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Abstract

The Deferred Correction is an iterative procedure used to design numerical methods for sys-
tems of ODEs, characterized by an increasing accuracy at each iteration. The main advantage
of this framework is the automatic way of getting arbitrarily high order methods, which can
be put in Runge-Kutta form, based on the definition of subtimenodes in each timestep. The
drawback is a larger computational cost with respect to the most used Runge-Kutta methods.
To reduce such cost, in an explicit setting, we propose an efficient modification: we remove the
unnecessary subtimenodes in all the iterations, introducing interpolation processes between
them. We provide the Butcher tableaux of the novel methods and we study their stability,
showing that in some cases the computational advantage does not affect the stability. The
flexibility of the novel modification allows nontrivial applications to PDEs and construction of
adaptive methods. The good performances of the introduced methods are broadly tested on
several benchmarks both in the ODE and PDE settings.

1 Introduction

A huge amount of phenomena in many different fields, e.g. engineering, physics, chemistry, biology
or social sciences, can be modeled through ordinary and partial differential equations (ODEs and
PDEs) whose analytical solution is usually not available. Hence, many numerical methods have
been developed to approximate such solutions in a very accurate way. With modern computers
and technologies the speed of the simulations has dramatically dropped, but this is still not enough
for very complicate problems, for which computational costs are also nowadays too expensive.
That is why any effort in reducing the computational costs for numerical methods is of paramount
importance.

A classical way of reducing them is the adoption of high order methods. Such methods allow
to reach lower errors within way coarser discretizations. Moreover, in the context of PDEs, they
allow to introduce less diffusion and to quickly catch complicated structures that low order methods
struggle in capturing. For ODEs there is a vast collection of high order methods, e.g. Runge-Kutta
(RK) methods [12, 31], multistep methods [31] and predictor-corrector methods [28]. Also for
PDEs several techniques have been proposed to obtain high order accuracy either by separating
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the spatial and time discretizations via the method of lines, e.g. finite element methods (FEM)
[22, 34, 17], finite volume (FV) [42, 23, 61, 29], finite difference (FD) [41, 29] and spectral methods
[30], or through more involved space-time methods, e.g. ADER-DG [7, 27, 10], Deferred Correction-
Residual Distribution methods [5, 2, 4], space-time parallel solvers [57].

A wide series of arbitrarily high order methods is based on the Deferred Correction (DeC)
approach. The original method has been firstly introduced in [24] in a simple prediction-correction
time integrator framework. A more elegant explicit version based on spectral elements in time
was introduced in 2000 [21], characterized by an iterative procedure allowing to increase the order
of accuracy by one at each iteration. In 2003 [47], Minion generalized the DeC framework to
obtain an implicit-explicit arbitrarily high order method, with various applications to ODEs and
PDEs [48, 40, 35, 46, 58]. Later on, the DeC approach has been generalized by Abgrall [5] to
solve hyperbolic PDEs with high order continuous Galerkin (CG) FEM spatial discretizations,
overcoming the burden related to the mass matrix which is typical in this context. This allowed
to build arbitrarily high order FEM for hyperbolic PDEs with computational costs comparable to
the FV or DG methods, leading to numerous applications in the hyperbolic field [2, 4, 45, 16]. The
DeC has been also modified in order to preserve physical structures (positivity, entropy) [49, 3].
Finally, in [32] it has been pointed out that DeC and ADER methods are very similar iterative time
integrators and, when restricted to ODEs, they can be written as RK schemes, see also [37, 60].

The clear advantage of the DeC framework is the possibility to easily increase the order of
accuracy, the drawback is the expensive computational cost, due to the iterations and the high
order reconstruction for each time-step. Both of them scale as the aimed order of accuracy and
this makes the computational costs increase quadratically in the order. To alleviate the cost, the
ladder strategy was proposed in implicit DeC algorithms [47, 40, 58], where the reconstruction in
time increases the accuracy at each iteration. Between the iterations, an interpolation procedure
links the different reconstructions. Though being the idea used in some works, it has never been
deeply studied and analyzed, in particular, for the purely explicit DeC.

Inspired by this idea, in this work, we provide a detailed description of two novel explicit families
of efficient DeC methods, where the interpolation process is applied either on the state solutions or
on their evolution operators. These DeC methods can be interpreted as RK methods by explicitly
constructing their Butcher tableaux and studying their stability, we show that in some cases the
efficient version and the classical one have the same stability functions. Moreover, we exploit the
novel framework to build an adaptive DeC that, given a certain tolerance, automatically chooses
the order of accuracy to reach such error in the most efficient way. We also see how this framework
can be applied to the CG DeC framework [5] in the context of hyperbolic PDEs with different ways
to avoid the costs induced by the mass matrix in the timestepping.

The structure of this work is the following. We start by introducing the DeC method in an
abstract framework in section 2 and as a general strategy to numerically solve systems of ordinary
differential equations in section 3. In section 4, we introduce the new families of efficient DeC
methods. Then, we show their Butcher tableaux in section 5 and in section 6 we study in detail their
linear stability. In section 7, we describe the application to the numerical solution of hyperbolic
problems with CG spatial discretizations avoiding mass matrices. We propose an adaptive and
efficient version of the DeC that automatically selects the order of accuracy in section 8. In section
9, we present numerical results on ODEs and hyperbolic PDEs with various comparisons with the
classical DeC methods. Section 10 is dedicated to the conclusions.
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2 DeC in the abstract framework

The DeC has been originally introduced in 1949 in [24], afterward studied in different works [52,
25, 26, 59, 56] and then proposed again by Dutt et al. in 2000 in [21] in a spectral version as an
iterative procedure to numerically solve systems of ordinary differential equations with arbitrary
high order accuracy. Many modifications have been proposed in the following years to apply it to
different fields [38, 47, 11, 48, 35, 14, 15, 33, 58, 8, 5, 9, 2, 4, 49, 16, 32, 3].

We will first introduce it in an abstract context as proposed in [5]. Assume that we have two
general operators depending on a parameter ∆ between two normed vector spaces (X, ∥·∥X) and
(Y, ∥·∥Y )

L1
∆,L2

∆ : X −→ Y. (1)

Remark 2.1. Even if we are still in an abstract context and not in the specific case of an evolution
problem (like for example an ordinary differential equation) it is useful, in order to make the concepts
clearer, to give an idea of the objects we are working with. Imagine that we want to numerically
solve a Cauchy problem for a system of ODEs, then L2

∆ is a high order implicit operator and L1
∆ is

an explicit low order operato, for example obtained by using an explicit Euler approximation. We
would like to solve L2

∆ i.e. finding u ∈ X such that L2
∆(u) = 0Y but this is not so easy given the

implicit nature of the operator. On the other hand the explicit operator L1
∆ is very easy to solve

(more in general it is easy to solve L1
∆(u) = r with r ∈ Y given) but it is a low order operator. In

such context the parameter ∆ is the step size, while it represents the characteristic mesh size in the
application to hyperbolic systems of balance laws.

In the next theorem we will provide a recipe to get an arbitrary high order approximation of
the solution of L2

∆ in an explicit way by combining the operators L1
∆ and L2

∆ through an iterative
procedure.

Theorem 2.1 (DeC accuracy). Let the following hypotheses hold

1. Existence of a unique solution to L2
∆

∃!u∆ ∈ X solution of L2
∆ such that L2

∆(u∆) = 0Y ;

2. Coercivity-like property of L1
∆

∃α1 ≥ 0 independent of ∆ s.t.∥∥L1
∆(v)− L1

∆(w)
∥∥
Y
≥ α1 ∥v −w∥X , ∀v,w ∈ X; (2)

3. Lipschitz-continuity-like property of L1
∆ − L2

∆

∃α2 ≥ 0 independent of ∆ s.t.∥∥(L1
∆(v)−L2

∆(v)
)
−
(
L1
∆(w)−L2

∆(w)
)∥∥

Y
≤α2∆∥v −w∥X , ∀v,w ∈ X. (3)

Then, if we iteratively define u(p) as the solution of

L1
∆(u

(p)) = L1
∆(u

(p−1))− L2
∆(u

(p−1)), p = 1, . . . , P, (4)

we have that ∥∥∥u(P ) − u∆

∥∥∥
X

≤
(
∆
α2

α1

)P ∥∥∥u(0) − u∆

∥∥∥
X
. (5)
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Proof. By using the coercivity-like property of L1
∆ and the definition of L1

∆(u
(p)) given in (4) we

have ∥∥∥u(P ) − u∆

∥∥∥
X

≤ 1

α1

∥∥∥L1
∆(u

(P ))− L1
∆(u∆)

∥∥∥
Y

(6)

=
1

α1

∥∥∥L1
∆(u

(P−1))− L2
∆(u

(P−1))− L1
∆(u∆)

∥∥∥
Y
. (7)

Since u∆ is the solution of L2
∆ we have that L2

∆(u∆) = 0Y and we can add it inside the norm in
(7) and get∥∥∥u(P ) − u∆

∥∥∥
X

≤ 1

α1

∥∥∥[L1
∆(u

(P−1))− L2
∆(u

(P−1))
]
−
[
L1
∆(u∆)− L2

∆(u∆)
]∥∥∥

Y
. (8)

Now, by applying the Lipschitz-continuity-like property we get∥∥∥u(P ) − u∆

∥∥∥
X

≤ ∆
α2

α1

∥∥∥u(P−1) − u∆

∥∥∥
X
. (9)

By repeating these calculations recursively we get the thesis.

