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Abstract

We propose a new paradigm for designing efficient p-adaptive arbitrary high order methods.
We consider arbitrary high order iterative schemes that gain one order of accuracy at each
iteration and we modify them in order to match the accuracy achieved in a specific iteration with
the discretization accuracy of the same iteration. Apart from the computational advantage, the
new modified methods allow to naturally perform p-adaptivity, stopping the iterations when
appropriate conditions are met. Moreover, the modification is very easy to be included in an
existing implementation of an arbitrary high order iterative scheme and it does not ruin the
possibility of parallelization, if this was achievable by the original method.

An application to the ADER method for hyperbolic Partial Differential Equations (PDEs)
is presented here. We explain how such framework can be interpreted as an arbitrary high order
iterative scheme, by recasting it as a Deferred Correction (DeC) method, and how to easily
modify it to obtain a more efficient formulation, in which a local a posteriori limiter can be
naturally integrated leading to p-adaptivity and structure preserving properties. Finally, the
novel approach is extensively tested against classical benchmarks for compressible gas dynamics
to show the robustness and the computational efficiency.

1 Introduction

In recent years, the need for a very accurate description of physical phenomena in the context of
advanced technological applications has determined an increasing interest towards large scale sim-
ulations. In order to reduce their enormous computational cost and to make them more accessible,
several strategies have been proposed, among which:

• parallelization, leading to a reduction of the computational time proportional to the number
of employed processors with excellent scaling properties [60, 73, 77, 85, 1, 57, 44];

• structure preserving schemes, to preserve physical properties at the discrete level without ex-
cessive mesh refinements, e.g. positivity preserving schemes [29, 58, 65, 72, 71], well-balanced
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schemes [29, 30, 69, 27, 13, 64, 28, 88, 24, 52], TVD or maximum principle preserving schemes
[53, 89, 54, 11], entropy conservative/dissipating schemes [49, 4, 25, 26, 74, 7, 45, 62, 61, 6,
50, 86, 87, 70, 63, 5];

• high order methods, which guarantee higher accuracy for coarser meshes and shorter compu-
tational times, on smooth problems, as they are able to catch complicated physical structures
that low order methods struggle to obtain, e.g. finite element based methods [2, 3, 8, 76,
75, 59, 62], finite volume methods [88, 11, 79, 13, 69, 24], discontinuous Galerkin methods
[51, 25, 16, 37, 22, 56, 49, 47, 50].

However, high order methods are, for the moment, mostly relegated to academic contexts. The
main reason is given by the fact that concrete applications are characterized by shocks, which are
well-known to reduce the accuracy to first order, disregarding for the formal order of accuracy.
Further, in the presence of shocks, high order schemes are more subjected to instabilities. Users
are therefore comprehensibly unwilling to pay extra costs in terms of complexity of the numerical
method and its implementation, if the effort is not rewarded with the initially expected advantages.
Indeed, one can observe that in the case of non-regular solutions, usually the shocks do not cover the
whole computational domain but rather some lower dimensional manifolds. Therefore, a possibility
to use high order methods at their best is the adoption of extra procedures to be implemented, e.g.,
limiters, a posteriori correction techniques, blenders with low order schemes or adaptive strategies
relying on shock detectors. However, such procedures require a relevant interference with the basic
implementation as they are not naturally embedded in the original method at the theoretical level
and, if their introduction is not performed in a careful way, the additional cost associated with
them may be comparable to the computational gain given by the high order feature.

Here, generalizing the idea introduced in [66], we propose a new arbitrary high order formulation
naturally allowing for order adaptivity, namely the so-called p-adaptivity. The formulation relies on
an underlying arbitrary high order iterative scheme, which is easily modified in a suitable efficient
way. Arbitrary high order iterative methods are characterized by iterative procedures involving
an approximated solution to a certain problem, whose order of accuracy increases by one at each
iteration, converging towards the solution of a background high order scheme. The idea is to modify
the generic iteration in such a way that the order of accuracy of the discretization proper to the
iteration itself matches the order of accuracy achieved in that specific iteration, hence reducing the
computational cost. The number of iterations is chosen equal to the aimed order of accuracy, as
already done in [43, 68, 8, 55, 66]. On the contrary, in other works, the iterations are stopped
when a prescribed tolerance is reached [82, 21, 40, 14, 46]. This is most of the times unnecessary
for explicit methods, as the accuracy of the underlying discretization is not as accurate as that
tolerance.

The modification we propose in this work results in several advantages: for a fixed final order,
we get a substantial drop in the computational cost with respect to the traditional approach as the
low order iterations are performed with low order structures which are computationally cheaper.
Moreover, in this framework it is straightforward to limit the achieved order on the fly, stopping
the computation at a certain iteration if specified criteria are not met. This last aspect allows
to overcome the typical drawback of a posteriori MOOD techniques [31, 35, 34, 16, 15, 10], in
which, if the high order scheme produces a solution which is not valid according to some physical
or numerical criteria, low order solutions must be recomputed with their associated computational
cost after the high order solution has been already computed.

Apart from the advantages and the many possible applications, a remarkable aspect which is
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worth underlying is given by the fact that, if one already has an implementation of an arbitrary
high order iterative scheme, then the introduction of the proposed modification is straightforward.
Furthermore, the modification does not prevent the possible parallelization of the original code.

In this paper, we discuss the application to an ADER framework for hyperbolic PDEs (Arbitrary
Accuracy DERivative Riemann problem), proposed originally by Toro et al. [67, 81]. The approach
is validated on challenging benchmarks, showing the arbitrary high order character and the optimal
performance in the context of adaptivity. Furthermore, the efficiently designed a posteriori limiter,
which drives the p-adaptivity, allows to provably preserve physical properties. In this work, we
will use it to preserve the positivity of some quantities associated to the numerical solution. The
resulting numerical schemes are of high order of accuracy with one-step time discretization and
making use of general polygonal cells in space.

The work is organized as follows. In Section 2, we describe the general idea in the specific
framework of DeC methods. In Section 3, we present the ADER method for hyperbolic PDEs with
Discontinuous Galerkin (DG) spatial discretization and we explain how it can be interpreted as
an iterative arbitrary high order method. Section 4 is devoted to the description of the proposed
modifications for the ADER framework to obtain new efficient p-adaptive schemes. The new meth-
ods are validated against several challenging benchmarks in Section 5, demonstrating the accuracy
and the robustness of the novel approach. Moreover, the computational advantages with respect
to the original formulation are experimentally shown. Finally, conclusions and future perspectives
are reported in Section 6.

2 New efficient iterative arbitrary high order methods

Iterative arbitrary high order methods are numerical methods characterized by an iteration process
converging to the solution of an underlying arbitrary high order scheme. Here, we focus on particular
iterative arbitrary high order methods, for which the order of accuracy with respect to the limit
solution increases by one at each iteration. Examples of such methods are the DeC [68, 43, 9, 55, 8]
and the ADER schemes [56, 47, 19, 41, 40], which have been broadly used in the context of the
numerical solution of hyperbolic systems of PDEs. The current use of such methods consists in
fixing an underlying high order scheme and performing the iteration process until convergence or,
more efficiently, until the desired accuracy is reached, i.e., with a number of iterations exactly equal
to the order of the method.

We propose here a new simple modification of the aforementioned framework which allows the
computational cost of the original methods to be reduced, designing novel schemes with a natural
adaptive character. In particular, let us consider a general iterative arbitrary high order method of
order P , whose generic iteration is denoted by MP . Then, a simple sketch of the method is given
by

u(0) MP−−−→ u(1) MP−−−→ u(2) MP−−−→ . . .
MP−−−→ u(P−1) MP−−−→ u(P ), (1)

where u(p) is the result of the p-th iteration and P iterations have been considered to achieve
the optimal accuracy with the minimal number of iterations. The proposed modification consists
in replacing the generic p-th iteration of the method of order P with the iteration Mp, that is
the iteration associated to the same method but with order p which is in general cheaper but,
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nevertheless, accurate enough to get order p. The sketch of the modified method reads

u(0) M1−−→ u(1) M2−−→ u(2) M3−−→ . . .
MP−1−−−−→ u(P−1) MP−−−→ u(P ). (2)

The formal order of accuracy is not spoiled as Mp, the new p-th iteration, is still sufficiently
accurate to provide u(p) of order p starting by u(p−1) of order p − 1. The technical details of
changing the iteration structures at each iteration depend on the underlying iterative arbitrary
high order method under consideration. For example, an intermediate embedding process like an
interpolation may be needed to project u(p−1) onto the same space of u(p) in order to perform
the p-th iteration. The modification to pass from the original formulation (1) to the new one (2)
is minimal, and its inclusion in an existing implementation of an iterative arbitrary high order
method is straightforward. The modified methods are in general cheaper than the original ones, as
the computational cost related to Mp for p < P is smaller than the one related to MP . Moreover,
differently from what happens in the original framework, increasing the number of iterations always
determines an increase in the order of accuracy without any saturation. Therefore, in principle, it
is possible not to fix a priori the final order, but instead to continue the iterations until a certain
tolerance is matched. This may provide a valid strategy for engineering applications.

We focus now on a particular family of iterative arbitrary high order methods, and we discuss
their modification to comply with the p-adaptivity setting proposed in this work.

2.1 DeC methods

The DeC is an abstract procedure that can be exploited to design arbitrary high order iterative
methods for differential problems. In particular, the formulation presented in [9] relies on the
definition of two operators L1

∆,L2
∆ : X → Y associated to a given problem, dependent on a

parameter ∆, acting between two normed vector spaces (X, ∥·∥X) and (Y, ∥·∥Y ). The operator L2
∆

is a high order nonlinear implicit operator that we would like to solve, i.e., to find u∆ ∈ X such
that L2

∆(u∆) = 0Y , to get a high order approximation of the solution to the original problem.
Nevertheless, due to its implicit nature, the operator L2

∆ is difficult to be solved. On the other
hand, the operator L1

∆ is a low order explicit operator, for which it is easy to find ũ ∈ X such that
L1
∆(ũ) = z for z ∈ Y. Due to its simplicity, it would be desirable to solve L1

∆, rather than L2
∆.

