ages. This means that, despite guaranteeing an exact capturing of the steady states, the
basic WB discretization is directly based on cell averages without any reconstruction,
and it is, therefore, only first order accurate in general [9].
Remark 2. We emphasize an important property of the proposed strategy: the steady
solution indicator is defined such that the nonlinear system (2.5) never has to be
solved. Instead, it merely relies on evaluating the equilibrium variables (2.6) at the cell
interfaces.
Remark 3. It should be noticed that the proposed scheme is well-balanced when
θi+1/2,j goes to 0. Numerically speaking, this consists in defining a low enough threshold
(10−10 in the numerical experiments) to set θi+1/2,j = 0.

4 Unconditionally positive time discretization

In this section, we describe the time-stepping strategy, which consists in a slight
modification of arbitrary high-order deferred correction (DeC) methods for ODEs [1].
In particular, the water height update is reinterpreted as a Production-Destruction
System (PDS) and then the modified Patankar trick is applied in order to achieve
unconditional preservation of its positivity as in [18]. Both DeC methods and Patankar
trick have a long history. In particular, for more information on DeC the interested
reader is referred to [22, 44, 45, 64, 28], while Patankar (and modified Patankar) tricks
are detailed in [53, 51, 13, 14, 33, 35, 36, 30, 31, 41, 52].
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4.1 Deferred Correction method

To introduce the DeC method, let us consider the Cauchy problem{
d
dtc(t) = H(t, c(t)), t ∈ [0, Tf ],

c(0) = c0,
(4.1)

where c : [0, Tf ] → RNc is the unknown solution, with Nc components, and H :
[0, Tf ]×RNc → RNc is a given function satisfying the classical smoothness assumptions,
which guarantee the existence of a unique solution to the Cauchy problem (4.1). As is
customary in the context of one-step methods, we focus on a generic interval [tn, tn+1]
of size ∆t := tn+1−tn and, given cn ≈ c(tn), we seek an approximation cn+1 of c(tn+1).

Following [1, 44], we introduce M + 1 subtimenodes tm in the interval [tn, tn+1],
which are such that

tn = t0 < t1 < · · · < tM = tn+1.

The DeC method under consideration consists in an explicit fixed point iterative pro-
cedure to compute the approximation of c at all subtimenodes simultaneously. The
update formula is given by

cm,(p) := c0 +∆t

M∑
ℓ=0

θmℓ H(tℓ, cℓ,(p−1)), m = 1, . . . ,M, p ≥ 1, (4.2)

where cm,(p) is the approximation of the solution in the subtimenode tm obtained at the
pth iteration and, for eachm, the coefficients (θmℓ )ℓ∈{0,...,M} are the normalized weights
of the high-order quadrature formula over [t0, tm] associated to the subtimenodes.
In particular, in the previous update formula, we set cm,(p) = c0 := cn whenever
m = 0 or p = 0. One can show that, for small enough ∆t, the iterative process
converges. Furthermore, the order of accuracy of cM,(p) with respect to c(tn+1) is
min (p,R), i.e., each iteration corresponds to an increase in the order of accuracy by
one, until a saturation value R, which depends on the number and on the distribution
of the adopted subtimenodes. For example, evenly spaced subtimenodes lead to R =
M+1, while Gauss-Lobatto subtimenodes yield R = 2M . In this paper, we use Gauss-
Lobatto subtimenodes. Therefore, the optimal way of reaching order P is to perform
P fixed-point iterations with M + 1 subtimenodes, where M = ⌈P

2 ⌉.
Hence, the arbitrarily high-order time integration method presented in this section,

combined with the space discretization described in Section 3, defines an arbitrar-
ily high-order, fully well-balanced framework for the numerical solution of the SW
equations (2.1) – (2.2). However, at this level, nothing can be said, in general, about
the positivity of the water height. In the next subsection, we present the modification
to be performed in the time integration of the water height, guaranteeing unconditional
positivity.
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4.2 Modified Patankar DeC method

In this section, we first focus, in Section 4.2.1, on the unconditionally positive time inte-
gration of a specific class of ODEs, namely Production-Destruction Systems (PDSs).
Then, we describe in Section 4.2.2 how to apply these notions to the SW equations.