Let us remark that, due to the explicit nature of the operator L1
∆, the updating formula (4)

represents a simple explicit recipe to approximate arbitrarily well the solution u∆ of L2
∆. The

convergence for P → +∞ is ensured independently of the starting vector u(0) provided that ∆α2

α1
<

1.

Remark 2.2. If the solution u∆ of L2
∆ is an R-order approximation of the exact solution uex of a

more general problem then an R-order approximation ũ of u∆ is an R-order approximation of the
exact solution uex as well. Applying the triangular inequality leads to

∥ũ− uex∥X ≤ ∥ũ− u∆∥X + ∥u∆ − uex∥X ≤ O(∆R+1). (10)

Thus, in the optimal case, the number of iterations to perform in the context of the DeC must be the
minimal amount which allows to match the accuracy of the solution of the operator L2

∆ with respect
to the exact solution of the original problem, any extra iterations in approximating u∆ would be
formally useless. We will be more precise about the accuracy and the number of iterations needed
to reach the highest possible accuracy later in the applications.

Now that we have introduced and proved the DeC in a general framework, the only thing that
is left to do to apply it in a more specific context is to characterize the operators (L1

∆ and L2
∆) and

the normed spaces (X and Y ) and verify that the three hypotheses are satisfied.

3 The DeC for systems of ODEs

In this section we will focus on the explicit DeC methods for systems of ordinary differential equa-
tions (ODEs). In particular we will focus on the general Cauchy problem{

d
dtu(t) = G(t,u(t)), t ∈ [0, T ],

u(0) = z,
(11)
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with u : R+
0 → RQ, z ∈ RQ and G : R+

0 × RQ → RQ a continuous map Lipschitz continuous with
respect to u uniformly with respect to t with a Lipschitz constant L. This ensures the existence of
a unique solution for the system of ODEs (11). Up to a simple translation, the initial time can be
set at t = 0 without loss of generality.

We will present two DeC methods for the numerical solution of the problem (11)

• bDeC, which was introduced originally in [43] in a more general family of schemes, but fully
exploited for its simplicity only starting from [5] in the context of Galerkin solvers for hyper-
bolic PDEs without mass matrix.

• sDeC, which has a longer history [21] and more developments [47, 39, 35, 58] and it can
actually be interpreted as a high order modification of the previous method as we will see.

Then, we will consider a general family of DeC methods, αDeC, depending on one parameter α,
which contains both the previously described formulations as particular cases as described in [43].
Finally, we will present a compact matrix-formulation of such methods that will be quite useful in
the following sections to recast them as RK methods and to construct the related Butcher tableaux.

Remark 3.1. The names bDeC and sDeC come from the fact that in both cases the definition of
the methods is based on the integration of the initial ODE over some intervals which are ”bigger”
in the context of bDeC and ”smaller” in the context of sDeC.

We will assume a classical one-step method setting: we discretize the time domain [0, T ] by
introducing N + 1 time nodes tn, which are such that 0 = t0 < t1 < · · · < tN = T and therefore
inducing N intervals [tn, tn+1], we denote by un an approximation of the exact solution u(tn) at
the time tn and we look for a recipe to compute un+1 by knowing un for each n = 0, 1, . . . , N − 1.

We will focus on the generic time interval [tn, tn+1] with ∆t = tn+1 − tn and, as in the context
of a general consistency analysis, we will assume un = u(tn).

In this context, the parameter ∆ of the DeC is the step size ∆t.

3.1 bDeC

In the generic time step [tn, tn + ∆t], we introduce M + 1 subtimenodes t0, . . . , tM such that
tn = t0 < t1 < · · · < tM = tn + ∆t. In literature, there are different choice of subtimenodes tm,
but for the following discussion we will consider equispaced nodes. In the numerical tests, we will
also present results obtained with Gauss–Lobatto nodes [50, 32, 21], which can obtain high order
accuracy with less subtimenodes.

We will refer to u(tm) as the exact solution in the node tm and to um as the approximation of
the solution in the same node. Just for the first node we set u0 := un and, in the accuracy study,
we will consider it to be exact, i.e., u0 = u(t0) = u(tn) = un.

The bDeC method is based on the integral version of the ODE (11) in each interval [t0, tm],
which reads

u(tm)− u0 −
∫ tm

t0
G(t,u(t))dt = 0, m = 1, . . . ,M (12)

and, starting from this formulation, defines two discrete operators.
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3.1.1 Definition of L2
∆

The definition of the L2
∆ operator is based on a high order discretization of (12). We obtain it

by approximating the function G in (12) with a high order interpolation through the Lagrange
polynomials ψℓ of degree M associated to the M + 1 subtimenodes

um − u0 −∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ) = 0, ∀m = 1, . . . ,M. (13)

The normalized coefficients θmℓ are given by

θmℓ :=
1

∆t

∫ tm

t0
ψℓ(t)dt =

∫ tm−t0

∆t

0

ψℓ
(
t0 +∆ts

)
ds (14)

and do not depend on ∆t but only on the number and distribution of the subtimenodes. By
collecting all the components (13) related to all the subtimenodes but the first one in which the
solution is known we can define the operator L2

∆ : R(M×Q) → R(M×Q) as

L2
∆(u) =



u1 − u0 −∆t
∑M

ℓ=0 θ
1
ℓG(tℓ,uℓ)

...

um − u0 −∆t
∑M

ℓ=0 θ
m
ℓ G(tℓ,uℓ)

...

uM − u0 −∆t
∑M

ℓ=0 θ
M
ℓ G(tℓ,uℓ)


, with u =



u1

...
um

...
uM

 . (15)

Let us remark that L2
∆ is defined on M components um ∈ RQ while u0 is an intrinsic datum of the

operator. This leads to the definition of the spaces X = Y := RM×Q of section 2. The L2
∆ operator

is a high order accurate discretization of the left hand side of (12) and what is interesting for us is
that the solution of the equation L2

∆(u∆) = 0 is a high order accurate discretization of the exact
solution. For equispaced subtimenodes we can state the following result.

Proposition 3.1. Let um be the m-th component of the solution of (15). Then, um is an (M+1)-
order accurate approximation of u(tm).

The proof is based on a fixed-point argument and can be found in the supplementary material.
It is worth noting that L2

∆(u∆) = 0 coincides with an implicit RK method with M stages, e.g.
when choosing Gauss–Lobatto points one obtains the LobattoIIIA methods.

3.1.2 Definition of L1
∆

The auxiliary operator that we introduce in this section is a first order explicit discretization of
(12) and it will serve to approximate the solution of L2

∆ = 0. If we apply the Euler method to
approximate (12) we have

um − u0 −∆tβmG(t0,u0) = 0, (16)

where βm = tm−t0

∆t . Let us remark, that also in this case βm are determined only by the distribution
of the subtimenodes but are independent of ∆t. The Euler method is well known to provide a first
order approximation of the exact solution.
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uM,(0) uM,(1) uM,(2) uM,(p) uM,(P )

u2,(0) u2,(1) u2,(2) u2,(p) u2,(P )

u1,(0) u1,(1) u1,(2) u1,(p) u1,(P )

u0,(0) u0,(1) u0,(2) u0,(p) u0,(P )

tn + ∆t = tM

tn = t0

t2

t1

Iteration 0 1 2 p P

Order O(∆t1) O(∆t2) O(∆t3) O(∆tp+1) O(∆tmin(P+1,M+2))

Figure 1: Sketch of the DeC iterative process for equispaced subtimenodes

Proposition 3.2. Let um be the solution of (16), then um is first order accurate, i.e., u(tm)−um =
O(∆t2).

Directly from (16) we get our explicit, low order operator L1
∆ : R(M×Q) → R(M×Q) defined as

L1
∆(u) =



u1 − u0 −∆tβ1G(t0,u0)
...

um − u0 −∆tβmG(t0,u0)
...

uM − u0 −∆tβMG(t0,u0)

 with u =



u1

...
um

...
uM

 . (17)

So, the operator L1
∆ is first order accurate and the system L1

∆(u) = r is easy to solve and explicit
for every given datum r ∈ RM×Q.

3.1.3 Updating formula

The operators L1
∆ and L2

∆ fulfill the hypotheses required to apply the DeC, the proofs can be
found in the supplementary material. Now, let us characterize the update formula (4) in the bDeC
context:

L1
∆(u

(p)) = L1
∆(u

(p−1))− L2
∆(u

(p−1)), p = 1, . . . , P, (18)

where u(p) ∈ R(M×Q) and u(p) denotes the p-th iteration approximation at all the subtimenodes.
The approximation at the subtimenode tm will be denoted as um,(p) ∈ RQ. We define the starting
vector u(0) for our iteration process as the solution at the beginning of the timestep, i.e., um,(0) :=
un for all m = 0, . . . ,M . Moreover, as one can also observe in figure 1, we introduce also the values
u0,(p) = un for all p that will be useful to write a general formula. Finally, we set the value of the
next timestep as un+1 := uM,(P ).