However, the resulting solution would not be accurate enough for our purposes.
The following theorem permits to approximate u∆ arbitrarily well by a simple explicit iterative

procedure.

Theorem 1 (DeC). Let the operators L1
∆ and L2

∆ fulfill the following properties.

1. Existence of a unique solution to L2
∆

∃!u∆ ∈ X solution of L2
∆ such that L2

∆(u∆) = 0Y ;

2. Coercivity-like property of L1
∆

∃α1 ≥ 0 independent of ∆ s.t.∥∥L1
∆(v)− L1

∆(w)
∥∥
Y
≥ α1 ∥v −w∥X , ∀v,w ∈ X; (3)

3. Lipschitz-continuity-like property of L1
∆ − L2

∆

∃α2 ≥ 0 independent of ∆ s.t.∥∥[L1
∆(v)−L2

∆(v)
]
−
[
L1
∆(w)−L2

∆(w)
]∥∥

Y
≤α2∆∥v −w∥X , ∀v,w ∈ X. (4)
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Given a u(0) ∈ X, define recursively the sequence of vectors u(p) as the solution of

L1
∆(u

(p)) := L1
∆(u

(p−1))− L2
∆(u

(p−1)), p ≥ 1. (5)

Then, the following error estimate holds:∥∥∥u(p) − u∆

∥∥∥
X

≤
(
∆
α2

α1

)p ∥∥∥u(0) − u∆

∥∥∥
X

∀p ∈ N. (6)

Proof. Using the coercivity-like property of L1
∆ (3), the definition of the DeC iteration (5), the fact

that L2
∆(u∆) = 0Y and the Lipschitz-continuity-like property of L1

∆ − L2
∆ (4), we get∥∥∥u(p) − u∆

∥∥∥
X

≤ 1

α1

∥∥∥L1
∆(u

(p))− L1
∆(u∆)

∥∥∥
Y

=
1

α1

∥∥∥L1
∆(u

(p−1))− L2
∆(u

(p−1))− L1
∆(u∆)

∥∥∥
Y

=
1

α1

∥∥∥[L1
∆(u

(p−1))− L2
∆(u

(p−1))
]
−
[
L1
∆(u∆)− L2

∆(u∆)
]∥∥∥

Y

≤ ∆
α2

α1

∥∥∥u(p−1) − u∆

∥∥∥
X
.

(7)

Applying recursively the previous inequality, we obtain the thesis.

For ∆ small enough, the sequence of vectors u(p) converges to u∆ independently of the initial
vector u(0). At each iteration of the DeC procedure (5), the computation of u(p) is straightforward
by our assumptions on the operator L1

∆, since u(p−1) is known and it is possible to explicitly
compute the right hand side. Furthermore, thanks to the accuracy estimate (6), at each iteration
one order of accuracy is gained with respect to u∆.

Remark 1. (On “over-resolving” the operator L2
∆ and on the number of iterations P ) Usually,

we are not strictly interested in the solution u∆ of the operator L2
∆, but rather on the analytical

solution uex of the underlying problem. If S is the order of accuracy of u∆, in general, it suffices
to approximate u∆ with S-th order accuracy. This consideration allows to bound the number of
iterations, saving computational time, without necessarily getting convergence towards the solution
to the operator L2

∆. In particular, thanks to Theorem 1, if u(0) is an O(∆)-approximation of uex,
then

∥∥u(P ) − uex

∥∥ = O(∆1+min (P,S)) leading to an order of accuracy equal to min (P, S). Hence,
the optimal choice is P = S. Any further iteration will not increase the order of accuracy of the
method with respect to uex but only with respect to u∆.

2.2 New efficient DeC methods

Here, we will discuss, at the theoretical level, an efficient modification for DeC methods. It is based

on the replacement of the operators L1
∆ and L2

∆ by iteration-specific operators L1,(p)
∆ and L2,(p)

∆

in order to strictly obtain the order p at the p-th iteration. In particular, we prove the following
result.

Theorem 2. Consider a problem with exact solution uex ∈ Z. Then, take some normed spaces
(X(p), ∥·∥X(p)) for p ∈ N and (Y (p), ∥·∥Y (p)) for p ≥ 1. For every p ≥ 1, consider also two operators
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L1,(p)
∆ ,L2,(p)

∆ : X(p) → Y (p) dependent on the same parameter ∆ and fulfilling the properties of

Theorem 1 for some α
(p)
1 , α

(p)
2 > 0 and u

(p)
∆ ∈ X(p). Furthermore, let us assume that ∀p ∈ N

there exists an embedding operator E(p) : X(p) → X(p+1), associating to each u(p) ∈ X(p) an
approximation u∗(p) := E(p)(u(p)) ∈ X(p+1), and some projections Π(p) : Z → X(p), associating to

uex an approximation u
(p)
ex := Π(p)(uex) ∈ X(p).

Given an u(0) ∈ X(0), we consider the new DeC method whose general p-th iteration is given by{
u∗(p−1) := E(p−1)(u(p−1)),

L1,(p)
∆ (u(p)) := L1,(p)

∆ (u∗(p−1))− L2,(p)
∆ (u∗(p−1)).

(8)

Suppose that the following properties hold:

1. Accuracy of u
(p)
∆ with respect to u

(p)
ex∥∥∥u(p)

∆ − u(p)
ex

∥∥∥
X(p)

= O(∆p+1), p ≥ 1; (9)

2. Accuracy of the embedding E(p)∥∥∥u∗(p) − u(p+1)
ex

∥∥∥
X(p+1)

≤ C
∥∥∥u(p) − u(p)

ex

∥∥∥
X(p)

, ∀p ∈ N, (10)

for some constant C independent on ∆;

3. Accuracy of u(0) ∥∥∥u(0) − u(0)
ex

∥∥∥
X(0)

= O(∆). (11)

Then, it follows that ∥∥∥u(p) − u(p)
ex

∥∥∥
X(p)

= O(∆p+1), ∀p ∈ N. (12)

Proof. The proof is based on the induction. The base case for p = 0 is trivially given by assumption
(11). Let us now focus on the induction step. We assume that (12) holds for a specific p and we
will prove it for p+ 1. By the triangular inequality, we have∥∥∥u(p+1) − u(p+1)

ex

∥∥∥
X(p+1)

≤
∥∥∥u(p+1) − u

(p+1)
∆

∥∥∥
X(p+1)

+
∥∥∥u(p+1)

∆ − u(p+1)
ex

∥∥∥
X(p+1)

. (13)

The second term at the right hand side is an O(∆p+2) for (9), hence, let us focus on the first term.
By the proof of Theorem 1 concerning the original methods, we have that∥∥∥u(p+1) − u

(p+1)
∆

∥∥∥
X(p+1)

≤ ∆
α
(p+1)
2

α
(p+1)
1

∥∥∥u∗(p) − u
(p+1)
∆

∥∥∥
X(p+1)

, (14)

which, applying the triangular inequality, gives∥∥∥u(p+1) − u
(p+1)
∆

∥∥∥
X(p+1)

≤∆
α
(p+1)
2

α
(p+1)
1

(∥∥∥u∗(p) − u(p+1)
ex

∥∥∥
X(p+1)

+
∥∥∥u(p+1)

ex − u
(p+1)
∆

∥∥∥
X(p+1)

)
.

(15)
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Again, due to (9), the second term in parenthesis at the right hand side is O(∆p+2), therefore, we
focus on the first term. Due to the assumption on the accuracy of the embedding (10) and to the
induction hypothesis, we have∥∥∥u∗(p) − u(p+1)

ex

∥∥∥
X(p+1)

≤ C
∥∥∥u(p) − u(p)

ex

∥∥∥
X(p)

= O(∆p+1). (16)

Hence,

∆
α
(p+1)
2

α
(p+1)
1

∥∥∥u∗(p) − u(p+1)
ex

∥∥∥
X(p+1)

= O(∆p+2), (17)

which completes the proof.

Let us notice that, in the previous theorem, the accuracy estimate is always referred to a
projection of the exact solution and not to a fixed high order approximation. Hence, the order
of accuracy is formally not bounded and we can approximate uex arbitrarily well. In particular,

if u
(p)
ex yields an approximation of uex which is O(∆p+1) accurate, thanks to Theorem 2, also the

approximation associated to u(p) will have the same accuracy with respect to uex.

3 ADER-Discontinuous Galerkin scheme

The arbitrary derivative (ADER) methods are various techniques to obtain arbitrary high order
methods for differential problems. Even though the first ADER [83] was based on the Cauchy-
Kovalevskaya theorem, nowadays, it is mainly known as a technique that exploits the weak for-
mulation of the original problem in order to obtain high order discretization forms that are solved
iteratively [40, 19, 55, 47]. In this section, we will present a formulation for hyperbolic PDEs in
combination with a discontinuous Galerkin (DG) space discretization, and we will show how it
can be interpreted as an arbitrary high order iterative method in the previously presented DeC
framework. We will also describe in a final subsection the ADER-PNPM variant of the method,
still recastable as DeC scheme, which allows for applications to finite volume (FV) formulations as
well.