4.2.1 Unconditionally positive time integration of PDSs

PDSs are systems of ODEs characterized by the following structure
d

dt
cα =

∑Nc

β=1 pα,β(c)−
∑Nc

β=1 dα,β(c), α = 1, . . . , Nc,

c(0) = c0,

where c = (cα)α∈{1,...,Nc}, and where pα,β and dα,β are real non-negative Lipschitz-
continuous functions from RNc to R∗

+.
More specifically, we are interested in a subfamily of PDSs fulfilling two extra

constraints: conservation and positivity. A PDS is said to be conservative if, ∀α, β ∈
{1, . . . , Nc} and ∀c ∈ RNc , we have pα,β(c) = dβ,α(c), thus implying

Nc∑
α=1

cα(t) =

Nc∑
α=1

cα(0), ∀t ∈ [0, Tf ]. (4.3)

A PDS is said to be positive if, starting by a positive initial condition, we get a positive
evolution of all the components, i.e.,

c(0) > 0 =⇒ c(t) > 0, ∀t ∈ [0, Tf ], (4.4)

where the comparison operator, applied to vectors, is meant to be applied to each
scalar component.

Conservative and positive PDSs arise in many applications and many numerical
methods have been developed to preserve such properties. A successful approach, in
this context, is given by the (modified) Patankar trick [53, 13], which is based on the
introduction of some weights on the production and destruction terms. In particular,
the application of the modified Patankar trick to the DeC scheme (mPDeC) [51] is
characterized by replacing (4.2) with the following update

cm,(p)
α = c0α+∆t

M∑
ℓ=0

θmℓ

 Nc∑
β=1

pα,β(c
ℓ,(p−1))

c
m,(p)
γ(β,α,θm

ℓ )

c
m,(p−1)
γ(β,α,θm

ℓ )

−
Nc∑
β=1

dα,β(c
ℓ,(p−1))

c
m,(p)
γ(α,β,θm

ℓ )

c
m,(p−1)
γ(α,β,θm

ℓ )

 ,

where cm,(p) = c0 := cn whenever m = 0 or p = 0, and γ is a switch function defined as

γ(α, β, θ) :=

{
α, if θ ≥ 0,

β, if θ < 0.
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For guidelines concerning the number P of iterations to be performed, and the asso-
ciated accuracy, the reader is referred to the discussion regarding the standard DeC
scheme at the end of Section 4.1. The mPDeC method is positive and conservative,
i.e., it satisfies

Nc∑
α=1

cα,n+1 =

Nc∑
α=1

cα,n and cn > 0 =⇒ cn+1 > 0,

which are nothing but natural translations, at the discrete level, of the continuous
constraints (4.3) and (4.4).

Moreover, the method is linearly implicit and can be recast in compact form as

Mcm,(p) = cn,

where the matrix M is defined as

M(c(p−1),m)α,β =
1 + ∆t

M∑
ℓ=0

Nc∑
k=1
k ̸=α

θm
ℓ

c
m,(p−1)
α

(
dα,k(c

ℓ,(p−1))χ{θm
ℓ ≥0} − pi,k(c

ℓ,(p−1))χ{θm
ℓ <0}

)
, for β = α,

−∆t
M∑
ℓ=0

θm
l

c
m,(p−1)
β

(
pα,β(c

ℓ,(p−1))χ{θm
ℓ ≥0} − dα,β(c

ℓ,(p−1))χ{θm
ℓ <0}

)
, for β ̸= α,

(4.5)

with χ{·} the indicator function, i.e., a switch with value equal to 1 if the argument
condition is true, 0 otherwise. One can prove that the matrix is column diagonally
dominant and hence invertible. Furthermore, it is possible to show that, for any b > 0,
the solution to Mc = b is such that c > 0. At the implementation level, the system
is solved though the Jacobi method, which is provably convergent due to the fact
that M is column diagonally dominant. Moreover, in order to avoid divisions by zero,
as in [42, 51], the following mollification of the ratios in the matrix (4.5) is considered

n

d
≈

{
0, if d < 10−8,

2d·n
d2+max{d2,10−8} , if d ≥ 10−8.