Now, in (18) only u(p) is unknown, hence, it can be solved explicitly, as L1
∆ is an explicit

operator, iteratively for p. The iterative formula (18) can be characterized for the generic p-th

7



iteration and the m-th subtimenodes as

um,(p) − u0−∆tβmG(t0,u0) = um,(p−1) − u0 −∆tβmG(t0,u0)

−

(
um,(p−1) − u0 −∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ,(p−1))

)
,

(19)

which simplifies to

um,(p) = u0 +∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ,(p−1)). (20)

A graphical sketch of the updating process is shown in figure 1. In the following, we provide the
minimal number of iterations P one needs to perform to obtain the optimal order of accuracy.

As already anticipated in remark 2.2, the DeC converges to the solution of L2
∆ = 0 at each

subtimenode tm and not directly to the ODE solution. Considering the solution of L2
∆ = 0 to be

an (M + 1)-th order accurate approximation of the exact solution, it suffice to do a number of
iterations P that matches this accuracy.

Proposition 3.3 (Optimal number of iterations). Let u∆ be the solution of L2
∆ = 0 and uex be

the exact solution at all subtimenodes. Then, the accuracy of u(P ) given by (18), with respect to
uex, is min {P,M + 1}.

Proof. As seen in (10), we can apply the triangular inequality to the error of u(P ) to obtain∥∥∥u(P ) − uex
∥∥∥
∞

≤
∥∥∥u(P ) − u∆

∥∥∥
∞

+ ∥u∆ − uex∥∞ (21)

Since the operator L2
∆ is (M + 1)-order accurate we have that ∥u∆ − uex∥∞ = O(∆tM+2). From

(5) we know that ∥∥∥u(P ) − u∆

∥∥∥
∞

= C∆tP
∥∥∥u(0) − u∆

∥∥∥
∞
, (22)

but
∥∥u(0) − u∆

∥∥
∞ = O(∆t), since u∆ is a consistent approximation of u(tm) and tm − t0 ≤ ∆t,

hence, ∥∥∥u(P ) − u∆

∥∥∥
∞

= C∆tP
∥∥∥u(0) − u∆

∥∥∥
∞

= O(∆tP+1). (23)

Thus, we can write ∥∥∥u(P ) − uex
∥∥∥
∞

≤ O(∆tM+2) +O(∆tP+1), (24)

which is the thesis.

From this proposition a simple recipe follows on the choice of P , i.e., P =M + 1. Further iter-
ations would not increase the order of accuracy of the method, though they might slightly improve
the accuracy. We remark that this criterion is valid for equispaced distributed subtimenodes, while
for other distributions less subtimenodes might be needed, e.g. M Gauss–Lobatto nodes lead to
an order of 2M of the L2

∆ operator and, hence, to the optimal choice of P = 2M . On the other
hand, if we fix the order to be P , the most efficient way to achieve it is to take M = P − 1 if we
use equispaced subtimenodes or M =

⌈
P
2

⌉
if we use Gauss–Lobatto subtimenodes and perform P

iterations.
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3.2 sDeC

The definition of the operators for this DeC method will be similar to the one seen in the context of
the bDeC method but we will consider the integration of the original system of ODEs over intervals
which are “smaller”. Strictly speaking, it is not possible to put this formulation into the described
framework by proving the properties of the operators, nevertheless it is possible to show that this
new DeC formulation is actually a perturbation of the previous one providing the same order of
accuracy. The proof of this fact can be found in the supplementary material.

3.2.1 Definition of L2
∆

We consider the usual M + 1 nodes tm with m = 0, 1, . . . ,M in the interval [tn, tn + ∆t] and we
assume the same definition of um and u(tm) as in the previous section. By repeating the same
steps seen in the previous section but focusing on the integration of the system of ODEs over the
“smaller” intervals [tm−1, tm] we get

um − um−1 −∆t

M∑
ℓ=0

δmℓ G(tℓ,uℓ) = 0, ∀m = 1, . . . ,M, (25)

where ∫ tm

tm−1

ψℓ(t)dt = ∆t

∫ tm−t0

∆t

tm−1−t0

∆t

ψℓ
(
∆ts+ t0

)
ds = ∆tδmℓ (26)

with normalized coefficients δmℓ , depending just on the number and on the distribution of the nodes
tm but not on ∆t, defined as

δmℓ :=

∫ tm−t0

∆t

tm−1−t0

∆t

ψℓ
(
∆ts+ t0

)
ds. (27)

Our implicit, (M + 1)-order accurate operator L2
∆ : R(M×Q) → R(M×Q) is therefore defined as

L2
∆(u) =



u1 − u0 −∆t
∑M

ℓ=0 δ
1
ℓG(tℓ,uℓ)

...

um − um−1 −∆t
∑M

ℓ=0 δ
m
ℓ G(tℓ,uℓ)

...

uM − uM−1 −∆t
∑M

ℓ=0 δ
M
ℓ G(tℓ,uℓ)


, with u =



u1

...
um

...
uM

 . (28)

3.2.2 Definition of L1
∆

If we apply the explicit Euler method in the subinterval [tm−1, tm] we get

um − um−1 −∆tγmG(tm−1,um−1) = 0, (29)
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where γm = tm−tm−1

∆t are normalized coefficients. The explicit, first-order order operator L1
∆ :

R(M×Q) → R(M×Q) is defined as

L1
∆(u) =



u1 − u0 −∆tγ1G(t0,u0)
...

um − um−1 −∆tγmG(tm−1,um−1)
...

uM − uM−1∆tγMG(tM−1,uM−1)

 , with u =



u1

...
um

...
uM

 . (30)

Let us make some useful remarks.

Remark 3.2. The operator L1
∆ is explicit and easy to solve but just first-order accurate. Differently

from the analogous operator of the previous formulation, in this case we cannot solve the operator
L1
∆ in all its components at the same time but we have to do it component by component from u1 to

uM . The problem L1
∆(u) = 0 must be solved by firstly determining u1 from the related component

associated to the subtimenode m = 1, then we proceed computing u2 and we continue iteratively
until the last component. In the same fashion it is possible to explicitly solve the general problem
L1
∆(u) = r for a fixed r ∈ R(M×Q). At each iteration of the DeC method associated to this second

formulation we will have to solve recursively such problem in order to compute u(p).

3.2.3 Updating formula

Let us characterize the updating formula to this context. Again, we recall it for the sake of clarity

L1
∆(u

(p)) = L1
∆(u

(p−1))− L2
∆(u

(p−1)), p = 1, . . . , P, (31)

where we adopt the usual notation for u(p), unknown involved in the p-th iteration, made byM com-
ponents um,(p) corresponding to the approximations of the solution in the different subtimenodes
tm m = 1, . . . ,M .

Also in this case, the explicit character of the operator L1
∆ leads to an explicit recipe for the

computation of u(p) whose components, in this case, must be computed iteratively one by one
from u1,(p) to uM,(p) as already anticipated in remark 3.2. Actually, one can easily check that the
updating formula (31) is in the form L1

∆(u
(p)) = r with r ∈ R(M×Q) fixed and we already explained

how to solve this problem.
We will try now to characterize better the updating formula (31). The computation of generic

m-th component of u(p) in p-th iteration, in particular, reads

um,(p) − um−1,(p) −∆tγmG(tm−1,um−1,(p))

=um,(p−1) − um−1,(p−1) −∆tγmG(tm−1,um−1,(p−1))

−um,(p−1) − um−1,(p−1) −∆t

M∑
ℓ=0

δmℓ G(tℓ,uℓ,(p−1)),

(32)

from which we get

um,(p) = um−1,(p) +∆tγm
(
G(tm−1,um−1,(p))−G(tm−1,um−1,(p−1))

)
+∆t

M∑
ℓ=0

δmℓ G(tℓ,uℓ,(p−1)).
(33)
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By direct computation, recursively explicitly writing um−k,(p) until k = m − 1 in the previous
formula and recalling the fact that u0,(p) = u0, we get

um,(p) = u0 +∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,uℓ,(p))−G(tℓ,uℓ,(p−1))

)
+∆t

m∑
r=1

M∑
ℓ=0

δrℓG(tℓ,uℓ,(p−1)).

(34)

Now, let us focus on the last term of (34). Exchanging the sums over r and ℓ and observing that,
thanks to the definitions of the coefficients δrℓ and of the coefficients θmℓ , we have

∆t

m∑
r=1

δrℓ =

m∑
r=1

∫ tr

tr−1

ψℓ(t)dt =

∫ tm

t0
ψℓ(t)dt = ∆tθmℓ . (35)

So, we can rewrite (34) as

um,(p) = u0+∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,uℓ,(p))−G(tℓ,uℓ,(p−1))

)
+∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ,(p−1)),

(36)

which allows to explicitly compute all the components um,(p) in sequence from m = 1 to m = M.
Note that all the components uℓ,(p) with ℓ = 0, . . . ,m− 1 are actually used in the computation of
um,(p), this is why the components must be computed serially on m (in opposition to the bDeC
where a parallel strategy is usable). Let us remark also that u0,(p) = u0 = un is known. For
what concerns the starting vector u(0), the (M + 1)-th order of accuracy and the optimal number
of iterations P = M + 1 in the equispaced setting, the 2M -th order of accuracy and the optimal
number of iterations P = 2M in the Gauss–Lobatto setting, we can refer to what already said in
the context of the bDeC formulation.