3.1 Numerical method

We want to approximate the analytical solution u : Ω× R+
0 → RQ of the following Q-dimensional

hyperbolic PDE

∂

∂t
u(x, t) + divxF (u(x, t)) = S(x,u(x, t)), (x, t) ∈ Ω× R+

0 , (18)

supplemented with suitable initial and boundary conditions, where Ω ⊆ RD is a bounded D-
dimensional space domain, F : RQ → RQ×D is the flux tensor and S : Ω× RQ → RQ is the source
function. To shorten the notation, let us define E(u,x) := divxF (u)−S(x,u), the time evolution
operator of the PDE up to the minus sign, so that (18) becomes

∂

∂t
u(x, t) +E(u(x, t),x) = 0, (x, t) ∈ Ω× R+

0 . (19)
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Let us focus on a generic time step [tn, tn+1], with ∆t := tn+1 − tn. The goal is to find an
approximation un+1(x) ≈ u(x, tn+1) of the analytical solution in Ω at time tn+1 by knowing an
approximation un(x) ≈ u(x, tn) at time tn.

In particular, for any n, we adopt a classical DG space discretization for un(x) ≈ u(x, tn):
we consider a tessellation Th of Ω made of non-overlapping convex polytopals K with mesh pa-
rameter h, and we consider un(x) in a space of discontinuous piecewise polynomial functions of
degree M , i.e., (VM )Q with VM :=

{
g ∈ L2(Ω) s.t. g|K ∈ PM (K)

}
, yielding an (M + 1)-th order of

accuracy approximation space. Therefore, locally in each element K, we can consider the following
representation of the approximated solution with a local basis {φi(x)}i=1,...,I of PM (K)

un(x) :=

I∑
i=1

cni φi(x), ∀x ∈ K, (20)

where the label K on the coefficients cni and on the basis functions φi is omitted to lighten the
notation as we will consider computations in a single generic element, in the sequel.

The ADER method, applied to this context, is based on the weak formulation of the governing
equations (18) in space-time and it is characterized by two steps: an iterative local space-time
predictor and a final corrector step, described hereafter.

3.1.1 Local space-time predictor

The purpose of this step is to find a high order approximation of the solution in each space-time
control volume CK = K× [tn, tn+1]. In this step, no communication between the cells happens. We
consider the weak formulation of (18) over CK , obtained through the multiplication by a smooth
test function ϑ : CK → R, the integration over CK and subsequent integration by parts in time:∫

K

[u(x, tn+1)ϑ(x, tn+1)−u(x, tn)ϑ(x, tn)] dx−
∫
CK

u(x, t)
∂

∂t
ϑ(x, t)dxdt

+

∫
CK

E(u(x, t),x)ϑ(x, t) dxdt = 0.

(21)

Next, we project it onto a finite dimensional space spanned by the tensor product of the previously
introduced local spatial basis {φi(x)}i=1,...,I and a temporal basis {ψm(t)}m=0,...,M over [tn, tn+1]
guaranteeing (M + 1)-th order of accuracy. As an example for the latter, one can think to a
Lagrangian basis of degree M or a truncated Taylor series up to the M -th degree term to obtain
an approximation of order M +1. Here, we will use modal basis functions both for space and time,
although such choice is not mandatory. The basis functions are explicitly described in Appendix
A. As usual in the literature, we assume the basis functions to be normalized in such a way that
their maximum absolute value over CK is an O(1).

In particular, we consider the local discretization of uh in CK

uh(x, t) :=

I∑
i=1

M∑
m=0

um
i φi(x)ψ

m(t) =

L∑
ℓ=1

uℓϑℓ(x, t), ∀(x, t) ∈ CK , (22)

in which, in order to shorten the notation, we have denoted by {ϑℓ(x, t)}ℓ=1,...,L a permutation
of the basis functions {φi(x)ψ

m(t)} i=1,...,I
m=0,...,M

and by uℓ the corresponding coefficients um
i , where
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implicitly we defined a bijection that gives ℓ = ℓ(i,m). Finally, we consider the projection of (21)
on the space-time DG functional space generated by {ϑℓ(x, t)}ℓ=1,...,L, that is

L∑
ℓ=1

[∫
K

ϑℓ(x, tn+1)ϑ
j(x, tn+1)dx−

∫
CK

ϑℓ(x, t)
∂

∂t
ϑj(x, t)dxdt

]
uℓ

−
∫
K

un(x)ϑ
j(x, tn)dx+

∫
CK

E(uh(x, t),x)ϑ
j(x, t)dxdt = 0

(23)

for any j = 1, . . . , L. This is a nonlinear system in the unknowns uℓ, whose solution yields the
(M+1)-th order accurate approximation (22) of the analytical solution. Let us notice that un(x) in
(23) is known by assumption and the related integral involving such function can thus be computed.
Notice that, in order to obtain a fully local formulation, the divergence theorem in space has not
been applied. On the other hand, the integration by parts in time has been performed to introduce
a causality effect and a dependency on the initial information at time tn.

Now, it is possible to recast each local system (23) in a matrix-vector formulation writing

Bu− r + ϕ̃(u) = 0, (24)

where the matrix B and the vectors u, r and ϕ̃ are given by

Bj,ℓ :=

∫
K

ϑℓ(x, tn+1)ϑ
j(x, tn+1)dx−

∫
CK

ϑℓ(x, t)
∂

∂t
ϑj(x, t)dxdt,

u :=

u1

...
uL

 , r :=


∫
K
un(x)ϑ

1(x, tn)dx
...∫

K
un(x)ϑ

L(x, tn)dx

 , ϕ̃(u) :=


∫ tn+1

tn
ϕ1(u, t)dt
...∫ tn+1

tn
ϕL(u, t)dt

 (25)

with ϕj(u, t) :=
∫
K
E(uh(x, t),x)ϑ

j(x, t)dx. Let us observe that r is constant and explicitly
computable as un(x) is known.

Remark 2. (On the matrix B) The definition of the matrix B is referred to a scalar PDE, it must
be block-expanded for a vectorial problem. Let us notice that the elements of the matrix B are O(hD)
due to the integral over K and to the normalization assumed on the basis functions. The integral
in time on the second term of Bj,ℓ is balanced by the derivative in time on ϑj .

Concerning the well-posedness and the solution of the nonlinear system (24), we can prove
that for ∆t small enough it admits a unique solution which can be obtained through the iterative
procedure

u(p) = B−1
[
r − ϕ̃

(
u(p−1)

)]
, (26)

which converges unconditionally to the solution of the system, for any initial vector u(0). In order
to do that, let us first prove the following useful lemma.

Lemma 3 (Lipschitz-continuity-like property of ϕ̃). Under smoothness assumptions, the function

ϕ̃(·) is such that ∥∥∥ϕ̃(v)− ϕ̃(w)
∥∥∥
∞

≤ ∆t |K|CLip ∥v −w∥∞ (27)

where ∥·∥∞ is the infinity norm over RL×Q and CLip is a constant independent of ∆t and of the
element K.
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Proof. By a direct computation of the generic j-th component of the left-hand side of (27), recalling
the definition of the functions ϕj , through basic analysis, we get∥∥∥∥∥

∫ tn+1

tn

ϕj(v, t)dt−
∫ tn+1

tn

ϕj(w, t)dt

∥∥∥∥∥
∞,Q

≤
∫ tn+1

tn

∥∥∥ϕj(v, t)− ϕj(w, t)
∥∥∥
∞,Q
dt

≤
∫
CK

∥∥∥E(vh(x, t),x)−E(wh(x, t),x)
∥∥∥
∞,Q

∣∣∣ϑj(x, t)∣∣∣dxdt, (28)

where ∥·∥∞,Q is the infinity norm over RQ, vh(x, t) :=
∑L

ℓ=1 v
ℓϑℓ(x, t) andwh(x, t) :=

∑L
ℓ=1 w

ℓϑℓ(x, t) ∀(x, t) ∈
CK . For regular data, we can assume that the following Lipschitz-continuity property holds∥∥∥E(vh(x, t),x)−E(wh(x, t),x)

∥∥∥
∞,Q

≤ C0 ∥v −w∥∞ , (29)

where C0 is a constant independent of ∆t and of the element K, leading to∥∥∥∥∥
∫ tn+1

tn

ϕj(v, t)dt−
∫ tn+1

tn

ϕj(w, t)dt

∥∥∥∥∥
∞,Q

≤ C0 ∥v −w∥∞
∫
CK

∣∣∣ϑj(x, t)∣∣∣dxdt. (30)

The space-time basis functions ϑj are bounded in absolute value by a constant Cϑ independent of
∆t and K, yielding∥∥∥∥∥

∫ tn+1

tn

ϕj(v, t)dt−
∫ tn+1

tn

ϕj(w, t)dt

∥∥∥∥∥
∞,Q

≤ C0Cϑ ∥v −w∥∞ ∆t |K| , (31)

which, setting CLip := C0Cϑ and taking the maximum over j = 1, . . . , L at the left-hand side, is
the thesis.

A straightforward consequence of the previous result is the following corollary.

Corollary 4 (Lipschitz-continuity-like property of B−1ϕ̃). Under the assumptions of the previous
lemma, it holds ∥∥∥B−1

[
ϕ̃(v)− ϕ̃(w)

]∥∥∥
∞

≤ ∆tC̃Lip ∥v −w∥∞ (32)

where C̃Lip is a constant independent of ∆t and of the element K.

Proof. By basic linear algebra we have∥∥∥B−1
[
ϕ̃(v)− ϕ̃(w)

]∥∥∥
∞

≤
∥∥B−1

∥∥
∞

∥∥∥ϕ̃(v)− ϕ̃(w)
∥∥∥
∞

(33)

where the infinity norm applied to B−1 is the matrix norm induced by the related vector norm. As
observed in Remark 2, B is an O(hD) and, hence, its inverse is an O(h−D), leading to

∥∥B−1
∥∥
∞ ≤

CBh
−D for some constant CB independent of the specific element K and of ∆t. Using this fact, in

combination with the result of Lemma 3, we obtain∥∥∥B−1
[
ϕ̃(v)− ϕ̃(w)

]∥∥∥
∞

≤ CBh
−D∆t |K|CLip ∥v −w∥∞ . (34)

10



By observing that for a regular mesh |K| ≤ Cτh
D for some constant Cτ independent of K, we get

the thesis ∥∥∥B−1
[
ϕ̃(v)− ϕ̃(w)

]∥∥∥
∞

≤ ∆tCBCτCLip ∥v −w∥∞ (35)

for C̃Lip := CBCτCLip.