Further details are omitted to avoid lengthening the paper. However, they are
thoroughly discussed in [18].

We now explain how the presented notions can be applied to the finite volume
semi-discretization of the SW equations.

4.2.2 Application to the Shallow Water equations

The key idea is to reinterpret the water height semi-discretization as a PDS and to
apply the modified Patankar trick to the water height DeC update, while performing a
standard DeC time-stepping on the updates of the discharge in the x- and y-directions.
From (3.1), we note that each cell communicates with the neighboring cells, sharing
common edges, via numerical fluxes. Thus, in such a context, the components cα are
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given by the water height averages hi,j , with indices α identified as couples [i, j], while
the production and destruction terms are given by the associated numerical fluxes.
Let us recall that the water height equation has no source term contribution.

Considering all the neighbors to the cell [i, j] (i.e., cells sharing an edge with cell
[i, j]), one can define the following production and destruction terms

p[i,j],[i−1,j](U) = +
1

∆x
F̂

(1)
i−1/2,j(U)+, d[i,j],[i−1,j](U) = − 1

∆x
F̂

(1)
i−1/2,j(U)−,

p[i,j],[i+1,j](U) = − 1

∆x
F̂

(1)
i+1/2,j(U)−, d[i,j],[i+1,j](U) = +

1

∆x
F̂

(1)
i+1/2,j(U)+,

p[i,j],[i,j−1](U) = +
1

∆y
Ĝ

(1)
i,j−1/2(U)+, d[i,j],[i,j−1](U) = − 1

∆y
Ĝ

(1)
i,j−1/2(U)−,

p[i,j],[i,j+1](U) = − 1

∆y
Ĝ

(1)
i,j+1/2(U)−, d[i,j],[i,j+1](U) = +

1

∆y
Ĝ

(1)
i,j+1/2(U)+,

(4.6)

where the superscripts + and − respectively represent the positive and the negative
part, while the superscript (1) represents the first component of the numerical fluxes.
These production and destruction terms, as well as their relationships (4.6) with the
numerical fluxes, are sketched in Figure 1.

Ωi−1,j Ωi,j Ωi+1,j

Ωi,j+1

Ωi,j−1

F̂
(1)
i−1/2,j(U) F̂

(1)
i+1/2,j(U)

Ĝ
(1)
i,j−1/2(U)

Ĝ
(1)
i,j+1/2(U)

Ωi−1,j Ωi,j Ωi+1,j

Ωi,j+1

Ωi,j−1

p[i,j],[i−1,j]

d[i,j],[i−1,j]

p[i,j],[i+1,j]

d[i,j],[i+1,j]

p[i,j],[i,j−1] d[i,j],[i,j−1]

d[i,j],[i,j+1] p[i,j],[i,j+1]

Fig. 1 Sketch of the PDS structure for the control volume Ωi,j .

In light of the previous discussion, it is therefore easy to apply the modified
Patankar trick to the DeC update of the water height. Let us remark that the strategy
provides unconditional positivity of the water height with respect to the time step ∆t.
This results in great computational advantages with respect to standard explicit time
integration techniques subjected to the typical positivity-preserving CFL constraints.
Further details, including a detailed description of a possible implementation, can be
found in [18].

12



5 Numerical results

In this section, we report the results of several numerical experiments demonstrating
the good properties of the scheme, including its robustness. In particular, the tests
are meant to verify the high-order accuracy in Section 5.1, the WB property for both
stationary and moving equilibria (in Sections 5.2 and 5.3), and the ability to deal with
tough flood simulations involving dry areas in Section 5.4. We assume g = 9.81 unless
otherwise specified. Let us remark that the basic ingredients of the scheme allow us
to reach arbitrarily high-orders of accuracy. Here, we focus on the fifth order version.

5.1 Unsteady vortex

Through this test [59], we verify the high-order accuracy of the space and time dis-
cretizations, without considering the source term for the moment. To that end, we set
b ≡ 0. Therefore, this test is meant to verify the high-order accuracy of the flux dis-
cretization; the high-order accuracy of the source term discretization will be checked
in a later test.