3.3 A general family of DeC methods, αDeC

We can easily construct a family of schemes dependent on a single parameter α by combining
the two presented formulations. In particular we consider a convex combination of the updating
formulas (20) and (36) through the parameter α ∈ [0, 1] which gives

um,(p) = u0 +∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ,(p−1))

+ α

[
∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,uℓ,(p))−G(tℓ,uℓ,(p−1))

)]
.

(37)

Through (37), it is possible to explicitly compute iteration by iteration the different components
um,(p) starting from m = 1 until M . Of course when α = 0 we retrieve the first formulation, when
α = 1 we get, instead, the second one. Thanks to considerations analogous to the ones which hold
for the sDeC, it is also possible to interpret (37) as a weighted perturbation through the coefficient
α of the bDeC.
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3.3.1 Matrix formulation

We will now introduce a compact matrix-formulation of the presented methods. Before doing it, we
specify here a general guideline concerning the notation that will be very useful and broadly used
in the following. It is clear at this point that we have approximations of u(t) in certain time-nodes
tℓ in the interval [tn, tn+∆t]. These approximations have been often collected in vectors, like u(p),
containing as components the quantities related to all the time-nodes but the initial one because
as remarked several times the quantity u0 associated to the initial time is known. For practical
reasons, we will now introduce the vectors containing as components the quantities related to all
the time-nodes including the initial one. In order to avoid confusion, we will always refer to the
vectors not containing the component associated to the initial subtimenode with the small letter
and to the vectors containing it with the capital letter

u(p) =



u1,(p)

...
um,(p)

...
uM,(p)

 , U (p) =

(
u0

u(p)

)
. (38)

In order to light the notation we commit a little abuse of notation definining

G(u(p)) =



G(t1,u1,(p))
...

G(tm,um,(p))
...

G(tM ,uM,(p))

 , G(U (p)) =

(
G(t0,u0)
G(u(p))

)
(39)

i.e., when G is applied to the vectors u(p) and U (p), it is meant to be applied component-wise with
the values tℓ chosen accordingly with uℓ,(p). With the previous definitions it is possible to recast
the general updating formula (37) in the following compact form

U (p) = U (0) +∆tΘG(U (p−1)) + ∆tαΓ(G(U (p))−G(U (p−1)))

= U (0) +∆t(Θ− αΓ)G(U (p−1)) + ∆tαΓG(U (p)),
(40)

where the vector U (0) ∈ R((M+1)×Q) and the matrices Θ,Γ ∈ R(M+1)×(M+1) are defined as

U (0) =


un

un

...
un

 , Θ =


0 0 . . . 0
θ10 θ11 . . . θ1M
θ20 θ21 . . . θ2M
...

...
. . .

...
θM0 θM1 . . . θMM

 , Γ =



0 0 . . . 0 0
γ1 0 . . . 0 0

γ1 γ2
. . . 0 0

...
...

. . .
...

...
γ1 γ2 . . . γM 0

 , (41)

with the matrix Γ being strictly lower-triangular as a consequence of the fact that the resulting
scheme is fully explicit. Let us observe that the first component u0 of U (p) is never updated. This
is coherent with what we have said so far.

Remark 3.3. The matrices Θ and Γ that we have defined are referred to a scalar ODE (Q = 1).
In case we want to adapt them to a vectorial problem we have to block-expand them.
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4 Two novel families of novel DeC methods

In this section, we will show how to construct two new families of efficient DeC methods by intro-
ducing a modification in the αDeC methods. We will first assume equispaced subtimenodes and
we will extend it to Gauss–Lobatto subtimenodes. The modification is based on the following ob-
servation: in the context of a standard DeC method, at any iteration p < M + 1, we get a solution
u(p) which is p-th order accurate using M +1 subtimenodes even though only p would be formally
sufficient to provide such accuracy. In other words, the number of subtimenodes is fixed a priori
for all iterations in order to get the desired order of accuracy. These subtimenodes are always used
although the formal order of accuracy, for which such nodes are required, is reached only in the
final iteration. This represents indeed a huge waste of computational resources.

The modification consists in starting with only two subtimenodes and increasing their number,
iteration by iteration, so to match the order of accuracy of the specific iteration. In particular,
we introduce an intermediate interpolation process between the iterations in order to retrieve the
needed quantities in the new subtimenodes.

The idea has been introduced in [47] for implicit methods, but without a systematic theory and
related analytical study. We will present here two possible interpolation strategies which will lead
to the definition of two general families of efficient DeC methods. In the next sections, we will show
how they can be reinterpreted as RK methods by explicitly constructing their Butcher tableaux
and we will investigate their linear stability.

We remind here some general guidelines concerning the notation: we adopt the convention
introduced in section 3.3.1 for the definition of the matrix formulation of the original methods.
Therefore, we use the capital letter to refer to the vectors containing the component of the initial
subtimenode, i.e., U (p), and with the small letter to the ones not containing it, i.e., u(p), and when
G is applied to vectors it is meant to be applied component-wise. In addition, we will use the
asterisk to refer to the vectors got through the interpolation process. The number of subtimenodes

will change iteration by iteration and it is useful to define the vector t(p) :=
(
t0,(p), . . . , tp,(p)

)T
of

the subtimenodes in which we have the approximations of the solution at the p-th iteration, with
t0,(p) = tn and tp,(p) = tn+1, and the vector t∗(p) := t(p+1) of the interpolation subtimenodes at the
iteration p+ 1. Their role will be explained in the following.

4.1 αDeCu

The αDeCu methods are obtained from the αDeC methods by introducing an intermediate inter-
polation process between the iterations. In particular, the interpolated quantity in this case is
the solution u(t). We will describe here the method and characterize the updating formulas. For

convenience, we will formulate the methods in terms of the vectors U (p) containing the component
u0 = un associated to the initial subtimenode. It must be clear at this point that such component
is fixed and that, in the updating, the operators L1

∆ and L2
∆ act on the vectors u(p).

4.1.1 Method

We start with two subtimenodes associated to tn and tn+∆t and so U (0) ∈ R(2×Q). We perform the
first iteration of the αDeC method with L1

∆ and L2
∆ associated to two subtimenodes thus getting

U (1) ∈ R(2×Q) which is first-order accurate and so O(∆t2)-accurate.
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Up to now, we have in the two components of U (1) an O(∆t2)-accurate approximation of the
values of the solution in tn and tn + ∆t which are sufficient to get an O(∆t2)-accurate global
reconstruction of the solution in the interval [tn, tn +∆t] through Lagrange interpolation. We can

therefore perform an interpolation to get U∗(1) ∈ R(3×Q) corresponding to three equispaced nodes in
the interval [tn, tn+∆t]. Then, we perform the second iteration passing fromU∗(1) toU (2) ∈ R(3×Q)

which is O(∆t3)-accurate. From U (2), we can construct a second order accurate reconstruction of
the solution in [tn, tn+∆t]. We continue in this fashion, alternating iterations of the αDeC method
with interpolations increasing the order of accuracy and the number of subtimenodes.

In general, when performing the p-th iteration we have U (p−1) ∈ R(p×Q) which is O(∆tp)-

accurate; through interpolation we get U∗(p−1) ∈ R((p+1)×Q), still O(∆tp)-accurate, from which we

get U (p) ∈ R((p+1)×Q) which is O(∆tp+1)-accurate. In particular, the interpolation can be easily
performed through a matrix product involving the interpolation matrix H(p−1)

U∗(p−1) = H(p−1)U (p−1). (42)

Then, we perform the p-th iteration and get U (p) ∈ R((p+1)×Q), which is O(∆tp+1)-accurate. Of
course the operators L1

∆ and L2
∆ change at each iteration accordingly to the number of subtimen-

odes; therefore, at the general iteration p we will not have fixed matrices Θ and Γ, but rather Θ(p)

and Γ(p).
The final number of subtimenodes is not fixed a priori and we could in principle continue adding

nodes improving the accuracy of the approximation, this fact will be exploited in section 8 to design
adaptive methods. For the moment, we consider a given number of final subtimenodes M + 1, as
in the original method. In such case, it is useful to observe that U (p) ∈ R((p+1)×Q), got at the p-th
iteration, is O(∆tp+1)-accurate and associated to p + 1 subtimenodes. Actually, p + 1 time-nodes
could reach an O(∆tp+2)-accuracy, for this reason, it is useful to performM+1 iterations including
a final iteration without interpolation to get the optimal order of accuracy O(∆tM+2) associated
to M + 1 subtimenodes. In this way, we have that the interpolation is performed at each iteration
except the first and the last.

A useful sketch of the algorithm is represented in figure 2 following the indication of αDeCu.
We focus on the interval [tn, tn +∆t] and we use the dots to indicate the subtimenodes in which,
at each iteration p, we have approximations of the solution, while we use the crosses to express the
location in time of the interpolated values.