This allows us to prove the existence and uniqueness of the solution of (24).

Proposition 5 (Well-posedness and solution of the nonlinear system). For ∆t small enough, the
nonlinear system (24) has a unique solution, which is the limit of (26) for p→ +∞.

Proof. We define the map J : RL×Q → RL×Q as J (u) := B−1
[
r − ϕ̃(u)

]
. It is immediate to

verify that a fixed point of J (if any) is also a solution of (24) and viceversa. Due to the fact
that RL×Q is finite dimensional, if we are able to prove that J is a contraction, by the Banach
fixed-point theorem, we know that there exists a unique fixed point and that this can be obtained
as the limit of the iterative procedure u(p) := J (u(p−1)), which is equivalent to (26). We will now
show that, for ∆t small enough, J is indeed a contraction. In fact, by a direct computation, it
holds

∥J (v)− J (w)∥∞ =
∥∥∥B−1

[
ϕ̃ (v)− ϕ̃ (w)

]∥∥∥
∞

(36)

and, applying Corollary 4 on the Lipschitz-continuity-like property of B−1ϕ̃, we retrieve the thesis

∥J (v)− J (w)∥∞ =
∥∥∥B−1

[
ϕ̃ (v)− ϕ̃ (w)

]∥∥∥
∞

≤ ∆tC̃Lip ∥v −w∥∞ (37)

for ∆t < 1

C̃Lip
.

All the local approximations, obtained by solving the nonlinear system in each control volume
CK , constitute a global (M + 1)-th order accurate approximation of the analytical solution. It is
piecewise polynomial in each CK and discontinuous across the faces of CK shared with other control
volumes and we denote it, by an abuse of notation, as uh.

Remark 3. (On the computational efficiency) In several works, the nonlinear system (24) is solved
by carrying the iterative process (26) until a convergence criterion is met up to a certain tolerance
[40, 19, 47]. This leads to a waste of resources as the underlying discretization error of the system
(24) with respect to the analytical solution of the PDE is of order M + 1, hence, smaller tolerances
are in general unnecessary. In this context, it is possible to obtain an (M + 1)-th order accurate
approximation of the solution of (24) by performing exactly M + 1 iterations. More details on this
will be explained in Section 3.2.

3.1.2 Final corrector step

From the predictor step, we have in each control volume CK a local (M + 1)-th order accurate
approximation uh of the analytical solution in the form (22), which has been computed without
considering any sort of communication between the neighboring elements. In the final corrector
step, we exploit such approximation to finally get un+1(x), taking into account the coupling between
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the elements. In particular, we consider again a weak formulation of (18) in CK , but this time we
use a spatial-only test function φ(x) and we apply the divergence theorem in space thus getting∫

K

u(x, tn+1)φ(x)dx−
∫
K

u(x, tn)φ(x)dx

+

∫ tn+1

tn

∫
∂K

φ(x)F (u(x, t)) · ν(x)dσdt

−
∫
CK

F (u(x, t)) · ∇xφ(x)dxdt−
∫
CK

S(x,u(x, t))φ(x)dxdt = 0,

(38)

where ν(x) is the outward pointing normal to ∂K. The divergence theorem in space provides the
desired coupling between the neighboring cells because the solution uh, computed locally in each
control volume CK through the predictor, is discontinuous across the boundaries ∂K and, thus, a
numerical flux F̂ is needed to compute the flux at the cell interfaces ∂K. We can use either a simple
and robust local Lax Friedrichs scheme [78], or a less dissipative Osher numerical flux function [38].
At the discrete level, recalling the adopted discretization (20) for un(x) ∀n, we get for each control
volume CK

I∑
i=1

∫
K

φi(x)φj(x)dx(c
n+1
i − cni )

+

∫ tn+1

tn

∫
∂K

φj(x)F̂ (uh|K(x, t),uh|K+(x, t)) · ν(x)dσdt

−
∫
CK

F (uh(x, t)) · ∇xφj(x)dxdt−
∫
CK

S(x,uh(x, t))φj(x)dxdt = 0

(39)

for every j = 1, . . . , I, with K+ being the neighboring cell of K sharing ∂K at a certain point x.
Again, we remark that this step has a global character due to the computation of the numerical
fluxes, but it is explicit as uh has been obtained in the predictor step. Let us notice that the linear
systems involved in the corrector are local and even smaller than the predictor ones, thus readily
invertible.

By solving the linear system (39) with respect to the coefficients cn+1
i in each element K, we

get the final solution un+1(x) =
∑I

i=1 c
n+1
i φi(x) ∀x ∈ K which is an (M + 1)-th order accurate

approximation of u(x, tn+1).

3.2 ADER-DG as DeC

It is possible to interpret the ADER-DG predictor step as a DeC procedure. We set ∆ := ∆t
and, from the local space-time nonlinear system (24), we define the high order nonlinear operator
L2
∆ : RL×Q → RL×Q as

L2
∆(u) := u−B−1

[
r − ϕ̃(u)

]
. (40)

Since solving the operator L2
∆ is equivalent to solve the system (24), we have already discussed the

(M + 1)-th order of accuracy of its solution.
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The low order operator L1
∆ : RL×Q → RL×Q is, instead, defined as

L1
∆(u) := u−B−1

[
r − ϕ̃(u0)

]
, (41)

with u0 being a vector of local space-time representation coefficients with respect to the basis
{ϑℓ(x, t)}ℓ=1,...,L, yielding anO(∆t)-approximation of the analytical solution in CK . As an example,

the vector u0 can be chosen such that
∑L

ℓ=1 u
ℓ
0ϑ

ℓ(x, t) = un(x) for all t ∈ [tn, tn+1]. In practice,
this definition is merely formal as the related terms will cancel out in the iteration and in all the
needed proofs. It can be shown that the local reconstruction of the PDE solution induced by the
coefficients obtained by solving L1

∆ is first order accurate with respect to the analytical solution.
Furthermore, let us observe how the problem L1

∆(ũ) = z for some given z ∈ RL×Q can be easily
solved by explicitly isolating ũ.

In the following, we will prove that the operators that we have defined respect the three prop-
erties needed to apply Theorem 1, but first let us characterize the related DeC iterative procedure.

3.2.1 Iterative ADER-DG-DeC procedure

If we characterize the iterative procedure (5) in the ADER context with the operators (41) and
(40), by a direct computation, we get

u(p) −B−1
[
r − ϕ̃(u0)

]
= u(p−1) −B−1

[
r − ϕ̃(u0)

]
− u(p−1) +B−1

[
r − ϕ̃(u(p−1))

]
,

(42)

which reduces to
u(p) = B−1

[
r − ϕ̃(u(p−1))

]
. (43)

This is nothing but the fixed point iteration (26). The advantage of having put it into a DeC
formulation is that, in this context, we have at our disposal an estimate for the accuracy of u(p)

obtained at the generic iteration p given by (6). In particular, according to Remark 1, if u(0) yields
an O(∆t)-approximation of the analytical solution, we have that the optimal number of iterations
to achieve the formal accuracy is given by P =M +1. A natural choice of the initial vector is thus
u(0) := u0.

3.2.2 Proof of the properties of the operators L1
∆,L2

∆

We have that the operators L1
∆,L2

∆ fulfill the hypotheses of Theorem 1 as stated in the next theorem.

Theorem 6 (ADER-DG is DeC). The operators L1
∆,L2

∆ : RL×Q → RL×Q, defined respectively in
(41) and (40), fulfill the three hypotheses of Theorem 1.

Proof. 1. Existence of a unique solution to L2
∆

This property has been already proved in Proposition 5, since solving the operator L2
∆ is

equivalent to solve the nonlinear system (24).

2. Coercivity-like property of L1
∆

We consider the infinity norm over RL×Q and two general vectors v,w ∈ RL×Q. The proof
of this property is immediate because, by a direct computation, we have∥∥L1

∆(v)− L1
∆(w)

∥∥
∞ = ∥v −w∥∞ (44)
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and, thus, (3) holds with α1 = 1.

3. Lipschitz-continuity-like property of L1
∆ − L2

∆

The proof of this property is based on Corollary 4. A direct computation leads to the thesis:∥∥[L1
∆(v)−L2

∆(v)
]
−
[
L1
∆(w)−L2

∆(w)
]∥∥

∞ (45)

=
∥∥∥B−1

[
ϕ̃ (v)− ϕ̃ (w)

]∥∥∥
∞

≤ ∆tC̃Lip ∥v −w∥∞ , (46)

where in (46) we applied Corollary 4.

3.3 ADER-PNPM and ADER-FV

Other formulations of ADER are available in literature, in particular ADER-PNPM [48, 42, 39, 17]
is a generalization of the ADER-DG formulation. The ADER-PNPM method is based on adopting,
for the discretization un(x) of the solution at the time tn, different local basis functions {λr}r=1,...,R

spanning a space of discontinuous piecewise polynomial functions of degree N ≤ M , i.e., VN with
VN :=

{
g ∈ L2(Ω) s.t. g|K ∈ PN (K)

}
, yielding the reconstruction

un(x) :=

R∑
r=1

cnrλr(x), ∀x ∈ K. (47)

Then, the scheme is formally identical to the one described before. In the predictor (23), the same
M -th degree local spatial bases {φi(x)}i=1,...,I and temporal bases {ψm(t)}m=0,...,M are considered,
yielding a local reconstruction uh(x, t) in each CK guaranteeing (M +1)-th order of accuracy. The
corrector is also identical to the one previously described (39), up to the replacement of the basis
functions φi with the basis functions λr.