The considered computational domain is the square Ω := [0, 3] × [0, 3], and the
vortex is given by a perturbation δ of a homogeneous background field (h0, u0, v0) :=
(1, 2, 3). Let us define the variable r(x, y, t) :=

√
(x− xc(t))2 + (y − yc(t))2, expressing

the distance between (x, y) and vortex center (xc(t), yc(t)) := (1.5, 1.5) + (u0t, v0t).
The water height is then given by h(r) := h0 + δh(r), with

δh(r) := −γ


exp

(
− 1

arctan3(1− r2)

)
, if r < 1,

0, otherwise,

where γ := 0.1 is the vortex amplitude. The velocity field, defined by (u, v) := (u0, v0)+
(δu, δv), is characterized by the following perturbation(

δu
δv

)
=

√
g

r

∂h

∂r

(
y − yc

−(x− xc)

)
,

where ∂h
∂r is the derivative of h with respect to r, which depends only on the radial

distance from the center of the vortex

∂h

∂r
(r) =


6 γ r exp(− 1

arctan3(1−r2) )

arctan4(r2 − 1)(1 + (r2 − 1)2)
, if r < 1,

0, otherwise.

We assume periodic boundary conditions and a final time Tf := 0.1. It is important to
highlight the fact that this solution is C∞, which is a fundamental property for testing
arbitrarily high-order schemes [59].

The convergence test is run on Cartesian meshes of sizes 252, 502, 1002, 2002, 3002,
and 4002. The error, denoted by ||ϵh(u)||, is computed as the L1 norm of the difference
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(a) Water height h
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(b) Error lines

Fig. 2 Unsteady vortex from Section 5.1: convergence test. Left panel: depiction of the initial con-
dition. Right panel: error lines, showing that the scheme is indeed of fifth order accuracy.

between the approximated solution and the exact one. Figure 2 shows the initial water
height for this test case (left panel) and the retrieved fifth order convergence trend
expected from theory (right panel). These results are also reported in Table 1, where
fifth order accuracy is shown to be achieved.

h qx qy

Nx error order error order error order

25 1.77 · 10−3 — 2.28 · 10−2 — 2.08 · 10−2 —
50 3.43 · 10−4 2.37 5.08 · 10−3 2.17 4.59 · 10−3 2.18
100 3.41 · 10−5 3.33 7.81 · 10−4 2.70 6.90 · 10−4 2.73
200 1.85 · 10−6 4.20 7.70 · 10−5 3.34 6.62 · 10−5 3.38
300 2.93 · 10−7 4.55 1.34 · 10−5 4.31 1.11 · 10−5 4.40
400 7.98 · 10−8 4.52 3.86 · 10−6 4.33 3.13 · 10−6 4.41

Table 1 Errors and orders of accuracy, with respect to the number Nx of cells, for the traveling
vortex from Section 5.1. We indeed observe fifth-order accuracy.

5.2 Lake at rest

We now focus on showing the capability of the proposed scheme to exactly preserve
the lake at rest steady state, governed by (2.4). We first tackle the exact capture
of the steady state in Section 5.2.1, and we then perform a perturbation analysis in
Section 5.2.2.

5.2.1 Exact capturing

In this section, we demonstrate that the proposed scheme is able to exactly capture
the lake at rest steady solution in two situations: a fully wet case, where the water
height never vanishes, and a wet-dry case, where the water height may vanish.
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(a) Non-WB scheme
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(b) WB scheme

Fig. 3 Wet lake at rest from Section 5.2: convergence test. Left panel: non-WB scheme; we observe
fifth order accuracy. Right panel: WB scheme; we observe an accuracy up to machine precision for
each mesh size.

