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Abstract Modified Patankar (MP) schemes are conservative, linear implicit
and unconditionally positivity preserving time-integration schemes constructed for
production-destruction systems. For such schemes, a classical stability analysis does
not yield any information about the performance. Recently, two different techniques
have been proposed to investigate the properties of MP schemes. In Izgin et al.
[ESAIM: M2AN, 56 (2022)], inspired from dynamical systems, the Lyapunov sta-
bility properties of such schemes have been investigated, while in Torlo et al.[Appl.
Numer. Math., 182 (2022)] their oscillatory behaviour has been studied. In this work,
we investigate the connection between the oscillatory behaviour and the Lyapunov
stability and we prove that a condition on the Lyapunov stability function is necessary
to avoid oscillations. We verify our theoretical result on several numerical tests.

1 Introduction

Consider a production–destruction system (PDS) of ODEs

d 𝑦𝑖 (𝑡)
d 𝑡

=

𝐼∑︁
𝑗=1

(
𝑝𝑖 𝑗 (𝑦(𝑡)) − 𝑑𝑖 𝑗 (𝑦(𝑡))

)
, 𝑖 = 1, . . . , 𝐼, 𝑡 ∈ R+0 , (1)
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where 𝑝𝑖 𝑗 , 𝑑𝑖 𝑗 : R𝐼 → R+0 are Lipschitz continuous production and destruction
functions, respectively, such that 𝑝𝑖 𝑗 (𝑦) = 𝑑 𝑗𝑖 (𝑦) and lim𝑦𝑖→0 𝑑𝑖 𝑗 (𝑦) = 0. Then
the system (1) is conservative, i.e.,

∑
𝑖 𝑦𝑖 (𝑡) =

∑
𝑖 𝑦𝑖 (0), and positive, that is, if

𝑦𝑖 (0) ≥ 0 for all 𝑖, then 𝑦𝑖 (𝑡) ≥ 0 for all 𝑖. These systems arise in various fields, e.g.
chemical reactions and biological processes, but can be also obtained from spatial
discretisations of hyperbolic conservation/balance laws, e.g. shallow water equations
or Euler equations.

Modified Patankar (MP) schemes are conservative, linear implicit and uncon-
ditionally positivity preserving time-integration schemes constructed for PDS, in-
spired by Patankar’s original work [17]. In recent years, many different MP schemes
have been developed [2, 13, 7, 16], they have been applied to different applications
[3, 6, 15] and their properties have been studied [12, 5, 9, 11, 14, 19].

In the following, we compare the oscillations observed in 2 dimensional systems in
[19] and the Lyapunov stability function studied in [8]. Indeed, it is possible to show
that a condition on the Lyapunov stability function is necessary to have oscillations–
free schemes. In Section 2, we present the proof of this result; in Section 3, we list
some stability function of some MP schemes and in Section 4 we show how the
numerical results validate the theoretical findings.

2 Connection between oscillations and Lyapunov stability

We restrict to a linear 2–dimensional problem, in order to have a clear definition of
oscillations [19]. All 2–dimensional linear systems of ODEs that are positive and
conservative can be rewritten, with a change of variables, as the following IVP{

y′ (𝑡) = A𝜃y(𝑡),
y(0) = y0 > 0,

A𝜃 =

(
−𝜃 1 − 𝜃
𝜃 −(1 − 𝜃)

)
, 𝜃 ∈ (0, 1), (2)

where this can be seen as PDS, with 𝑝12 = 𝑑21 = (1 − 𝜃)𝑦2, 𝑑12 = 𝑝21 = 𝜃𝑦1 and all
other entries zero. Let us also consider a one step numerical method whose iterates
are generated by a map g, i. e. y𝑛+1 := g(y𝑛). Note that g might be given implicitly.

We first describe oscillations for 2–dimensional linear ODEs through the solution
and the steady state. It is known that the exact solution does not overshoot the steady
state.

Definition 1 a) A method is not overshooting the steady state of (2) if 𝑦1
2 < 𝜃 and

𝑦1
1 > 1 − 𝜃 for any given initial state y0 = (1 − 𝜀, 𝜀)⊺ with 𝜀 < 𝜃, while when
𝜀 > 𝜃 the method is not overshooting the steady state if 𝑦1

2 > 𝜃 and 𝑦1
1 < 1 − 𝜃.

b) Otherwise the method is said to be overshooting the steady state of (2).