The only difference with respect to the original formulation is given by the fact that, if N < M ,
a suitable M -th degree polynomial reconstruction ũn(x) has to be considered in place of un(x) for
the computation of the related integral over K in the predictor (23) in order to guarantee (M+1)-th
order of accuracy. Usually, ũn(x) is retrieved via a WENO or CWENO reconstruction [17, 48, 42].

Let us observe that if N = M and the basis {λr(x)}r=1,...,R coincides with {φi(x)}i=1,...,I ,
then the ADER-PNPM scheme reduces exactly to the ADER-DG previously introduced. On the
other hand, the scheme obtained for N = 0, i.e., with a piecewise constant approximation of un(x)
over Ω, is the ADER-FV scheme. One can observe that the corrector, in such case, corresponds
to an explicit (M + 1)-th order accurate FV step. All the schemes obtained for 0 < N < M are
alternatives which vary between these two schemes.

Finally, let us notice that the predictor of such methods, being formally unchanged with respect
to the original formulation, can also be seen as a DeC method in which one order is achieved at
each iteration until M + 1.

4 New efficient ADER schemes

In this section, we will explain how to apply the novel modification to the described ADER frame-
work. We will first introduce the efficient ADER-DG-u, obtained by simply matching the order
of the space-time reconstruction in each predictor iteration with the order of accuracy achieved

14



in the same iteration, without spoiling the original order of accuracy. Afterwards, we will explain
how such p-adaptivity strategy can be exploited to prescribe structure preservation by introducing
the DOOM approach. We will focus on the ADER-DG scheme, bearing in mind that the same
modifications hold true for ADER-FV and ADER-PNPM schemes as well.

4.1 Modification of ADER-DG (ADER-DG-u)

We propose to change the predictor of ADER-DG by increasing the polynomial degree of the
reconstruction of the numerical solution at each iteration p according to the order of accuracy
achieved in that specific iteration. In particular, we define for any p the general local basis

{ϑℓ,(p)(x, t)}ℓ=1,...,L(p) given by the tensor product of space basis functions φ
(p)
i (x) and time basis

functions ψm,(p)(t) of degree p. We also define the functional spaces generated by these bases as

X(p) :=
(
span{ϑℓ,(p)(x, t)}ℓ=1,...,L(p)

)Q
.

Remark 4 (On the spaces X(p)). According to our definitions of the operators (41) and (40), for-
mally, the spaces X(p) in the ADER context should be spaces of coefficients of the discrete solution.
However, by definition, such spaces are in bijection with the functional spaces of Q-dimensional
polynomials whose scalar components are spanned by the bases {ϑℓ,(p)(x, t)}ℓ=1,...,L(p) . Since in
this context referring to the polynomial degree of the numerical solution in each step of the process
provides a clearer overview of the method, as an abuse of notation we denote directly X(p) as the
functional space associated to the corresponding coefficients, bearing in mind the aforementioned
bijection.

Then, the main procedure at the iteration p passes from the space-time representation coef-
ficients u(p−1) with respect to the basis of X(p−1), (p − 1)-th order accurate with respect to the
analytical solution, to u(p) in X(p) with accuracy p. To perform this step, we first use an em-
bedding E(p−1) : X(p−1) → X(p), for example an interpolation or an L2-projection, to pass to
u∗(p−1) = E(p−1)(u(p−1)) ∈ X(p). This embedding should not spoil the accuracy of the recon-
structed solution. At this point, a simple iteration of the standard method (43), with structures
(25) associated to the basis {ϑℓ,(p)(x, t)}ℓ=1,...,L(p) , results in u(p) and the related p-th order accurate
reconstruction in CK . These structures read

L2,(p)
∆ (u) := u−

(
B(p)

)−1
[
r(p) − ϕ̃

(p)
(u)

]
,

L1,(p)
∆ (u) := u−

(
B(p)

)−1
[
r(p) − ϕ̃

(p)
(u

(p)
0 )

]
,

(48)
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with

B
(p)
j,ℓ :=

∫
K

ϑℓ,(p)(x, tn+1)ϑ
j,(p)(x, tn+1)dx−

∫
CK

ϑℓ,(p)(x, t)
∂

∂t
ϑj,(p)(x, t)dxdt,

u :=

 u1

...

uL(p)

 , r(p) :=


∫
K
un(x)ϑ

1,(p)(x, tn)dx
...∫

K
un(x)ϑ

L(p),(p)(x, tn)dx

 ,

ϕ̃
(p)

(u) :=


∫ tn+1

tn
ϕ

(p)
1 (u, t)dt
...∫ tn+1

tn
ϕ

(p)

L(p)(u, t)dt

 ,

(49)

where ϕ
(p)
j (u, t) :=

∫
K
E(uh(x, t),x)ϑ

j,(p)(x, t)dx, with uh(x, t) =
∑L(p)

ℓ=1 uℓϑℓ,(p)(x, t) ∀(x, t) ∈
CK and u

(p)
0 some local coefficients extrapolated from the initial datum un(x) in K, yielding an

O(∆t)-approximation of the analytical solution to our PDE in CK . Again, the definition of u
(p)
0 is

merely formal as it cancels in the iterations.
The resulting modified ADER-DG-u iterative procedure reads

u(0) = u
(0)
0 ,u∗(p−1) = E(p−1)

(
u(p−1)

)
,

u(p) =
(
B(p)

)−1
[
r(p) − ϕ̃

(p)
(u∗(p−1))

]
,

for p ≥ 1.
(50)

We remark that the superscript (p) in the definition of the structures in (48) and (49) is simply
referred to the iteration, the modified method is still fully explicit and all the terms at the right
hand side of the iteration formula (50) can be explicitly computed.

The accuracy evolves as follows throughout the procedure. We start with u(0) associated to
a piecewise constant O(∆t)-approximation of the solution to the PDE in CK and we perform the

embedding in X(1) to get u∗(0), still O(∆t)-accurate. Performing the first iteration via L1,(1)
∆ ,L2,(1)

∆

we get u(1) yielding an O(∆t2)-approximation of the solution in CK . We continue iteratively with
u(p−1) associated to a (p − 1)-th order accurate approximation of the solution in X(p−1) spanned
by polynomial bases of degree p − 1, that is embedded in X(p) obtaining u∗(p−1) with the same

accuracy p − 1. This allows to compute u(p) via a DeC iteration with L1,(p)
∆ ,L2,(p)

∆ achieving p-th
order of accuracy.

Remark 5. (On the accuracy of the interpolation) One must notice that the discretization through
the tensor product of polynomials of degree p in space and in time allows, in general, an order of
accuracy p + 1 with respect to the analytical solution to the PDE. Nevertheless, the interpolation
accuracy is only of order p and, hence, the interpolation must be performed before saturating the
accuracy associated to the current polynomial basis to avoid the consequent degradation of the order.

Due to the previous remark, if the final polynomial degree of the bases in space and in time is
fixed to M , it is convenient to perform M iterations in the form (50) to get u(M), associated to
the desired final discretization, plus a final iteration in the same space X(M+1) = X(M) with the
same structures as the ones used in the M -th iteration to saturate the accuracy related to such
discretization getting thus u(M+1) yielding (M + 1)-th order of accuracy.
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Table 1: Increasing degrees of polynomial spaces X(p) varying the iteration

Space X(0) X(1) X(2) X(3) . . . X(M−1) X(M) X(M+1)

Polynomial degree 0 1 2 3 . . . M − 1 M M

The degrees of the bases of the spaces X(p), assuming a fixed final polynomial degree equal to
M , are summarized in Table 1 and the procedure is displayed in the following sketch

u(0) E(0)

−−→u∗(0) L2,(1)
∆−−−−→

L1,(1)
∆

u(1) E(1)

−−→u∗(1) L2,(2)
∆−−−−→

L1,(2)
∆

u(2) E(2)

−−→ . . .
L2,(M)

∆−−−−→
L1,(M)

∆

u(M) L2,(M)
∆−−−−→

L1,(M)
∆

u(M+1).

O(∆t) O(∆t) O(∆t2) O(∆t2) O(∆t3) O(∆tM+1) O(∆tM+2)

Finally, always assuming a final polynomial degree equal to M in the predictor, the corrector
step (39) is normally performed with the (M+1)-th order accurate discretization given by theM -th

degree local polynomial basis functions φ
(M)
i used in the two last predictor iterations. This leads,

in each element K, to the local approximation un+1(x) =
∑I

i=1 c
n+1
i φ

(M)
i (x) which is (M + 1)-th

order accurate. The computational advantage of the modified method with respect to the original
formulation is clear: all the iterations but the last two are performed with matrix and vector struc-
tures which are smaller, implying the solution of smaller systems. Also the space-time discretization
of E(uh,x) = divxF (uh(x, t))− S(x,uh(x, t)) and the orders of the quadrature formulas used in
the low order iterations can be suitably chosen to decrease the related computational cost. The
only extra cost can come from the embedding between the spaces, which, for interpolations, can be
easily recast as products by precomputable interpolation matrices, which can therefore be efficiently
performed.

In this work, we assume modal bases in space and time. This further increases the computational
advantage as, in such context, the higher order mode is easily introduced by adding zero components
to u(p) thus getting u∗(p) = (u(p),0)T without any other effort.

We denote this scheme by ADER-DG-u, referring to the αDeCu schemes introduced in [66] with
a similar technique, where u denotes the quantity that has been embedded.

Remark 6. (Galerkin projection) In the specific context of these new modified ADER-DG methods,
the embedding procedure between the spaces X(p−1) and X(p) could be replaced by a Galerkin pro-
jection onto X(p). Namely, in (50) one could skip the interpolation procedure and directly consider

ϕ̃
(p)

(u(p−1)) which is defined in each j-th component by the integral over [tn, tn+1] of

ϕ
(p)
j (u(p−1), t) :=

∫
K

E(u
(p−1)
h (x, t),x)ϑj,(p)(x, t)dx, (51)

with u
(p−1)
h (x, t) =

∑L(p−1)

ℓ=1 uℓ,(p−1)ϑℓ,(p−1)(x, t). This mismatch between the spaces of the explicit
term and of the test functions permits the evolution to the next space X(p). This is particularly
convenient as there would be no interpolation, whose cost is however negligible with respect to the
rest of the scheme. For modal bases the two approaches are equivalent.