Wet lake at rest

We first consider the lake at rest steady state given by

b(x, y) = 0.1 sin (2π x) cos (2π y) , h(x, y, t) = 1 − b(x, y), u = v = 0,

on the computational domain Ω := [0, 1] × [0, 1] with periodic boundary conditions
and final time Tf := 0.1. In this case, we test the scheme with and without the WB
modification. The purpose of this test is twofold. First, with the WB modification, the
lake at rest should be exactly preserved (up to machine precision). This will confirm
that the WB property is satisfied in this case. Second, without the WB modification,
the method should converge to fifth order accuracy. This will verify the correct imple-
mentation of the source term. Both convergence trends are presented in Figure 3 and
the expected results are obtained. The resolutions of the Cartesian meshes used for
this test are 252, 502, 1002 and 2002.

Wet-dry lake at rest

We now present a numerical experiment to show the preservation of a lake at rest
steady state in the presence of dry areas. That is to say, the water height will vanish
in some parts of the domain. In particular, by virtue of the mPDeC approach, the
proposed method is able to deal with such dry states while having a much relaxed CFL
constraint compared to traditional high-order techniques. Indeed, we can set CFL ≃ 1
rather than CFL ≃ 1/12.

We consider, on the domain Ω := [−5, 5]× [−5, 5], the following bathymetry

b(x, y) :=


exp

(
1− 1

1− r2

)
, if r2 < 1,

0, otherwise,

where r2 = x2 + y2. (5.1)
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(a) Water height h (b) Bathymetry b

Fig. 4 Wet-dry lake at rest from Section 5.2: depiction of the water height (left panel) and of the
bathymetry (right panel).
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(a) Non-WB scheme
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(b) WB scheme

Fig. 5 Wet-dry lake at rest from Section 5.2: convergence test. Left panel: non-WB scheme; we
observe second order accuracy. Right panel: WB scheme; we observe an accuracy up to machine
precision for each mesh size.

This bathymetry represents an island located in the center of the domain. The water
height is defined as h(x, y, t) := max(0.7−b(x, y), 0). In Figure 4, we display the water
height (left panel) and then bathymetry (right panel). We observe that dry areas
occur in the center of the domain, where the island is located. The test is performed
with periodic boundary conditions and final time Tf := 1. Just like before, we present
the results of a convergence analysis obtained with and without the WB blending. It
should be noted that, due to the discontinuity in the derivative of the water height,
the non-WB scheme can achieve at most second order convergence, while machine
precision is expected by the WB version. The results are reported in Figure 5; they
agree with the expected behavior.
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5.2.2 Perturbation analysis

Let us consider the computational domain Ω := [−5, 5] × [−2, 2], the bathymetry b
defined in Equation (5.1), and the lake at rest steady state characterized by a total
water height η0 := 1.5. Then, we consider the following perturbation of the steady
condition

η := η0 +


0.05 exp

(
1− 1

(1− ρ2)2

)
, if ρ2 < 1,

0, otherwise,

,

where we have set
ρ2 = 9((x+ 2)2 + (x− 0.5)2).

We adopt a Cartesian mesh of 100× 30 elements, with periodic boundary conditions,
CFL = 0.8 and a final time Tf := 0.375. We still test the non-WB and WB versions
of the method, in order to highlight the advantages of the latter setting. However, in
this case, we suppress the blending by adopting all the coefficients θ of Section 3.2
equal to 0 in such a way to always use the WB discretization.

The results are displayed in Figure 6. It can be noticed that the evolution of the
perturbation is sharply captured by the WB version of the scheme. Instead, in the
non-WB case, numerical oscillations, due to the discretization error, propagate from
the bathymetry and prevent the proper capturing of the perturbation evolution.

5.3 Moving equilibria

In this section, we test the WB properties of the scheme to capture moving equilib-
ria satisfying (2.5). As already specified, they are pseudo-1D states. Therefore, in the
context of this section, we focus on the variable s = x, and we drop the dependency on
y, being clear that all quantities are constant along the y-direction. At the numerical
level, the variable y does not play any role either. Hence, the adopted mesh configura-
tions will be characterized by a uniform distribution of cells along the x-direction, with
various values of Nx ranging from 25 to 200, and a constant number Ny := 5 of cells
along the y-direction, with periodic boundary conditions assumed in such direction.