4.1.2 Updating formula

We start with two subtimenodes associated to tn and tn +∆t

U (0) =

(
un

un

)
∈ R(2×Q) (43)

and we perform the first iteration

U (1) = U (0) +∆t(Θ(1) − αΓ(1))G(U (0)) + ∆tαΓ(1)G(U (1)). (44)
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Order

αDeCu

αDeCdu

tn + ∆t

tn

U (0)

U (0)

O(∆t)

U (1)

U (1)

O(∆t2)

U∗(1)

G∗(1)

O(∆t2)

U (2)

U (2)

O(∆t3)

U∗(2)

G∗(2)

O(∆t3)

U (M)

U (M)

O(∆tM+1)

U (M+1)

U (M+1)

O(∆tM+2)

Figure 2: αDeCu and αDeCdu, sketches

Now, we perform the first interpolation getting

U∗(1) = H(1)U (1)

= H(1)
[
U (0) +∆t(Θ(1) − αΓ(1))G(U (0)) + ∆tαΓ(1)G(U (1))

]
= U

(0)
3 +∆tH(1)(Θ(1) − αΓ(1))G(U (0)) + ∆tαH(1)Γ(1)G(U (1)).

(45)

where the last equality is due to the fact that, by consistency, the sum of the elements on the rows

of the interpolation matrices H(p) is equal to 1. The subscript 3 has been added to U
(0)
3 ∈ R3×Q

to distinguish it from the initial U (0) ∈ R2×Q.
Then, we perform the second iteration

U (2) = U
(0)
3 +∆t(Θ(2) − αΓ(2))G(U∗(1)) + ∆tαΓ(2)G(U (2)). (46)

We then perform the interpolation getting

U∗(2) = H(2)U (2)

= H(2)
[
U

(0)
3 +∆t(Θ(2) − αΓ(2))G(U∗(1)) + ∆tαΓ(2)G(U (2))

]
= U

(0)
4 +∆tH(2)(Θ(2) − αΓ(2))G(U∗(1)) + ∆tαH(2)Γ(2)G(U (2))

(47)

from which we can get U (3). Iteratively, at the p-th iteration we have

U∗(p−1) = U
(0)
p+1 +∆tH(p−1)(Θ(p−1) − αΓ(p−1))G(U∗(p−2))

+ ∆tαH(p−1)Γ(p−1)G(U (p−1)),
(48)

U (p) = U
(0)
p+1 +∆t(Θ(p) − αΓ(p))G(U∗(p−1)) + ∆tαΓ(p)G(U (p)). (49)
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We remark that, if the final number of nodes is fixed to be M + 1, it is more “efficient” to perform
M iterations with interpolation and the last one without interpolation between U (M) and U (M+1)

to achieve the optimal accuracy with the minimal number of iterations thus getting

U (M+1)= U
(0)
M+1+∆t(Θ(M)− αΓ(M))G(U (M))+ ∆tαΓ(M)G(U (M+1)). (50)

This is due to the fact that this last iteration allows to reach the maximal accuracy associated to
M +1 nodes without requiring any additional structure. In fact, the matrices Θ(M) and Γ(M) have
been already used for the M -th iteration.

4.2 αDeCdu

Like the αDeCu methods, the αDeCdu methods are based on the introduction of an interpolation
process between the iterations. In this case, the interpolated quantity is the function G(t,u(t)).
The name is due to the fact that formally we interpolate d

dtu(t) = G(t,u(t)).

4.2.1 Method

We start with two subtimenodes associated to tn and tn +∆t and U (0) ∈ R(2×Q). We perform the
first iteration of the αDeC method getting U (1) ∈ R(2×Q) which is O(∆t2)-accurate. Then, we can
compute G(t0,u0,(1)) = G(tn,un) and G(t1,u1,(1)) thanks to which we can get an O(∆t2)-accurate
global reconstruction of G(t,u(t)) in the interval [tn, tn +∆t] through Lagrange interpolation. We
thus perform an interpolation to get approximated values of G(t,u(t)) in three equispaced nodes in

the interval [tn, tn+∆t] which are used to compute U (2) ∈ R(3×Q), which is O(∆t3)-accurate. From

the components ofG(U (2)) we can get an O(∆t3)-accurate reconstruction ofG(t,u(t)) in four nodes
in the interval [tn, tn +∆t] and perform another iteration of the DeC. We can iteratively continue

and get, at each iteration, U (p) ∈ R((p+1)×Q), which is O(∆tp+1)-accurate. It is useful to define,

for p ≥ 1, the vector G∗(p), containing the interpolated values of G(t,u(t)) in the interpolation
subtimenodes t∗(p) = t(p+1). In particular, at the iteration p we have

G∗(p−1) = H(p−1)G(U (p−1)). (51)

Also in this case, the reader is referred to figure 2 for a better understanding.

4.2.2 Updating formula

We start with two subtimenodes associated to tn and tn +∆t, and therefore U (0) ∈ R(2×Q). The
first iteration is identical to (44)

U (1) = U (0) +∆t(Θ(1) − αΓ(1))G(U (0)) + ∆tαΓ(1)G(U (1)). (52)

Then, we interpolate G through the interpolation matrix H(1) getting

G∗(1) = H(1)G(U (1)) (53)

and perform the second iteration, which reads

U (2) = U
(0)
3 +∆t(Θ(2) − αΓ(2))G∗(1) +∆tαΓ(2)G(U (2))

= U
(0)
3 +∆t(Θ(2) − αΓ(2))H(1)G(U (1)) + ∆tαΓ(2)G(U (2)).

(54)
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Iteratively, we get the p-th iteration:

U (p) = U
(0)
p+1 +∆t(Θ(p) − αΓ(p))H(p−1)G(U (p−1)) + ∆tαΓ(p)G(U (p)). (55)

Also in this case, if the final number of nodes is fixed to be M + 1, the optimal choice is to make
M iterations with the interpolation and the last one without interpolation, i.e.,

U (M+1)= U
(0)
M+1+∆t(Θ(M)− αΓ(M))G(U (M))+ ∆tαΓ(M)G(U (M+1)). (56)

See figure 2 for a visual sketch of the method, following line αDeCdu.

4.3 αDeCu and αDeCdu with Gauss–Lobatto subtimenodes

As already pointed out, in this context M + 1 Gauss–Lobatto subtimenodes provide an accuracy
equal to 2M . In this case, we start with two subtimenodes and we alternate iterations of the αDeC
method and interpolations, adding one subtimenode at each iteration, until reaching a fixed number
of subtimenodes, sayM+1. Then, we continue with normal iterations of the αDeC until P = 2M to
get the maximal order of accuracy associated to such nodes, i.e., order 2M . The updating formulas
are identical to the ones already presented. The interpolation is not performed at the first iteration
and from the (M + 1)-th iteration on. Let us conclude this section with a final observation: in the
context of a scheme of order P with Gauss–Lobatto subtimenodes, the most efficient choice is given
by a final number of subtimenodes equal to M + 1 with M =

⌈
P
2

⌉
and P iterations.

Remark 4.1 (On the interpolation accuracy). A natural question that could arise in this context is
why the interpolation processes should take place in the early iterations only and not rather when the
maximal order of accuracy associated to a given number of Gauss–Lobatto subtimenodes is reached,
assuming that a Gauss–Lobatto distribution is used also in the first iterations. The answer lies in
the mismatch between the (2p)-th order of accuracy of the operator L2

∆ with p + 1 Gauss–Lobatto
subtimenodes and the (p+1)-th order of accuracy of the interpolation associated to the same number
of subtimenodes. The interpolation represents a bottleneck which makes useless to perform more
than one iteration with the same subtimenodes before the final distribution is settled.

5 The DeC as RK

A general explicit RK method with S stages applied in the interval [tn, tn+1], with tn+1 = tn +∆t,
reads 

y1 = un,

ys = un +∆t
∑s−1

r=1 asrG(tn + cr∆t,y
r), for s = 2, . . . , S,

un+1 = un +∆t
∑S

r=1 brG(tn + cr∆t,y
r).

(57)

We adopt here the notation already introduced denoting by uk an approximation of u(tk), the exact
solution to the ODEs system at the time tk. The coefficients asr, cr and br uniquely characterize
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the RK method and they are stored in the Butcher tableau

c1

c2 a2,1

c3 a3,1 a3,2
...

...
...

. . .

cS aS,1 aS,2 · · · aS,S−1

b1 b2 · · · bS−1 bS

. (58)

The non-specified entries are assumed to be zero. It is also useful to define the matrix A and
the vectors b and c in which we collect the related RK coefficients.

It is well known, as presented in [43, 37, 32], that DeC methods can be written into RK form.
This also holds for the new methods, αDeCu and αDeCdu; we will show this fact in this section by
explicitly constructing their Butcher tableaux.

Before doing this, let us introduce a simple notation to denote slices of matrices. Let M ∈
R(D1+1)×(D2+1) defined as

M =


M0,0 M0,1 . . . M0,D2

M1,0 M1,1 . . . M1,D2

...
...

...
MD1,0 MD1,1 . . . MD1,D2

 . (59)

We define the slice from the i-th row to the j-th row (included) and from the k-th column to the
ℓ-th column (included) as Mi:j,k:ℓ. We omit the last index in case we want to include all the entries
from the first index until the end, e.g. M1:,1: indicates the whole matrix without the first row and
the first column. The same notation holds for vectors. Furthermore, we denote by Mi,: and M:,j

respectively the i-th row and the j-th column of the matrix M .
In order make the Butcher tableaux as compact as possible, the computation of the solution

in the different subtimenodes at the first iteration will be always made through the explicit Euler
method. This little modification has no impact on the formal accuracy, since the first iteration is
meant to provide a first order approximation of the solution. In particular, when α = 0 and we are
in the context of autonomous systems, i.e., when the function G does not explicitly depend on t,
the modification has no effect.