Remark 7. (Space-time accuracy) Since the ADER schemes are one-step fully discrete predictor-
corrector methods on space-time control volumes CK , the order of accuracy in space and time is
simultaneously evolved, thus if the iterative solution u(p) is of order O(∆tp+1) in time, it is also
accurate O(hp+1) in space. This is omitted to lighten the notation.
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As already remarked, since the predictor of the ADER-PNPM is identical to the one of the
standard ADER-DG, we can analogously introduce the ADER-PNPM -u and, as a particular case,
the ADER-FV-u methods in a straightforward way.

4.2 DOOM limiter based on adaptivity

In the context of the novel schemes, it is very natural to introduce a limiter that guarantees some
structural properties of the solution. The limiter will be denoted by Discrete Optimally increasing
Order Method (DOOM), as it will stop the iteration process in the predictor at an optimal value.

We consider the ADER-FV-u scheme, to inherit the robustness of FV formulations and the far
less restrictive CFL constraints which are suitable for large scale simulations, and we introduce an
adaptive criterion. We fix a final number of iterations P = M + 1, corresponding to (M + 1)-th
order of accuracy, and we perform the local predictor iterations as prescribed in the context of the
ADER-FV-u scheme but, in contrast with the standard method, we check for the non-violation of
some physical constraints (for example the positivity of density and pressure in hydrodynamics) of
the computed solution. If at iteration p, with 1 ≤ p ≤ M + 1, the computed u(p) does not fulfill
some of the mentioned constraints, the solution is rejected and u(p−1) is assumed to be the output
of the iterative procedure for the correction step. Let us notice that, in the worst case, considering
u(0) in the correction step in a given region of Ω leads to a standard first order Godunov scheme
which is, indeed, reliable. A sketch of the limiter is displayed in Algorithm 1, in which un represents
the local constant value of un(x) in a cell K in the ADER-FV-u (and ADER-FV) context.

Algorithm 1 DOOM limiter for ADER-FV-u on a cell K

Require: un

u(0) = un

for p = 1, . . . ,M + 1 do
u∗(p−1) = E(p−1)(u(p−1))

u(p) =
(
B(p)

)−1
[
r(p) − ϕ̃

(p)
(u∗(p−1))

]
if u(p) does not meet the criteria then

return u(p−1)

end if
end for
return u(M+1)

The strategy may remind the a posteriori MOOD technique [32, 36, 20, 10] with some fun-
damental differences. The low order acceptable solution u(p−1) has been computed before u(p),
as it was a necessary step towards the increase of an order of accuracy. Moreover, the order of
accuracy is automatically pushed as much as possible without violating the physical constraints: in
fact u(p), possibly rejected, is computed if and only if u(p−1) was reliable. This avoids the risk of
an over-diffusion in having the safe low order scheme guaranteeing an accuracy lower than the one
actually achievable. Therefore, it is then possible to preserve some physical properties through this
procedure as explained in the following proposition.

Proposition 7 (ADER-FV-u with DOOM property). Suppose that the FV scheme preserves a
property P. Suppose that the property P is checked in the DOOM admissibility criteria. Then the
ADER-FV-u with the DOOM limiter preserves the property P.
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Proof. In the ADER-FV-u case, un is locally represented through a single constant basis function
λ1 ≡ 1. By induction on the time step n, suppose that the value of un in each cell K, i.e., cn1 := un

of (47), verifies the property P. Then, independently of the (WENO) reconstruction of un used to
obtain the polynomial ũn(x) for computing the related integrals in (49) with the desired accuracy,
u(0) = cn1 still is the local value of the original un and fulfills the property P. Then, during
the ADER-FV-u DOOM procedure, u(p) are kept in the iterations only if property P is fulfilled.
Hence, property P holds for the final predictor uh and, in the corrector step (39), we perform the
FV method using uh. So, un+1 still fulfills property P.

At the moment, this procedure does not guarantee to preserve the property for ADER-PNPM

with N > 0, due to the fact that the corrector in such case is not an explicit FV step. However,
the authors are working on new structure preserving strategies for such schemes. Moreover, in the
simulations of this work, only positivity of density and pressure is checked with the DOOM limiter,
but other properties like discrete local maximum principle or entropy inequalities [61, 62, 54, 4] can
be ensured.

Remark 8 (Other applications of the p-adaptivity). The adaptive nature of the novel methods
can be exploited also for other applications. In particular, the approach can approximate the exact
solution with arbitrary precision as p→ +∞ and it is not constrained to a maximum degree M and
the related approximation accuracy. Within this framework, it is easy to design efficient arbitrary
high order adaptive schemes, as in [66] in a DeC context for ODEs, choosing the stopping criterion
for the iterations in accordance with the iteration error. Also hp-adaptivity can be introduced in
this framework. As soon as the DOOM limiter requires low order steps, it is possible to locally use
h-adaptivity to recover for the lost accuracy. These applications are already object of study of the
authors, but they will not be treated in this work.

5 Numerical results

In this section, we will report the numerical results of several tests performed in order to validate
the accuracy and the robustness of the novel ADER-DG-u and ADER-FV-u methods, i.e., ADER-
PNPM-u respectively with N =M and N = 0. In order to quantify the obtained speed-up in terms
of computational time, they will be compared with the state-of-the-art ADER-DG and ADER-FV
methods [19], characterized by a fixed polynomial degree along the whole iterative procedure and
a convergence criterion

∥∥u(p) − u(p−1)
∥∥
∞ < tol to stop the predictor iterations (26), where here

we assume tol = 10−12.
We adopt the following notation: for each method we explicitly specify the formal order of

accuracy. Therefore, ADER-DG(M + 1) and ADER-FV(M + 1) represent the original methods
with predictor spatial and temporal basis functions of degree M guaranteeing (M + 1)-th order of
accuracy. In the context of ADER-DG-u(M + 1) and ADER-FV-u(M + 1), instead, M is the final
degree of the predictor spatial and temporal basis functions at the end of the iteration process still
leading to accuracy M + 1.

We will focus on the Euler and compressible Navier–Stokes equations. The Euler equations are
a system of hyperbolic PDEs in the form (18) given by

u =

ρ
q
E

 , F (u) =

 q
ρv ⊗ v + pI
v(E + p)

 , S(x,u) = 0, (52)
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where ρ is the density, q ∈ RD the momentum, E the energy, p the pressure, v = q
ρ ∈ RD the

velocity of the flow and I ∈ RD×D is the identity matrix. The system is completed by specifying

the closure equation of state E = p
γ−1 + ρ

∥v∥2
2

2 , where γ =
cp
cv

is the adiabatic coefficient defined
as the ratio between the specific heats at constant pressure and volume and is here assumed to be
γ = 1.4.

The more general compressible Navier–Stokes equations are obtained by keeping the viscosity
effects into account and, for ideal gases, are defined by

u =

ρ
q
E

 , F (u) =

 q
ρv ⊗ v + σ(u,∇xu)

v(EI+ σ(u,∇xu))− κ∇xT

 , S(x,u) = 0, (53)

where σ(u,∇xu) denotes the stress tensor, κ is the heat conduction coefficient and T represents
the temperature, while, the other terms have the same meaning as in the context of the Euler
equations. In particular, the stress tensor σ(u,∇xu) is given, under the Stokes hypothesis, by

σ(u,∇xu) =

(
p+

2

3
µ divxv

)
I− µ

(
∇xv +∇xv

T
)
, (54)

with p being the pressure of the fluid and µ the dynamic viscosity that we assume to be constant.
The heat conduction coefficient κ is linked to the viscosity coefficient through the Prandtl number
Pr with the following law

κ =
µγcv
Pr

. (55)

where again γ =
cp
cv
. A thermal and a caloric equation of state are needed for the closure of (53).

For an ideal gas those are
p

ρ
= RT,

e

ρ
= cvT, (56)

with R being the specific gas constant and e = E − ρ
∥v∥2

2

2 the internal energy.
We will consider two-dimensional (D = 2) problems, hence v := (u, v)T .
If not stated otherwise, the CFL number is set to CFL = 0.5, and the time step is computed

according to an explicit stability condition which is given by

∆t ≤ CFL
min
K∈τh

hK

(2N + 1) max
K∈τh

(
max
x∈K

∥λ∥∞ + 2max
x∈K

∥λv∥∞
2N+1
hK

) , (57)

where N represents the degree of the chosen polynomial representation, while

λ =

(
∥v∥2 −

√
γ
p

ρ
, ∥v∥2 , ∥v∥2 +

√
γ
p

ρ

)
are the convective eigenvalues of the Euler system, and the viscous eigenvalues λv are given in [37].
The characteristic mesh size of the cell hK is given by the square root of its surface in 2D. If not
stated differently, the local Lax-Friedrichs numerical flux function [78] is used in the corrector step
(39).