Theorem 1 Let any positive steady state of (2) be a fixed point of a map g ∈ C2 (R2
>0).

In addition, let the iterates generated by y𝑛+1 = g(y𝑛) satisfy ∥y𝑛+1∥1 = ∥y𝑛∥1 for
all 𝑛 ∈ N0. Finally, let y∗ be the unique positive steady state of (2).



Stability and oscillations of positive schemes 3

Then, the spectrum of the Jacobian Dg(y∗) is 𝜎(Dg(y∗)) = {1, 𝑅} with 𝑅 ∈ R.
Furthermore, if 𝑅 < 0, then the method generated by g is overshooting the steady
state of (2).

Proof Throughout this proof, we use e1 = (1, 0)⊺, e2 = (0, 1)⊺ to denote the standard
unit vectors as well as the notation ȳ = (1,−1)⊺. In the proof of [8, Theorem 2.9], it
is shown that Dg(y∗)y∗ = y∗ and Dg(y∗)ȳ = 𝑅ȳ with 𝑅 ∈ R, which means that the
matrix of eigenvectors

S = (y∗ ȳ) (3)

is invertible since ȳ cannot be a multiple of the positive vector y∗. In particular, we
obtain

S−1Dg(y∗)S = diag(1, 𝑅),

where diag(y) ∈ R2×2 denotes the diagonal matrix with (diag(y))𝑖𝑖 = 𝑦𝑖 for 𝑖 = 1, 2.
Following the lines of the proof of [8, Theorem 2.9], we introduce the affine linear
transformation T : R2 → R2,

y ↦→ w = T(y) = S−1 (y − y∗),

where S is given in (3) and the inverse transformation T−1 is given by

T−1 (w) = Sw + y∗.

To see that the method defined by g is overshooting y∗, we show that the trans-
formed method given by the map

G : T(R2
>0) → T(R2

>0), G(w) = T(g(T−1 (w)))

is overshooting the transformed steady state which is w∗ = 0. As demonstrated in [8,
Theorem 2.9], y0 is transformed onto the 𝑤2-axis and due to the conservation of the
map g, it is proven that G(w0) ∈ span(w0) for w0 = (0, 𝑤0

2)
⊺. Moreover,

G(w) = diag(1, 𝑅)w + S−1 �̄�(T−1 (w))

holds, where �̄� denotes the Lagrangian remainder

( �̄�(y))𝑖 =
1
2
(y − y∗)⊺H𝑔𝑖 (y∗ + 𝑐𝑖 (y − y∗)) (y − y∗), 𝑖 = 1, 2 (4)

for some 𝑐𝑖 ∈ (0, 1) depending on y and y∗ and where H𝑔𝑖 are the Hessian matrices
of 𝑔𝑖 for 𝑖 = 1, 2. We consider from now on the iterates given by

w𝑛+1 =

(
1 0
0 𝑅

)
w𝑛 + S−1 �̄�(T−1 (w𝑛)), w0 = (0, 𝑤0

2)
⊺ .

Here, using S−1 = ( �̃�𝑖 𝑗 )𝑖, 𝑗=1,2 and 𝑤𝑛1 = 0 it follows from (4) that

(S−1 �̄�(T−1 (w0)))1 = 0 (5)
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since (G(w))1 = 𝑤1. Furthermore,

(S−1 �̄�(T−1 (w0)))2 =
1
2

2∑︁
𝑖=1

�̃�2𝑖 (T−1 (w0) − y∗)⊺H𝑔𝑖 (𝜉0
𝑖 ) (T−1 (w0) − y∗)

=
1
2

2∑︁
𝑖=1

�̃�2𝑖 (𝑤0
2Se2)⊺H𝑔𝑖 (𝜉0

𝑖 ) (𝑤0
2Se2)

=
1
2

2∑︁
𝑖=1

�̃�2𝑖 (𝑤0
2ȳ)⊺H𝑔𝑖 (𝜉0

𝑖 ) (𝑤0
2ȳ)