Moreover, it is useful to define here the vector β(p) =
(
0, t

1,(p)−tn
∆t , . . . , t

p,(p)−tn
∆t

)T
of the βm

coefficients in the different iterations. Of course, in the context of the original αDeC methods, this

has no dependence on the iteration and, in such context, we have β =
(
0, t

1−tn
∆t , . . . , t

M−tn
∆t

)T
.

Finally, we will focus on the methods got by using equispaced subtimenodes. The extension to
the Gauss–Lobatto case is trivial: it suffices to repeat for the needed number of times, M − 1 in
the optimal case, the block without interpolation, which is the one related to the final iteration of
the standard method, in the Butcher tableaux.

5.1 αDeC

We recall the general updating formula of the αDeC methods in matricial form

U (p) = U (0) +∆t(Θ− αΓ)G(U (p−1)) + ∆tαΓG(U (p)).
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c u0 u(1) u(2) u(3) · · · u(M) u
(M+1)
:M−1 A

0 0 u0

β
1:

β
1:

0 u(1)

β
1:

Θ1:,0 (Θ− αΓ)1:,1: αΓ1:,1: 0 u(2)

β
1:

Θ1:,0 0 (Θ− αΓ)1:,1: αΓ1:,1: 0 u(3)

...
...

. . .
. . .

...
...

...
. . .

. . .
...

β
1:M−1

Θ1:M−1,0 0 · · · · · · 0 (Θ− αΓ)1:M−1,1: αΓ1:M−1,1:M−1 u
(M+1)
:M−1

b ΘM,0 0 · · · · · · 0 (Θ− αΓ)M,1: αΓM,1:M−1 uM,(M+1)

Table 1: RK structures for the original αDeC with equispaced subtimenodes, c at the left b at the
bottom, A in the middle. We add on top and right sides the reference to the iteration steps

c u0 u(1) u(2) u(3) · · · u(M−1) u(M) A
0 0 u0

β
1:

β
1:

0 u(1)

β
1:

Θ1:,0 Θ1:,1: 0 u(2)

β
1:

Θ1:,0 0 Θ1:,1: 0 u(3)

...
...

. . .
. . .

...
...

...
. . .

. . .
...

β
1:

Θ1:,0 0 · · · · · · 0 Θ1:,1: 0 u(M)

b ΘM,0 0 · · · · · · · · · 0 ΘM,1: uM,(M+1)

Table 2: RK structures for the original bDeC with equispaced subtimenodes, c at the left b at the
bottom, A in the middle. We add on top and right sides the reference to the iteration steps

If we align each iteration one after the other and we consider each subtimenode of each iteration
as a RK stage, we can pass to the RK formulation. In order to have a more compact formulation,
we do not repeat the redundant states, i.e., all the u0,(p) and we keep only u0 as representative
of all of them. We remark that the first iteration is replaced by a simple Euler approximation for
the sake of efficiency. This leads to the formulation (57) with coefficients A, b and c as defined in
table 1. Note that Γ is a strictly lower triangular matrix, hence, even if there are blocks on the
diagonal of A in table 1, the diagonal of A and all the upper triangular terms are actually 0, so the
scheme is explicit. The number of stages of this formulation amounts to S = M × P holding for
any distribution of subtimenodes. Therefore, we have S = M2 +M for equispaced subtimenodes
with order P =M + 1 and S = 2M2 for Gauss–Lobatto subtimenodes with order P = 2M .

If α = 0, the αDeC method reduces to the bDeC method and the general table simplifies to table
2. In such case, we observe that we do not need the whole vector u(P ), but we can just compute
the component associated to the final subtimenode only with u(P−1), leading to a total number of
RK stages equal to S =M(P − 1) + 1 and so S =M2 +1 if we have equispaced subtimenodes and
S = 2M2 −M + 1 if we have Gauss–Lobatto subtimenodes.
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5.2 bDeCu

Let us recall the general updating formulas of the αDeCu methods in matricial form

U∗(p−1) = U
(0)
p+1 +∆tH(p−1)(Θ(p−1) − αΓ(p−1))G(U∗(p−2))

+ ∆tαH(p−1)Γ(p−1)G(U (p−1)),
(60)

U (p) = U
(0)
p+1 +∆t(Θ(p) − αΓ(p))G(U∗(p−1)) + ∆tαΓ(p)G(U (p)), (61)

to which we need to add an initial iteration made with Euler and either a final iteration or, in
the context of Gauss–Lobatto subtimenodes, some final iterations (M in the optimal case) of the
standard αDeC method performed without interpolation. It is indeed possible to construct the
Butcher tableaux of this family of methods. In particular, the stages of the RK method are given
by all the components of the vectors U (p) and U∗(p) (excluding the redundant states). Nevertheless,
from easy computations one can see that for α ̸= 0 the number of stages of the αDeCu method
coincides with the number of stages of the αDeC method without computational advantage under
this point of view, see remark 5.1. For this reason and for the sake of compactness, we focus directly
on the bDeCu method (α = 0), for which we have a substantial computational advantage in terms
of reduction of the number of stages with respect to the original bDeC. In such case, the updating
formulas (60) and (61) reduce to

U∗(p−1) = U
(0)
p+1 +∆tH(p−1)Θ(p−1)G(U∗(p−2)), (62)

U (p) = U
(0)
p+1 +∆tΘ(p)G(U∗(p−1)). (63)

Let us observe that the updating formulae (62) and (63) involve only the evaluation of the flux

of U∗ and, if we look at (62), we observe that the update of U∗(p−1) only depends on U∗(p−2),

meaning that the scheme can essentially be rewritten only in terms of the vectors U∗(p) (plus

UM,(P )) drastically reducing the number of stages. The RK coefficients are reported in table 3 in
which we have

W (p) :=

{
H(p)Θ(p) ∈ R(p+2)×(p+1), if p = 2, . . . ,M − 1,

Θ(M) ∈ R(M+1)×(M+1), if p ≥M.
(64)

We remark that the size of the vectors increases at each iteration. By a direct computation, we have

that the total number of RK stages is given by S =M · (P − 1) + 1− (M−1)(M−2)
2 , so (M−1)(M−2)

2
less with respect to the original method. The formula is general and holds for both equispaced
(P =M + 1) and Gauss–Lobatto (P = 2M) subtimenodes.

Remark 5.1 (On the relation between stages and computational cost). The number of stages is
not completely explanatory of the computational costs of the new algorithms. In the context of the
novel methods, the cost associated to the computation of the different stages is not homogeneous as
some of them are “properly” computed through the updating formula (37) of the original scheme,
while the others are got through an interpolation process which is much cheaper. As an example,
(60) can be computed as U∗(p−1) = H(p−1)U (p−2). In particular, as already specified, the novel
αDeCu methods for α ̸= 0 are characterized by the same number of stages as the original αDeC,
nevertheless, roughly half of them is computed through interpolation. For this reason, they have
been numerically investigated for α = 1.
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c u0 u∗(1) u∗(2) u∗(3) · · · u∗(M−2) u∗(M−1) u(M) A dim
0 0 u0 1

β(2)

1:
β(2)

1:
0 u∗(1) 2

β(3)

1:
W

(2)
1:,0 W

(2)
1:,1: 0 u∗(2) 3

β(4)

1:
W

(3)
1:,0 0 W

(3)
1:,1: 0 u∗(3) 4

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
...

β(M)

1:
W

(M−1)
1:,0 0 · · · · · · 0 W

(M−1)
1:,1: 0 0 u∗(M−1) M

β(M)

1:
W

(M)
1:,0 0 · · · · · · · · · 0 W

(M)
1:,1: 0 u(M) M

b W
(M+1)
M,0 0 · · · · · · · · · · · · 0 W

(M+1)
M,1: uM,(M+1)

Table 3: RK structures for the bDeCu method, c at the left b at the bottom, A in the middle. We
add on top and right sides the reference to the iteration steps

5.3 αDeCdu

Now, we apply the same technique on the methods that interpolate du
dt . Again, we start by recalling

the updating formula of the method in matricial form

U (p) = U
(0)
p+1 +∆t(Θ(p) − αΓ(p))H(p−1)G(U (p−1)) + ∆tαΓ(p)G(U (p)). (65)

plus an initial Euler step and a final iteration or, for Gauss–Lobatto subtimenodes, at mostM final
iterations of the standard αDeC method without interpolation. One of the main differences with
respect to the αDeCu methods is that this formulation does not require any extra interpolated state
U∗(p) as, here, the interpolation process involves the function G. This results in a great advantage
from a computational point of view also for α ̸= 0. The RK coefficients are reported in table 4, in
which we have

X(p) :=

{
(Θ(p) − αΓ(p))H(p−1) ∈ R(p+1)×p, if p = 1, . . . ,M,

Θ(M) − αΓ(M) ∈ R(M+1)×(M+1), if p > M,
(66)

Y (p) :=

{
αΓ(p) ∈ R(p+1)×(p+1), if p = 1, . . . ,M,

αΓ(M) ∈ R(M+1)×(M+1), if p > M.
(67)

The number of stages in this case amounts to S = MP − M(M−1)
2 , with a computational

advantage of M(M−1)
2 with respect to the original method.