For more challenging tests, in which the density is close to zero, we will activate the DOOM
limiter checking for the positivity of the density and pressure in the quadrature points and that no
NaN appears in the solution. This limiter will be used only with the ADER-FV-u technique, which
provably guarantees the preservation of the positivity of these quantities.
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5.1 Numerical convergence studies

To test the accuracy of the method, we perform a convergence test on a smooth isentropic vortex [80]
for the compressible Euler equations. The computational domain is Ω = [0, 10]2 with periodic
boundary conditions, and it is tessellated by a polygonal mesh. The vortex is centered at the initial
time in xc = (xc, yc)

T = (5, 5)T and moves with a background speed of v∞ = (u∞, v∞)T = (1, 1)T .
The initial position of the vortex, in a generic point x = (x, y)T , can be described using the radial
coordinate r := ∥x− xc∥2 as

ρ(x, 0) = (1 + δT )
1

γ−1 ,

v(x, 0) = v∞ + ϵ
2π e

1−r2

2

(
−(y − yc)

(x− xc)

)
,

p(x, 0) = (1 + δT )
γ

γ−1 ,

δT = − (γ − 1)ϵ2

8γπ
e1−r2 , (58)

with T denoting the fluid temperature. The exact solution is obtained as u(x, t) = u(x− v∞t, 0).
We run the simulation until final time tf = 1 using the Osher-type numerical flux function [38].
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Figure 1: Comparison between ADER-DG-u and ADER-DG schemes from second up to fifth order
of accuracy. Left: dependency of the error norm on the mesh size. Right: dependency of the error
norm on the CPU time.

In Figure 1, we can observe on the left the errors of the ADER-DG and ADER-DG-u methods
for different mesh sizes. All the methods achieve the formal order of accuracy. As expected, the
ADER-DG-u has slightly larger errors with respect to the original ADER-DG method, as the first
iterations of the predictors are done with lower order accurate operators. Nevertheless, the final
error is quite comparable with the ADER-DG one and, looking at the right figure, we observe
that the computational time required by ADER-DG-u for such simulations is much less (for high
order methods it is around half) than the one required by the competitor. The slight increase in
error is hugely beaten by the computational advantage of the new ADER-DG-u schemes. Indeed,
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Table 2: Numerical convergence results for the compressible Euler equations using both ADER-
DG-u and ADER-DG schemes from second up to fifth order of accuracy in space and time. The
errors are measured in the L2 norm and refer to the variable ρ (density) at time tf = 1. The
absolute CPU time of each simulation is reported in seconds [s].

ADER-DG-u ADER-DG

h(Ω) ρL2 O(ρL2) CPU time ρL2 O(ρL2) CPU time

Order of accuracy: O(2)

2.270E-01 1.781E-02 - 2.511E+02 1.775E-02 - 3.616E+02

1.773E-01 9.625E-03 2.49 4.997E+02 9.322E-03 2.61 6.472E+02

1.155E-01 4.614E-03 1.71 1.509E+03 4.055E-03 1.94 2.039E+03

8.786E-02 2.723E-03 1.93 3.387E+03 2.262E-03 2.14 3.989E+03

Order of accuracy: O(3)

2.270E-01 1.719E-03 - 2.664E+03 1.704E-03 - 5.750E+03

1.773E-01 7.301E-04 3.46 5.346E+03 7.121E-04 3.53 1.065E+04

1.155E-01 2.247E-04 2.75 1.773E+04 2.095E-04 2.85 3.133E+04

8.786E-02 9.871E-05 3.01 3.010E+04 8.542E-05 3.29 6.020E+04

Order of accuracy: O(4)

2.270E-01 2.076E-04 - 1.547E+04 1.563E-04 - 3.868E+04

1.773E-01 7.803E-05 3.96 2.975E+04 5.195E-05 4.46 7.766E+04

1.155E-01 2.013E-05 3.16 9.427E+04 1.085E-05 3.65 2.354E+05

8.786E-02 7.139E-06 3.80 2.054E+05 3.332E-06 4.32 4.270E+05

Order of accuracy: O(5)

2.270E-01 2.238E-05 - 6.993E+04 1.475E-05 - 3.171E+05

1.773E-01 5.080E-06 6.00 1.393E+05 3.002E-06 6.44 6.390E+05

1.155E-01 7.405E-07 4.49 4.261E+05 4.180E-07 4.60 2.015E+06

8.786E-02 2.154E-07 4.52 7.691E+05 1.228E-07 4.48 3.516E+06

the Pareto front on the right figure is only composed by ADER-DG-u points. The results are
quantitatively reported in Table 2.

Finally, Figure 2 depicts the speedup achieved by the novel adaptive schemes compared against
the classical formulation of iterative methods, namely ADER-DG-u versus ADER-DG. As the
order of accuracy increases, the speedup becomes higher obtaining efficient schemes which are up
to ≈ 4.5 times faster than the classical methods. Let us notice that the formal order of accuracy is
still maintained, while getting a remarkable gain in the computational efficiency.

5.2 Riemann problems

In this section, we will show the results of the ADER-FV-u4 scheme, i.e., with M = 3, for some
Riemann problems. The computational domain is the box Ω = [−0.5, 0.5] × [−0.05, 0.05] with
periodic boundary conditions in y direction and Dirichlet boundaries imposed at x = ±0.5. We use
an unstructured polygonal mesh made of Nh = 2226 control volumes of characteristic mesh size of
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Figure 2: Speedup of the ADER-DG-u schemes compared to the ADER-DG methods depending
on the mesh size for different orders.
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Table 3: Initial conditions for Riemann problems

Test ρL uL pL ρR uR pR tf

1 0.445 0.698 3.528 0.5 0 0.571 0.14
2 1 2 0.1 1 -2 0.1 0.8
3 1 -2 0.4 1 2 0.4 0.15
4 1 0 1000 1 0 100 0.012

h ≈ 1/100. Despite the one-dimensional setting of the test case, we underline that the preservation
of symmetry of the solution is not trivial on unstructured meshes, where no cell boundaries are in
principle aligned with the main flow velocity. We solve again the Euler equations (52) with initial
conditions given, as a function of the x coordinate only, by

u(x, 0) =

{
uL, if x < 0,

uR, else,
(59)

where the values of uL and uR and the final times for the different tests are taken from [84] and
they can be found in Table 3. The velocity along the y-direction is set to be v = 0 for all the tests.

The DOOM limiter is here active checking for the positivity of density and pressure and avoiding
NaN. These tests are very challenging and not all the numerical methods can stably perform on
them. In particular, shocks are often not well captured or numerical oscillations appear around
them and it is common that negative density or pressure values appear in the simulations, making
the code crash.
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Figure 3: Lax shock tube problem (RP1) at final time tf = 0.14. Comparison of density, velocity
and pressure versus the reference solution for ADER-FV-u4 scheme.

The first test (RP1) is the classical Lax shock tube problem. The initial discontinuity develops
into a rarefaction wave, a contact discontinuity and a shock. In Figure 3, we observe that the
ADER-FV-u does not exhibit any oscillations around the shock and that exactly catches the speed
of the discontinuities.

The second test (RP2) consists of a colliding shock test. The initial discontinuity in the velocity
gives rise to two shocks traveling outside the domain. This test creates a very high density and

24



x

ρ

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
1

0

1

2

3

4

5

6

Reference solution

ADERFVu4

x

u

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
3

2

1

0

1

2

3

Reference solution

ADERFVu4

x

p

0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 0.3 0.4 0.5
1

0

1

2

3

4

5

6

Reference solution

ADERFVu4

Figure 4: Colliding shock test (RP2) at final time tf = 0.8. Comparison of density, velocity and
pressure versus the reference solution for ADER-FV-u4 scheme.

pressure region in the middle of the domain. As it can be seen in Figure 4, the new ADER-FV-
u with DOOM limiter is able to perfectly capture the shock behavior within few cells without
over/under-shootings at the sides of the shocks.
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Figure 5: Double rarefaction test (RP3) at final time tf = 0.15. Comparison of density, pressure
and internal energy versus the reference solution for ADER-FV-u4 scheme.

The next problem (RP3) is the one presented as Test 2 in [84, Section 4.3.3]. It is a double
rarefaction waves which leads to very low pressure and density areas at the center of the domain. In
Figure 5, we can appreciate the capability of the scheme of maintaining positive quantities for these
variables, thanks to the DOOM limiter which, at the beginning of the simulation, ensures positivity
preservation in the predictor. The mismatching of the internal energy distribution is essentially
due to the excessive numerical dissipation of the scheme, which could be reduced by introducing
entropy preserving techniques [62, 49, 25].

The last Riemann problem (RP4) is the one presented as Test 3 in [84, Section 4.3.3]. It is a
very severe test problem and it consists of a rarefaction, a contact discontinuity and a shock. The
results obtained in Figure 6 are in agreement with the reference solution and the smearing around
the contact discontinuity is comparable to other high order FV schemes with similar resolution.
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Figure 6: Test RP4 at final time tf = 0.012. Comparison of velocity and pressure versus the
reference solution for ADER-FV-u4 scheme.

5.3 Viscous shock profile

Now, we consider an isolated viscous shock that is traveling through a medium at rest with a
shock Mach number Ms > 1 [12, 19, 39, 23, 18], thus we solve the compressible Navier-Stokes
equations (53). The analytical solution and the details to compute it can be found in [12], where
the stationary shock wave at Prandtl number Pr = 0.75 is resolved with constant viscosity. The
computational domain is Ω = [0, 1]× [0, 0.2], which is discretized by Nh = 1120 Voronoi elements.
On the left side of the domain a constant inflow velocity is prescribed, while outflow boundary
conditions are assumed at the right of the domain. Periodic boundary conditions are, instead,
assigned to the top/bottom boundaries. The initial condition consists of a shock wave centered at
x = 0.25 propagating at Mach Ms = 2 from left to right with a Reynolds number Re = 100, thus
the viscosity coefficient is set to µ = 2 · 10−2. The upstream shock state is defined such that the
adiabatic sound speed is c0 = 1. The final time of the simulation is tf = 0.2 with the shock front
located at x = 0.65. We run the simulations with ADER-DG-u(4). Since the solution is smooth,
nothing is checked along the DOOM procedure. Qualitatively, we see in Figure 7 that there is
an excellent agreement between the numerical solution and the analytical one. We underline that
this test case allows all terms contained in the Navier-Stokes system to be properly checked, since
advection, thermal conduction and viscous stresses are present.