=𝐶 (𝜉0
1 , 𝜉

0
2) · (𝑤

0
2)

2,

(6)

where 𝜉0
𝑖

= y∗ + 𝑐0
𝑖
(y0 − y∗) and 𝑐0

𝑖
∈ (0, 1). Also note that the mapping

𝐶 : R2 × R2 → R depends on the entries of the Hessians as well as S−1.
We now prove that the method defined by G is overshooting w∗ = 0 by proving

the existence of 𝑤0
2 ∈ R such that sgn(𝑤1

2) ≠ sgn(𝑤0
2). We set

𝐿 =

{
y ∈ R2

���∃𝑠 ∈ [
− 𝑦

∗
1

2 ,
𝑦∗2
2

]
: y = y∗ + 𝑠ȳ

}
⊆ R2

>0

and observe that there exists a 𝐾 > 0 such that sup𝜉 ∈𝐿×𝐿{|𝐶 (𝜉1, 𝜉2) |} ≤ 𝐾 < ∞
since g ∈ C2 has bounded second derivatives on the compact set 𝐿.

Next, we restrict to w0 satisfying |𝑤0
2 | < min

{
𝑦∗1
2 ,

𝑦∗2
2 ,

|𝑅 |
𝐾

}
. As a result, w0 = 𝑤0

2e2

yields y0 = T−1 (w0) = Sw0 + y∗ = 𝑤0
2ȳ + y∗ ∈ 𝐿, which means that

𝜉0
𝑖 = y∗ + 𝑐0

𝑖 (y0 − y∗) = y∗ + 𝑐0
𝑖𝑤

0
2ȳ ∈ 𝐿

for 𝑖 = 1, 2. Now, according to (6), we have

𝑤1
2 = 𝑅𝑤0

2 + 𝐶 (𝜉
0
1 , 𝜉

0
2) · (𝑤

0
2)

2 = (𝑅 + 𝐶 (𝜉0
1 , 𝜉

0
2)𝑤

0
2)𝑤

0
2 . (7)

as well as

𝐶 (𝜉0
1 , 𝜉

0
2)𝑤

0
2 ≤ |𝐶 (𝜉0

1 , 𝜉
0
2) | |𝑤

0
2 | < |𝐶 (𝜉0

1 , 𝜉
0
2) |

|𝑅 |
𝐾

≤ |𝑅 |. (8)

Because of 𝑅 < 0, the inequality (8) turns into the statement

𝑅 + 𝐶 (𝜉0
1 , 𝜉

0
2)𝑤

𝑛
2 < 0,

and thus, sgn(𝑤1
2) ≠ sgn(𝑤0

2) due to (7). This proves that the method defined by G
is overshooting w∗ and consequently, the method with iterates given by the map g is
overshooting y∗. □

Remark 1 It was proven in [8] that if |𝑅 | < 1 holds true, then y∗ is a Lyapunov
stable fixed point of the method, whereas it is already well-known that if |𝑅 | > 1 the
corresponding fixed point y∗ is unstable, see [18] for more details. Furthermore, we
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want to note that for a numerical time-integration method, the eigenvalue 𝑅 depends
on the time step size Δ𝑡, so that 𝑅 can be interpreted as a stability function giving
rise to the investigation of stability regions. The result from [8] was generalized, see
[9, Theorem 2.9], and applied to many positivity-preserving schemes in [5, 9, 11].
To that end, the corresponding stability functions have been computed, so that we
only need to investigate the location of their zeros for investigating the methods with
respect to the property of overshooting the steady state of (2).

3 Analysis of Modified Patankar Schemes

In the following, we list the stability functions of some MP schemes. For brevity, we
refer to other references for the explicit computations, when available. As derived in
[8], the stability function of the second order family of MPRK22(𝛼) schemes, first
introduced in [2], is given by

𝑅(𝑧) = −𝑧2 − 2𝛼𝑧 + 2
2(1 − 𝛼𝑧) (1 − 𝑧) . (9)

This function has negative values for negative real part of 𝑧 if Re(𝑧) < −𝛼−
√
𝛼2 + 2.