Also in this case, it is worth giving a particular attention to the method given by α = 0. Again,
the computation of uM,(P ) without the need of the other components of u(P ) can further reduce

the number of stages to S =M(P −1)+1− M(M−1)
2 . The Butcher tableaux of the bDeCdu method

is given in table 5, where we have set

Z(p) :=

{
Θ(p)H(p−1) ∈ R(p+1)×p, if p = 1, . . . ,M,

Θ(M) ∈ R(M+1)×(M+1), if p > M.
(68)
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c u0 u(1) u(2) u(3) · · · u(M−2) u(M−1) u(M) u
(M+1)
:M−1 A dim

0 0 u0 1

β(1)

1:
β(1)

1:
0 u(1) 1

β(2)

1:
X

(2)
1:,0 X

(2)
1:,1: Y

(2)
1:,1: u(2) 2

β(3)

1:
X

(3)
1:,0 0 X

(3)
1:,1: Y

(3)
1:,1: u(3) 3

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
...

β(M−1)

1:
X

(M−1)
1:,0 0 · · · · · · 0 X

(M−1)
1:,1: Y

(M−1)
1:,1: 0 u(M−1) M − 1

β(M)

1:
X

(M)
1:,0 0 · · · · · · · · · 0 X

(M)
1:,1: Y

(M)
1:,1: u(M) M

β(M)

1:M−1
X

(M+1)
1:M−1,0 0 · · · · · · · · · · · · 0 X

(M+1)
1:M−1,1: Y

(M+1)
1:M−1,1:M−1 u

(M+1)
1:M−1 M − 1

b X
(M+1)
M,0 0 · · · · · · · · · · · · 0 X

(M+1)
M,1: Y

(M+1)
M,1:M−1 uM,(M+1)

Table 4: RK structures for the αDeCdu method with equispaced subtimenodes, c at the left b at
the bottom, A in the middle. We add on top and right sides the reference to the iteration steps

c u0 u(1) u(2) u(3) · · · u(M−2) u(M−1) u(M) A dim
0 0 u0 1

β(1)

1:
β(1)

1:
0 u(1) 1

β(2)

1:
Z

(2)
1:,0 Z

(2)
1:,1: 0 u(2) 2

β(3)

1:
Z

(3)
1:,0 0 Z

(3)
1:,1: 0 u(3) 3

...
...

. . .
. . .

...
...

...
...

. . .
. . .

...
...

β(M−1)

1:
Z

(M−1)
1:,0 0 · · · · · · 0 Z

(M−1)
1:,1: 0 0 u(M−1) M − 1

β(M)

1:
Z

(M)
1:,0 0 · · · · · · · · · 0 Z

(M)
1:,1: 0 u(M) M

b Z
(M+1)
M,0 0 · · · · · · · · · · · · 0 Z

(M+1)
M,1: uM,(M+1)

Table 5: RK structures for the bDeCdu method with equispaced subtimenodes, c at the left b at
the bottom, A in the middle. We add on top and right sides the reference to the iteration steps
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P=order M αDeC bDeC bDeCu αDeCdu bDeCdu
2 1 2 2 2 2 2
3 2 6 5 5 5 4
4 3 12 10 9 9 7
5 4 20 17 14 14 11
6 5 30 26 20 20 16
7 6 42 37 27 27 22
8 7 56 50 35 35 29
9 8 72 65 44 44 37
10 9 90 82 54 54 46
11 10 110 101 65 65 56
12 11 132 122 77 77 67
13 12 156 145 90 90 79

Table 6: Number of stages for the original (αDeC, bDeC) and novel (bDeCu, αDeCdu, bDeCdu)
methods with equispaced subtimenodes: for αDeC and bDeC we have respectively S =M · P and

S = M · (P − 1) + 1; for bDeCu we have S = M · (P − 1) + 1 − (M−1)(M−2)
2 ; for αDeCdu and

bDeCdu we have respectively S =M · P − M(M−1)
2 and S =M · (P − 1) + 1− M(M−1)

2 .

We conclude this section with two tables, table 6 and table 7, containing the number of stages
of the original methods and of the novel ones respectively for equispaced and Gauss–Lobatto sub-
timenodes up to order 13.

6 Stability analysis

In this section, we study the stability of the novel DeC schemes. We will prove two original results.
First, the stability functions (and regions) of the bDeCu and bDeCdu methods coincide with the
ones of the original bDeC methods and do not depend on the distribution of the subtimenodes
but only on the order. Second, if we fix the subtimenodes distribution and the order, the αDeCdu
methods coincide with the αDeCu methods on linear problems. For all the schemes, we will show
the stability region using some symbolical and numerical tools.

Let us start by reviewing some known results for RK methods [12, 62]. The linear stability of
a RK scheme is tested on Dahlquist’s problem

u′ = λu (69)

with ℜ(λ) < 0. Being the RK schemes linear, we can write them as un+1 = R(λ∆t)un, with R the
stability function of the method. The stability function for an RK scheme is defined as

R(z) = 1 + zbT (I − zA)−11 (70)

where 1 is a vector with all the entries equal to 1. We have that the scheme is stable if |R(λ∆t)| < 1.
The set of complex numbers z such that |R(z)| < 1 is called stability region. We remark that the
stability function for explicit RK methods is a polynomial, indeed the inverse of (I − zA) can be
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P=order M αDeC bDeC bDeCu αDeCdu bDeCdu
2 1 2 2 2 2 2
3 2 6 5 5 5 4
4 2 8 7 7 7 6
5 3 15 13 12 12 10
6 3 18 16 15 15 13
7 4 28 25 22 22 19
8 4 32 29 26 26 23
9 5 45 41 35 35 31
10 5 50 46 40 40 36
11 6 66 61 51 51 46
12 6 72 67 57 57 52
13 7 91 85 70 70 64

Table 7: Number of stages for the original (αDeC, bDeC) and novel (bDeCu, αDeCdu, bDeCdu)
methods with Gauss-Lobatto subtimenodes: for αDeC and bDeC we have respectively S = M · P
and S =M · (P − 1) + 1; for bDeCu we have S =M · (P − 1) + 1− (M−1)(M−2)

2 ; for αDeCdu and

bDeCdu we have respectively S =M · P − M(M−1)
2 and S =M · (P − 1) + 1− M(M−1)

2 .

written in Taylor expansion as

(I − zA)−1 =

∞∑
r=0

zrAs = I + zA+ z2A2 + . . . , (71)

and, since A is strictly lower triangular, it is nilpotent. This means that there exists an integer r
such that Ar = 0 and the minimum of these natural numbers N is called degree of nilpotence. By

definition of L, it is clear that AN+r = 0 for all r ≥ 0. Moreover, it is also clear that N ≤ S, where
S is the number of stages of the RK methods and the dimension of the matrix A. Hence, R(z) is a
polynomial in z with degree at most equal to S.

The following theorem is proved in [62].

Theorem 6.1. If the RK method is of order P , then

R(z) = 1 + z +
z2

2!
+ · · ·+ zP

P !
+O(zP+1). (72)

So, we know the first P + 1 terms of the stability functions R(·) for all the DeCs we presented
above of order P .

Theorem 6.2. The stability function of any bDeC, bDeCu and bDeCdu method of order P is

R(z) =

P∑
r=0

zr

r!
= 1 + z +

z2

2!
+ · · ·+ zP

P !
(73)

and does not depend on the distribution of the subtimenodes.
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Proof. The proof of this theorem relies only on the block structure of the matrix A for such schemes.
In all these cases, the matrix A can be written as

A =



0 0 0 . . . 0 0
⋆ 0 0 . . . 0 0
⋆ ⋆ 0 . . . 0 0
⋆ 0 ⋆ . . . 0 0
...

...
...

. . .
...

...
⋆ 0 0 · · · ⋆ 0


, (74)

where ⋆ are some non-zero block matrices and the 0 are some zero block matrices of different sizes.
The number of blocks in each line and row of these matrices is P , the order of the scheme. By
induction, we can prove that Ak has zeros in the upper triangular part, in the main block diagonal,
and in all the k−1 block diagonals below the main diagonal, i.e., (Ak)i,j = 0 if i < j+k, where the
indexes here refer to the blocks. Indeed, it is true that Ai,j = 0 if i < j + 1. Now, let us consider
the entry (Ak+1)i,j with i < j + k + 1, i.e., i− k < j + 1. It is defined as

(Ak+1)i,j =
∑
w

(Ak)i,wAw,j . (75)

Now, we can prove that all the terms of the sum are 0. Let w < j + 1, then Aw,j = 0 because of
the structure of A; while, if w ≥ j+1 > i− k, we have that i < w+ k, so (Ak)i,w = 0 by induction.

In particular, this means that AP = 0, because i is always smaller than j+P as P is the number
of the block matrices that we have. Hence,

(I − zA)−1 =

∞∑
r=0

zrAs =

P−1∑
r=0

zrAs = I + zA+ z2A2 + · · ·+ zP−1AP−1. (76)

Plugging this result into (70), we can state that the stability function R(z) is a polynomial of degree
P , the order of the scheme. Since all the terms of order lower or equal to P must agree with the
expansion of the exponential function as stated in theorem 6.1, the stability function must be

R(z) =

P∑
r=0

zr

r!
= 1 + z +

z2

2!
+ · · ·+ zP

P !
. (77)

Finally, let us notice that no assumption has been done on the distribution of the subtimenodes,
hence, the result is general for any distribution.