In this 1D frictionless case, moving equilibria are characterized by constant equi-
librium variables (2.6). Therefore, although there is no closed-form expression of such
steady solutions, they can be computed pointwise, for a given bathymetry, by solv-
ing a cubic equation derived from (2.5), see for example [20, 19, 43]. The steady flow
regime then depends on the prescribed boundary conditions, and is obtained after
a transient phase. We focus here on subcritical and supercritical flows, numerically
obtained with the initial and boundary conditions described in Table 2, where the
final time Tf is chosen such that the simulation reaches the steady state (i.e., to make
the time residual vanish). We take the following smooth bathymetry

b(x) := 0.05 sin(x− 12.5) exp(1− (x− 12.5)2),

on the computational domain Ω := [0, 25]× [0, 1]. The gravity constant is set here to
g := 9.812 as in [19].
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(a) t = 0

(b) t = 0.125 (c) t = 0.125

(d) t = 0.25 (e) t = 0.25

(f) t = 0.375 (g) t = 0.375

Fig. 6 Perturbation analysis of the lake at rest solution: η = h + b isocontours at different times.
Top panel, subfigure (a): initial condition. Left panels, subfigures (b), (d) and (f): non-WB scheme;
right panels, subfigures (c), (e) and (g): WB scheme.

Flow regime Tf h(x, 0) q(x, 0) h(0, t) h(25, t) q(0, t) q(25, t)

Subcritical 200 2− b(x) 0 — 2 4.42 —
Supercritical 50 2− b(x) 0 2 — 24 —

Table 2 Initial and boundary conditions for the subcritical and supercritical
flows from Section 5.3. The simulation is always initialized to a lake at rest.
Empty cells correspond to Neumann boundary conditions.

18



Again, we test the WB and the non-WB versions of the scheme. We emphasize
that we do not try to merely exactly preserve the steady solution, but to capture it:
the WB numerical scheme is expected to converge towards the steady solution with
machine accuracy, even after the transient, unsteady phase.

We start by presenting the numerical results obtained for the subcritical steady
flow. The solution computed with the WB method, with Nx := 200, is presented in
Figure 7. We display three quantities: the water height h, the x-discharge qx, and

the second component of the equilibrium variables E
(2)
x := 1

2
q2x
h2 + g(h + b). Recall

that both qx and E
(2)
x should be constant in this case; we can indeed appreciate

the ability of the WB blending to capture constant qx and E
(2)
x . The exact capture

of qx and E
(2)
x is also visible from the results of the convergence test reported in

Figure 8. In particular, we observe that the WB version of the scheme is able to obtain
machine precision errors with respect to such variables. Notice that the errors on the
water height can be computed following two approaches: the first one, which takes
as a reference the exact bathymetry function b(x); the second one, which considers
the discrete bathymetry in cell average bi,j . Usually the first approach is employed
for classical convergence analysis, however the second one is very common in the
field of well-balanced schemes to check whether the scheme is able to preserve the
discrete version of the considered equilibrium. While the first method computes the
error by using the exact bathymetry evaluated at quadrature points, the second one
considers the reconstructed bathymetry to measure the reference equilibrium. For the
first convergence test, in line with Remark 1, we expect the error h to scale with
first order. However, a second order superconvergence is obtained, due to the exact

preservation of qx and E
(2)
x . For the second convergence analysis, the error h (discrete

b) provides the proof of the exact preservation of discrete steady states of the WB
scheme with machine precision obtained for all meshes. On the other hand, the non-
WB scheme produces, as expected, bigger errors which scale with the expected fifth
order. Let us notice that a very high level of mesh refinement would be needed in order
to obtain, with the non-WB scheme, errors comparable to the ones obtained with the

WB version, especially on qx and E
(2)
x . This ensures that, for a given error, the WB

method has a much smaller computational cost than the non-WB one.
Similar considerations apply to the supercritical case. The numerical solution com-

puted with the WB method, with Nx := 200, is reported in Figure 9. In addition, the
convergence plots of both WB and non-WB schemes can be found in Figure 10. Also
in this case, we observe the same features and trends as before: the ability of the WB
version to capture h with discrete bathymetry and the constant equilibrium variables

qx and E
(2)
x up to machine precision, and to obtain much smaller errors with respect

to the non-WB version.