Hence, for the problem (2) we obtain the necessary condition

Δ𝑡 < Δ𝑡0 (𝛼) := 𝛼 +
√︁
𝛼2 + 2 (10)

for the method not to overshoot the steady state.
The stability functions of the families of MPRK(4,3,𝛼, 𝛽) and MPRK(4,3,𝛾) [13]

and the simple MPRK32 [19] are computed in [11] and not reported here for brevity.
Similarly, for SSPMPRK schemes we do not report the stability function

of SSPMPRK22(𝛼,𝛽) [6], which can be found in [5], but we focus on the
SSPMPRK43(𝜂2) for 𝜂 = 1

3 [7]. This scheme possesses the stability function

𝑅(𝑧) =
∑4

𝑖=1 𝑎𝑖 𝑧
𝑖∑4

𝑗=1 𝑏 𝑗 𝑧
𝑗
, where, at double precision

𝑎0 = 1, 𝑏0 = 1,
𝑎1 = −3.349136322977521, 𝑏1 = −4.349136322977523,
𝑎2 = 2.049225690609540, 𝑏2 = 5.898362013587063,
𝑎3 = 0.6815805312568625, 𝑏3 = −3.208879987508106,
𝑎4 = −0.5093985705698671, 𝑏4 = 0.6087426554481902.

For the Modified Patankar-Deferred-Correction (MPDeC) methods [16], we de-
rive the stability functions as in [11] and we show some examples for different
orders. The MPDeC schemes are a class of arbitrarily high order positivity preserv-
ing methods, based on the Deferred Correction (DeC) methods [4, 1]. At each stage
of the DeC procedure the modified Patankar trick is adopted, carefully choosing the
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production and destruction terms, according to the DeC coefficients. The MPDeC
schemes are defined by 𝑀 subtimesteps and 𝐾 iterations. The order of accuracy of
the MPDeC scheme is the minimum between 𝐾 and the accuracy of the quadra-
ture formula given by the 𝑀 subtimesteps. We will focus on equispaced (EQ) and
Gauss–Lobatto (GL) subtimesteps. To obtain order 𝑝, a number of 𝐾 = 𝑝 iterations
is required, while we need 𝑀 = max{𝑝 − 1, 1} EQ subtimesteps or 𝑀 =

⌈ 𝑝
2
⌉

GL
subtimesteps. The definition of the subtimesteps 0 = 𝑡0 < · · · < 𝑡𝑀 = 1 leads to
the definition of the coefficients 𝜃𝑚𝑟 :=

∫ 𝑡𝑚
0 𝜑𝑟 (𝑡)𝑑𝑡 that are the ground component

of the MPDeC schemes. Here, 𝜑𝑟 is the 𝑟-th Lagrangian function defined by the
subtimenodes {𝑡𝑚}𝑀

𝑚=0.
We denote the MPDeC scheme of order 𝑝 by MPDeC(𝑝) and the corresponding

stability function 𝑅𝑝 can be computed with the following steps:

𝑅𝑚, (1) (𝑧) =
1 + 2𝑧

∑𝑀
𝑗=0 𝜃

𝑚
𝑗,−

1 − 𝑧∑𝑀
𝑟=0 |𝜃𝑚𝑟 |

,

𝑅𝑚, ( �̂� ) (𝑧) =

1 + 𝜃𝑚0 𝑧 + 𝑧
𝑀∑︁
𝑗=1
𝑗≠𝑚

𝜃𝑚𝑗 𝑅
𝑗 , ( �̂�−1) (𝑧) − 𝑧

©­­­«
𝑀∑︁
𝑗=0
𝑗≠𝑚

|𝜃𝑚𝑗 | − 2𝜃𝑚𝑚,−
ª®®®¬ 𝑅

𝑚, ( �̂�−1) (𝑧)

1 − 𝑧∑𝑀
𝑗=0 |𝜃𝑚𝑗 |.