5.4 2D Taylor-Green vortex

A classical test case for the incompressible Navier–Stokes equations is the Taylor–Green vortex
problem. In two dimensions, the exact solution is known and it is given on the domain Ω = [0, 2π]2

with periodic boundary conditions by

u(x, t) = sin(x) cos(y)e−2νt,

v(x, t) = − cos(x) sin(y)e−2νt,

p(x, t) = C +
1

4
(cos(2x) cos(2y))e−4νt,

(60)
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Figure 7: Viscous shock profile with shock Mach number Ms = 2 and Prandtl number Pr = 0.75
at time tf = 0.2. Top panel: Voronoi tessellation and temperature distribution along the z−axis.
Fourth order numerical solution with ADER-DG-u scheme compared against the reference solution
for density, horizontal velocity, pressure and heat flux (from middle left to bottom right panel):
in particular, we show a one-dimensional cut of 200 equidistant points along the x−direction at
y = 0.1.
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with ν = µ
ρ the kinematic viscosity and µ = 10−2. In this test, we also validate the quality of the

scheme in a low Mach regime. Hence, the additive constant for the pressure is chosen as C = 100/γ
and the density is set at the beginning as ρ(x, 0) ≡ 1. For this test, heat conduction is neglected,
i.e., κ = 0. The mesh is discretized by Nh = 2916 cells and the final time is set at tf = 1. We use
the ADER-DG-u method with order 4 for this simulation without checks in the DOOM procedure.
The results are depicted in Figure 8, which are compared against the analytical solutions, obtaining
an excellent matching.
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Figure 8: 2D Taylor-Green vortex at time tf = 1 with viscosity µ = 10−2. Exact solution of
the Navier–Stokes equations and fourth order numerical solution with ADER-DG-u4 scheme. Top:
mesh configuration with pressure distribution (left) and z−vorticity with stream-traces (right).
Bottom: one-dimensional cut of 200 equidistant points along the x-axis and the y−axis for the
velocity components u and v (left) and for the pressure p (right).
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We also compare the numerical results with the ADER-DG scheme, and the errors are reported
in Table 4 as well as the computational time. We observe that the errors are almost the same for
both method, while the novel ADER-DG-u scheme is 2.5 times faster than the classical ADER-DG.

Table 4: Error analysis for the Taylor-Green vortex using both ADER-DG-u and ADER-DG
schemes with fourth order of accuracy in space and time. The errors are measured in L2 and
L∞ norms and refer to the variables ρ (density) and horizontal velocity u at the final time tf = 1.
The computational time measured in seconds is also reported.

Scheme
Density (ρ) Velocity (u) CPU time

L2 L∞ L2 L∞ [s]

ADER-DG-u4 8.950E-03 3.305E-03 1.604E-03 6.112E-04 1.154E+04

ADER-DG4 8.950E-03 3.305E-03 1.604E-03 6.112E-04 2.706E+04

5.5 Compressible mixing layer

Finally, we test the novel ADER-DG-u4 on the unsteady compressible mixing layer studied in [33].
The two-dimensional computational domain is the rectangular box Ω = [−200, 200] × [−50, 50],
and a total number of Nh = 15723 polygonal Voronoi cells compose the computational mesh. The
initial condition of the flow is given by two fluid layers moving with different velocities along the
x−direction, that is

ρ(x, 0) = ρ0 = 1,

v(x, 0) = v0 =

(
1
8 tanh(2y) +

3
8

0

)
, (61)

p(x, 0) = p0 =
1

γ
.

The free stream velocities are imposed as boundary conditions in the y−direction, thus we set
u+∞ = 0.5 and u−∞ = 0.25 for y → +∞ and y → −∞, respectively. Along the x−direction, at
the right side is simply assign an outflow boundary, whereas the left side is given a time-dependent
inflow boundary condition with a perturbation δ(y, t):

ρ(0, y, t) = ρ0 + 0.05 δ(y, t),

v(0, y, t) = v0 +

(
1.0
0.6

)
δ(y, t), (62)

p(0, y, t) = p0 + 0.2 δ(y, t).

The function δ(y, t) is given by

δ(y, t) = −10−3 exp(−0.25y2) ·[
cos(ωt) + cos

(
1

2
ωt− 0.028

)
+ cos

(
1

4
ωt+ 0.141

)
+ cos

(
1

8
ωt+ 0.391

)]
,

(63)
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with the fundamental frequency of the mixing layer ω = 0.3147876. The compressible Navier-
Stokes equations are considered with viscosity coefficient µ = 10−3 and no heat conduction (κ = 0).
The final time is tf = 1596.8 and the DG solution is depicted in Figure 9 at three different output
times. The vorticity of the flow field is shown, demonstrating the capability of the novel methods
to capture the complex vortical structures generated by the perturbation assigned at the inflow of
the channel.

6 Conclusions and further developments

To sum up, generalizing the idea proposed in [66], we have introduced a new framework for the
construction of efficient p-adaptive arbitrary high order methods, based on the modification of
underlying arbitrary high order iterative schemes. Specifically, the accuracy of the discretization is
progressively increased with the number of iterations, gaining one order of accuracy at each iteration.
Given an implementation of an iterative arbitrary high order method, the novel technique is easy
to include and it gives a remarkable advantage in terms of computational costs. Moreover, in this
context, p-adaptivity can be achieved very naturally inserting some criteria to stop the iterations.
We showed an application to ADER-DG, designing the new efficient ADER-PNPM -u methods.
In particular, in the ADER-FV-u context (N = 0), we have proposed DOOM, an a posteriori
limiter, that is able to preserve the physical properties of the solution (i.e. positivity of density
and pressure) obtaining the maximum admissible order of accuracy that guarantees these physical
constraints to be respected. In this framework, there is a huge advantage with respect to similar a
posteriori limiters, e.g. MOOD [31], as DOOM is waste–free, i.e., all the computations are useful
either for increasing the order of accuracy or for detecting a troubled state. In the numerical tests,
we have solved Euler and compressible Navier-Stokes equations very robustly, provably keeping the
positivity of density and pressure, and with computational costs up to 4 times smaller than the
original method.

We believe that the proposed framework is very versatile and can improve many arbitrary high
order methods on different sides: reducing the computational costs, easily providing p-adaptivity
in a very efficient and natural way without wasting computed solutions, and helping obtaining
structure preserving solutions. In the future, we would like to apply the novel framework to obtain:
adaptive methods that converge to the analytical solution up to a given tolerance, hp-adaptive
methods introducing local mesh refinements when the degree is low, schemes that preserve more
structures and, in particular, obtaining the same properties for ADER-PNPM with N > 0.
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A DG modal Taylor basis functions

The basis functions
{
ϑℓ(x, t)

}
ℓ=1,...,L

used to span the predictor polynomial spaces in this work are

modal Taylor basis functions. As already said, they are the tensor products of space basis functions
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Figure 9: Compressible mixing layer at time t = 500, t = 1000 and t = 1596.8 (from top to
bottom row). Fourth order numerical results with ADER-DG-u for z−vorticity. 51 contour levels
in the range [−0.12, 0.12] have been used for plotting the vorticity distribution on the sub-domain
[−200, 100]× [−20, 20].
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{φi(x)}i=1,...,I and time basis functions {ψm(t)}m=0,...,M .
The spatial basis functions {φi(x)}i=1,...,I of degree at most M in D dimensions are defined

locally for each element K. Denoting by xK the barycenter of the element, they can be defined as

φα(x) :=

D∏
d=1

(xd − xK,d)
αd

αd!h
αd

K

, 0 ≤ |α| ≤M, (64)

where hK = D
√

|K| is the characteristic mesh size of the element K, used to rescale the functions to

agree with the Taylor expansion terms, while α is a D-dimensional multi-index with |α| =
∑D

d=1 αd.

In practice, we identify the multi-index α as a single index i = 1, . . . , I with I =
(
M+D

D

)
via a

bijection giving i = i(α).
The time basis functions {ψm(t)}m=0,...,M of degree at most M are defined in a similar fashion,

but with respect to a scalar argument only, over [tn, tn+1]

ψm(t) :=
(t− tn)

m

m!∆tm
, 0 ≤ m ≤M. (65)

Finally, the tensor product between the two functional spaces, {φi(x)ψ
m(t)} i=1,...,I

m=0,...,M
, gives the

space-time basis functions {ϑℓ(x, t)}ℓ=1,...,L with L =
(
M+D+1

D+1

)
, where another bijection ℓ = ℓ(i,m)

has been considered.

Remark 9 (On the ordering of the space-time basis functions). The novel approach is based on the
adoption of iteration-specific bases {ϑℓ,(p)(x, t)}ℓ=1,...,L(p) resulting from the tensor product between

space basis functions φ
(p)
i (x) and time basis functions ψm,(p)(t) of degree p. For modal bases, the

introduction of higher order modes is simply performed by considering higher order terms in the
space-time polynomial expansion. Therefore, in the context of an efficient implementation of the new
methods, it is particularly useful to directly define all the basis functions {ϑℓ,(M)(x, t)}ℓ=1,...,L(M) ,
up to an accuracy order M + 1, ordering them in increasing polynomial order. By doing so, it
is enough to change the final index from L(p−1) to L(p) to pass from X(p−1) to X(p) in all the
iterations but the last one, which is performed without changing polynomial space to saturate the
related accuracy.
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distribution schemes for the compressible euler equations via dissipative weak solutions. arXiv
preprint arXiv:2207.11969, 2022.
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coustics. Comptes Rendus Mécanique, 333(9):683–687, 2005.

[42] Michael Dumbser and Olindo Zanotti. Very high order PNPM schemes on unstructured meshes
for the resistive relativistic MHD equations. Journal of Computational Physics, 228(18):6991–
7006, 2009.

[43] Alok Dutt, Leslie Greengard, and Vladimir Rokhlin. Spectral deferred correction methods for
ordinary differential equations. BIT, 40(2):241–266, 2000.
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