5.4 Flooding simulations

We finally present the numerical results of flooding simulations performed with the
proposed high-order WB positivity-preserving method. While we so far have focused
on the validation of the proposed method on standard academic test cases, we now
deal with more challenging applications. These applications correspond to waves over
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Fig. 7 Subcritical flow, test case from Section 5.3. Top left panel: free surface water level η, and
bathymetry b rescaled by a factor of 0.15 and shifted by 1.97. Top right panel: discharge qx. Bottom

panel: second equilibrium variable E
(2)
x .

dry areas, and prove the suitability of the proposed approach in the context of real-
world situations. We start by presenting a wave over a dry island in Section 5.4.1, and
then we move to the simulation of a tsunami over three obstacles in Section 5.4.2.

5.4.1 Wave over a dry island

In this test, we simulate a wave over a dry island. The computational domain is the
rectangular region Ω := [−5, 5] × [−2, 2], partitioned into a mesh with 400 × 120
elements. We refer to [18], Section 6.8, for the bathymetry function b(x, y) and the
specific initial and boundary conditions. The simulation was run until a final time
Tf := 5, with a CFL number set to 0.9.

The results are presented at various times in Figure 11. The variable η, along with
the bathymetry b, have been displayed. Indeed, it allows for a clearer understanding
of the underlying physics.
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Fig. 8 Subcritical flow, test case from Section 5.3: convergence test. Left panel: non-WB scheme; we
observe fifth-order accuracy. Right panel: WB scheme; we observe machine precision accuracy for the

equilibrium variables qx and E
(2)
x and h when considering the discrete bathymetry, and second-order

accuracy for h when considering the exact bathymetry function.

The simulation starts with a background state moving from left to right at speed
u = 1, propelling the wave towards the island. This causes the island to get wet from
the left side and to dry from the right side. Thus, the top of the island, initially
dry, undergoes multiple wet and dry cycles throughout the whole simulation, without
encountering any issue related to negative water height. This is not guaranteed for
classical time integration schemes, among which SSPRK schemes, for such high CFL
numbers. Various structures are observable in this simulation like vortices and shocks,
and the recurring wetting/drying processes are optimally tackled by the proposed
scheme.

5.4.2 Tsunami on three obstacles

Finally, the simulation of a tsunami over several obstacles is presented. Simulations of
this kind are often performed [27] since they represent a good starting point to move
towards the simulation of real coastal engineering problems. In this simulation, we
consider a shock impacting three conical obstacles. More specifically, we consider the
domain Ω := [−5, 7]× [−2, 2], partitioned into 960×320 elements, and the bathymetry

b(x, y) :=

3∑
i=1

bi(x, y) +


1 + 0.2x, for x < 0,

1, for 0 ≤ x ≤ 3,

1 + 0.4(x− 3), for x > 3,
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Fig. 9 Supercritical flow, test case from Section 5.3. Top left panel: free surface water level η, and
bathymetry b rescaled by a factor of 0.45 and shifted by 1.92. Top right panel: discharge qx. Bottom

panel: second equilibrium variable E
(2)
x .

with bi(x, y) := c(x, y, xi, yi, Ri, Ai), where c is a cone function defined as

c(x, y, xc, yc, R,A) :={
A
R

(
R−

√
(x− xc)2 + (y − yc)2

)
, if

√
(x− xc)2 + (y − yc)2 < R,

0, otherwise.

In particular, we have Ri := 0.5 and Ai := 3, for all i, and (x1, y1) := (1,−1)T ,
(x2, y2) := (1, 1) and (x3, y3) := (2, 0). The initial condition is given byhu

v

 (x, y, 0) :=

{
[1.5− b(x, y), 4, 0]T , if x < −3.5,

[0, 0, 0]T , otherwise.
(5.2)
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Fig. 10 Supercritical flow, test case from Section 5.3: convergence test. Left panel: non-WB scheme;
we observe fifth-order accuracy. Right panel: WB scheme; we observe machine precision accuracy for

the equilibrium variables qx and E
(2)
x and h when considering the discrete bathymetry, and second-

order accuracy for h when considering the exact bathymetry function.