,

𝑅𝑝 (𝑧) = 𝑅𝑀, (𝐾 ) (𝑧),

for �̂� = 2, . . . , 𝐾 and 𝑚 = 1, . . . , 𝑀 , where 𝜃𝑚𝑟,± =
𝜃𝑚𝑟 ±| 𝜃𝑚𝑟 |

2 , see [11] for the
details. We introduce the matrix Θ𝑋, (𝑝) ∈ R𝑀×(𝑀+1) satisfying Θ

𝑋, (𝑝)
𝑚𝑟 = 𝜃𝑚

𝑟−1,

where 𝑋 ∈ {EQ,GL} indicates either EQ or GL points. In the case of 𝑝 = 2, i. e.,
𝑀 = 1 and 𝐾 = 2 we have ΘEQ, (2) = ΘGL, (2) =

(
1
2

1
2

)
, that is 𝜃1

0 = 𝜃1
1 = 1

2 , and
consequently

𝑅2 (𝑧) =
−𝑧2 − 2𝑧 + 2

2(1 − 𝑧)2 , (11)

which equals the stability function of MPRK22(𝛼) for 𝛼 = 1. This is no surprise
since MPDeC(2) is the MPRK22(1) scheme. Next, for 𝑝 = 3 we find

ΘEQ, (3) = ΘGL, (3) =

(
5
24

1
3 − 1

24
1
6

2
3

1
6

)
leading to

𝑅3 (𝑧) =
−331𝑧5 + 1830𝑧4 + 3096𝑧3 − 16452𝑧2 + 16416𝑧 − 5184

36(−12 + 7𝑧)2 (−1 + 𝑧)3 .

Moreover, for 𝑝 = 4 and EQ subtimesteps we have
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ΘEQ, (4) =
©­­«

1
8

19
72 − 5

72
1
72

1
9

4
9

1
9 0

1
8

3
8

3
8

1
8

ª®®¬
resulting in

𝑅
EQ
4 (𝑧) =

∑10
𝑗=0 𝑑 𝑗 𝑧

𝑗

1536(−36 + 17𝑧)3 (−3 + 2𝑧)3 (−1 + 𝑧)4 ,

where

𝑑0 = 1934917632, 𝑑1 = −12415721472, 𝑑2 = 3402678067,
𝑑3 = −51295431168, 𝑑4 = 45088151040, 𝑑5 = −22031034912,
𝑑6 = 4329437784, 𝑑7 = 82352116, 𝑑8 = −534268140,
𝑑9 = 64784148, 𝑑10 = 1805344.

On the other hand, for GL and 𝑝 = 4 we use ΘGL, (4) = ΘGL, (3) with 𝐾 = 4 and
𝑀 = 2, obtaining a rational function with a polynomial of degree 7 in the numerator
and denominator, which can be represented by

𝑅GL
4 (𝑧) =

∑7
𝑗=0 𝑐 𝑗 𝑧

𝑗

(7𝑧
√

5 + 5𝑧 − 60)3 (7𝑧
√

5 + 31𝑧 − 60)4
,

where

𝑐0 = −279936 · 107, 𝑐1 = (1982880
√

5 + 5062176) · 106,

𝑐2 = (−28409616
√

5 − 58953744) · 105, 𝑐3 = (157481496
√

5 + 347034456) · 104,

𝑐4 = −262068264000
√

5 − 617156712000, 𝑐5 = −55771610400
√

5 − 129811572000,

𝑐6 = 13763385600
√

5 + 34116840000, 𝑐7 = 1038579760
√

5 + 2083625200.

For higher order and other schemes, we refer to the Maple code in the reproducibility
repository [10].

4 Numerical Comparison

In this section, we compare the numerical bound Δ𝑡0 for Δ𝑡 not to be oscillating
[19] with the necessary condition given by the Lyapunov stability function derived
following [8]. The Julia Jupyter notebook used to compute the numerical bound
and the Maple notebook where the Lyapunov stability functions are computed are
available in the reproducibility repository [10]. Those notebooks can be used also
to compute the bounds for different parameters of the presented schemes that could
not fit in this work.
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Fig. 1 Plot of numerical bound for Δ𝑡 (orange) and Lyapunov stability Δ𝑡 bound (10) (blue) for the
MPRK22(𝛼) and MPRK43(𝛾) families of schemes

In Figure 1(a), we show the two bounds on Δ𝑡 for MPRK(2,2,𝛼) [2] varying 𝛼.
We observe that there is a very good agreement between the two conditions for
𝛼 > 1.5, while for smaller values the error is bounded by

√
3. For the MPRK(4,3,𝛾)

[14] we observe that the numerical bound in Figure 1(b) is not as close as before
to the Lyapunov stability bound 2.35 (independently on 𝛾), but still it is giving an
indication of the magnitude of the bound.