The prescribed boundary conditions are

• inflow at the left of the domain, obtained by imposing q(x = −5, y, t) := 3(1 +
cos(2πt))e−2t;

• transmissive at the right of the domain;
• solid walls at the top and bottom of the domain.

We remark that, to simulate a realistic configuration, a time-dependent inlet condi-
tion has been chosen to represent a series of waves impacting the obstacles after the
tsunami. The final time is Tf := 3, and we take a CFL condition of 0.8 for added
stability.

The results are reported in Figure 12. We start from an initial configuration where
the majority of the domain is dry and where the initial tsunami is represented by a
discontinuity in the water height, defined in (5.2). Already from the first snapshots in
Figures 12(c) and 12(d), we can appreciate the wetting process happening with several
structures forming on the right of the three bodies. Thanks to the time-dependent
inlet condition, the dynamic of the simulation keeps evolving with shock interactions
occurring due to the crushing between new and old wave fronts, while wetting and
drying processes keep happening in many parts of the domain.

This simulation best represents the potential of this framework, which is able to
retain high-order accuracy, preserve important structures of the model, and deal with
complex fluid phenomena. Simulations of this kind are not only challenging but also
computationally expensive, due to the accuracy required to capture all flow features.
The choice of the considered time-stepping scheme, able to relax the typical severe
CFL constraints imposed by positivity preservation, has a huge impact on the com-
putational resources needed to perform these simulations. In fact, keeping the same
fifth-order accuracy, we are able to consistently reduce the computational time with
respect to classical time integration techniques, provably guaranteeing positivity of the
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(a) t = 0

(b) t = 0.4 (c) t = 0.8

(d) t = 1.6 (e) t = 2.4

(f) t = 3.2 (g) t = 5

Fig. 11 Wave over a dry island test case from Section 5.4.1: η := h+ b and b at different times.

discrete water height. Moreover, the well-balanced procedure is non-intrusive and com-
putationally cheap, and it is able to preserve the equilibrium variables of the model,
which are crucial in the context of flooding simulations.

6 Summary and outlook

In this paper, we presented a high-order, fully well-balanced, unconditionally
positivity-preserving framework for flood simulations. The discretization based on the
notion of production-destruction terms, presented in [18], has been extended to treat
general moving equilibria appearing in shallow water systems. The advantage of this
framework lies in the possibility of preserving the positivity of the water height with
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(b) t = 0.5 (c) t = 1.0

(d) t = 1.5 (e) t = 2.0

(f) t = 2.5 (g) t = 3.0

Fig. 12 Tsunami on three obstacles, test case from Section 5.4.2: η : h+ b and b at different times.

no constraint on the CFL. This is a real strength with respect to classical time inte-
gration schemes, which experience strong CFL reduction as the order of the method
increases, and allows for more realistic applications thanks to the huge computational
gain. In order to achieve the general WB property, while keeping the production-
destruction formulation, the high-order reconstruction is blended with a WB one, as
proposed in [9, 46]. This allows to achieve structure preservation for moving equilibria
reached after a transient simulation, as shown in Section 5.3. On the contrary, when
wet-dry simulations are considered, far from existing equilibria, the approach is able
to properly perform high-order space and time integration without causing simulation
crashes.

There are several perspectives to this work. They and range from deep questions
on the numerical analysis and stability of modified Patankar schemes, which is an
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open research topic [63, 32, 33], especially when coupled to space discretizations in
the context of PDEs, to the possible development of this approach on unstructured
meshes to exploit advanced mesh adaptation algorithms to capture the flow features
with even better resolution, and to save even more computational resources.
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[25] I. Gómez-Bueno, M. J. C. Dı́az, C. Parés, and G. Russo. Collocation methods
for high-order well-balanced methods for systems of balance laws. Mathematics,
9(15):1799, 2021.

[26] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order
time discretization methods. SIAM review, 43(1):89–112, 2001.

[27] J.-L. Guermond, C. Kees, B. Popov, and E. Tovar. Well-balanced second-order
convex limiting technique for solving the Serre–Green–Naghdi equations. Water
Waves, 4(3):409–445, 2022.
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