In Tables 2(a) and 2(b), we write the numerical Δ𝑡 bound and the necessary
condition given by the Lyapunov stability function in Theorem 1 for EQ and GL
MPDeC, respectively. Here, we notice very different behaviors between EQ and GL
MPDeC. In the EQ case, the bounds are widely varying across different orders of
accuracy, in the numerical simulations, while for the theoretical bound, we get very
large constraints that are not very useful. On the other side, for GL, the numerical
bounds converge very quickly to 1 as the order increases. The Lyapunov stability
function leads to a not so sharp bound, but much closer to the numerical one.

𝑝 num. Δ𝑡0 Lyap. Δ𝑡0
1 ∞ ∞
2 2.0 2.73
3 1.19 3.31
4 1.11 3.83
5 1.07 4.19
6 1.04 ∞
7 1.04 ∞
8 1.37 ∞
9 6.96 ∞

(a) MPDeC EQ

𝑝 num. Δ𝑡0 Lyap. Δ𝑡0
1 ∞ ∞
2 2.0 2.73
3 1.19 3.31
4 1.07 3.62
5 1.04 3.74
6 1.0 4.06
7 1.0 4.47
8 1.0 5.03
9 1.0 20.1

(b) MPDeC GL

Method num. Δ𝑡0 Lyap. Δ𝑡0
SSPMPRK(4,3) 1.31 2.15

MPRK(3,2) 16.56 ∞
MPRK(4,3,2,0.6) 1.89 3.07

MPRK(4,3,0.9,0.5) 1.59 2.82
MPRK(4,3,0.5,0.7) 1.74 2.00
MPRK(4,3,3, 7

15 ) 5.37 5.62
SSPMPRK(2,2,0,1) 2 2.73
SSPMPRK(2,2,0,2) 4.36 4.45

SSPMPRK(2,2,0.4,1) 1.27 2.14
SSPMPRK(2,2,0.1,4) 2.10 2.37

(c) Other schemes

Fig. 2 Numerical bound for Δ𝑡 and Lyapunov stability function Δ𝑡 bound for various schemes
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In Table 2(c), we summarize the results for a selection of other schemes for
various parameters. In all cases, we observe, as predicted by Theorem 1, that the
numerical bound is smaller than the Lyapunov stability function bound. The dis-
crepancy between the two approaches vary a lot between different schemes and
even between different parameters of the same method family, as already observed
for MPRK(2,2,𝛼). We observe, in general, lower discrepancy for second order
schemes, e.g. SSPMPRK(2,2,0,2) and SSPMPRK(2,2,0.1,4), and higher discrep-
ancy for higher order schemes, e.g. SSPMPRK(4,3) and MPRK(4,3,2,0.6). A special
remark on MPRK(3,2) is necessary, as it is the second order scheme with the largest
Δ𝑡0. Its numerical bound is very large ≈ 16.5, while there is no Lyapunov stability
function bound. This shows, again, that this scheme performs very robustly in these
simulations.

5 Conclusion

We have shown that the oscillations that modified Patankar schemes show in two–
dimensional systems are linked to the Lyapunov stability function. In particular, it is
necessary that the Lyapunov stability function is nonnegative to have an oscillations–
free method. In particular, these conditions are verified for Δ𝑡 ≤ Δ𝑡0, where Δ𝑡0
depends on the scheme. We validated the theoretical results with many numerical
tests showing that the bound coming from the Lyapunov stability function is always
larger than the numerical one.

The found results are useful to choose the time step to avoid oscillations. In many
situations, the theoretical bound and the numerical one are actually very close and
this gives an indication on how to adopt the time step. Furthermore, there are still
open questions on the behavior of MP schemes, in particular for hyperbolic problems,
where the positivity of various physical quantities is of paramount importance. We
plan to extend this work to a stability analysis of fully discrete MP schemes hoping
to find connections with the found oscillations bounds. Furthermore, it is of interest
to investigate Lyapunov stability properties in the context of partial differential
equations.
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