In the following, we will show that, given a certain order P and a distribution of subtimenodes,
the αDeCu and αDeCdu methods are equivalent on linear problems and, as a consequence, they
share the same stability functions. This is interesting when comparing the two methods as we can
always choose the most efficient one, without losing stability properties.

Theorem 6.3 (Equivalence on linear problems). Given an order P , a distribution of subtimenodes
and α ∈ [0, 1], the schemes αDeCu and αDeCdu applied to linear systems are equivalent.

Proof. Without loss of generality, we can focus on Dahlquist’s equation u′ = λu. Since the schemes
are linear, the same arguments would apply component-wise also on linear systems of equations.
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Figure 3: Stability regions of bDeC, bDeCu and bDeCdu (equivalent on linear problems) for any
distribution of subtimenodes with order from 3 to 13

Let us start by explicitly writing down the general updating formula (55) of the αDeCdu method
for Dahlquist’s equation:

U (p) = U
(0)
p+1 + ω(Θ(p) − αΓ(p))H(p−1)U (p−1) + ωαΓ(p)U (p), (78)

where we have set ω := ∆tλ. For the αDeCu method, the updating formula (49) becomes

U (p) = U
(0)
p+1 + ω(Θ(p) − αΓ(p))U∗(p−1) + ωαΓ(p)U (p), (79)

now, using the definition of U∗(p−1) = H(p−1)U (p−1), we obtain

U (p) = U
(0)
p+1 + ω(Θ(p) − αΓ(p))H(p−1)U (p−1) + ωαΓ(p)U (p), (80)

which coincides with (78). In fact, apart from these direct computations, another way to show the
equivalence is observing that on linear problems interpolating u and then applying G is formally
equivalent to interpolating G.

This means that each iteration of the two modified schemes coincide. Moreover, U (1) is a simple
forward Euler step for both algorithms. Finally, the final update does not involve any interpolation
for both schemes. Therefore, the two schemes coincide on linear problems.

As stated above, the immediate consequence is that the stability functions (and regions) of the
αDeCu and the αDeCdu methods are identical.

In figure 3, we depict the stability region of the classical bDeC method and of the new methods
bDeCu and bDeCdu from order 3 until order 13, we remark that there is no difference in terms of
stability between bDeC, bDeCu and bDeCdu, nor dependence on the distribution of the subtimen-
odes. In figure 4, instead, we plot the stability regions of the classical sDeC method and of the new
methods sDeCu and sDeCdu, we remark that sDeCu and sDeCdu have the same stability regions.
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Equispaced subtimenodes

10 8 6 4 2 0 2 4
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

10 8 6 4 2 0 2 4
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Gauss–Lobatto subtimenodes
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Figure 4: Stability regions of sDeC, sDeCu and sDeCdu with order from 3 to 13: sDeC on the left,
sDeCu and sDeCdu (equivalent on linear problems) on the right

7 Application to hyperbolic PDEs

In this section, we apply the novel explicit efficient DeC techniques to hyperbolic PDEs. It is
straightforward to do it when the PDE is discretized with the method of lines, i.e., the spatial and
the time discretization are handled separately. This is the case for many finite volume (FV) and
discontinuous Galerkin Finite Element (DG) methods, where there is no mass matrix or it is block
diagonal and easy to invert. On the other side, the application of the novel efficient DeC technique
to a CG framework is more complicated, because the mass matrix has only a sparse structure and,
hence, global linear systems should be solved at each time step, wasting computational time. We
will focus on the latter case, which is more challenging, and, in particular, on two strategies that
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allow to avoid the solution of global linear systems. The first one is to use particular basis functions
like the Cubature elements introduced in [19] and studied in [36, 51, 44, 45] which, combined with
a suitable choice of the quadrature formula, allow to achieve a high-order lumping of the mass
matrix. The diagonal mass matrix allows to get a system of ODEs like the one described in the
previous section and, hence, the novel methods can be applied in a straightforward way. The second
strategy, instead, has been introduced by Abgrall in [5] and it is based on the concept of residual
[1, 53, 2, 4]. It consists in introducing, together with the low-order forward Euler approximation
in time, a first-order lumping in the mass matrix of the operator L1

∆ to make the resulting scheme
fully explicit.

In this section, we will present the general semidiscrete formulation of a CG scheme and we will
describe the two mentioned strategies to numerically solve it avoiding global linear systems. As the
first strategy leads to an ODE system identical to the one presented in the previous section, we will
dedicate more attention to the second one by defining the operators L1

∆ and L2
∆, characterizing the

updating formulas and discussing the problem of modifying the method, via interpolation processes,
to make it more efficient. Without loss of generality, we will consider the bDeC formulation. The
proofs of the properties of the operators of the original formulation for ODEs cannot be extended
to this context in a straightforward way. Additional hypotheses and a careful choice of the norms
on the spaces X and Y are required. We provide the proofs in the supplementary material. To our
knowledge, this is the only formal proof alternative to the one presented in [5].

7.1 Continuous Galerkin FEM

The general form of a hyperbolic system of balance laws reads

∂

∂t
u(x, t) + divxF (u(x, t)) = S(x,u(x, t)) (x, t) ∈ Ω× R+

0 (81)

where u : Ω×R+
0 → RQ with some initial condition u(x, 0) = u0(x) on the space domain Ω ⊆ RD,

which we assume here to be bounded, and boundary conditions on ∂Ω. In particular, we would
like to find uh, an approximation of u, in Ω × [0, T ] of the weak-entropy solution of our problem.
Basically, the Galerkin FEM consists in a projection of the analytical weak formulation in space of
our initial problem over a finite dimensional space. We consider a tessellation Th of the closure of
the spatial domain with characteristic length h, i.e., a finite set of D-dimensional nonoverlapping
convex polytopal closed subsetsK of Ω, which cover Ω exactly and such that supK∈Th

diam(K) ≤ h.
We introduce the finite dimensional space Vh of continuous piecewise polynomial functions defined
as

Vh = {g ∈ C0(Ω) s.t. g|K ∈ PM (K) ∀K ∈ Th} (82)

with PM (K) denoting the space of polynomials of degreeM defined on the element K. We choose a
basis {φi}i=1,...,I of Vh, for example the Lagrange polynomials or the Bernstein polynomials, which
is such that each basis function φi can be associated to a point xi located somewhere in the closure
of the spatial domain. Such points are usually referred as degrees of freedom (DoFs). Further, we

assume that the basis functions are normalized in such a way that
∑I

i=1 φi(x) ≡ 1 ∀x ∈ Ω and
that each basis function φi has its support contained in the union of the elements containing the
node xi to which it is associated, i.e., φi ∈ C0

o (∪K∈Ki
K), where

Ki = {K ∈ Th s.t. xi ∈ K} (83)
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is the set of the elements containing the DoF xi. We project the weak formulation of the original
PDE problem onto Vh, i.e., we look for uh(x, t) =

∑I
j=1 cj(t)φj(x) ∈ V Q

h such that for any
i = 1, . . . , I∫

Ω

(
∂

∂t
uh(x, t) + divxF (uh(x, t))− S(x,uh(x, t))

)
φi(x)dx+ ST i(uh) = 0, (84)

where the divergence in space is meant in the weak sense and the stabilization term ST i(uh) is
added to avoid the instabilities associated to central schemes. Actually, by the argument that each
basis function has support contained in the union of the elements containing the DoF to which it
is associated, it is possible to recast (84) as∑

K∈Ki

∑
xj∈K

d

dt
cj(t)

∫
K

φi(x)φj(x)dx+ ϕi(c(t)) = 0, ∀i = 1, . . . , I, (85)

where, in order to have a more compact notation, we collected the terms not strictly related to the
temporal evolution in (84) in a single term, to which we will refer to as “space residual”, defined as

ϕi(c(t))=
∑

K∈Ki

∫
K

(divxF (uh(x, t))−S(x,uh(x, t)))φi(x)dx+ ST i(uh). (86)

It is not difficult to show that (85), after the temporal discretization, is a huge system of ODEs, in
the unknowns ci(t), characterized by a huge global mass matrix. We would like to avoid solving
linear systems in the numerical solution of (85).

One possibility is given by a careful choice of the basis functions and of the quadrature points
through the Cubature elements [19, 36]. The key idea is to find a high order quadrature formula with
positive weights and use its quadrature points to define the bases through Lagrangian polynomials.
Adopting such elements and the induced quadrature formula, one obtains a spectral formulation
characterized by a diagonal mass matrix without spoiling the high order accuracy. In practice,
this allows to get a system of ODEs like the one presented in the previous section and the DeC
formulations that we have introduced can be applied without any problem to such system. Examples
of such basis functions are given by the Lagrange polynomials associated to the Gauss–Lobatto
points in one-dimensional domains and the Cubature elements introduced in [19] in two-dimensional
domains.

The alternative, introduced in [5], involves a modification of the original method for ODEs and
it is explained in the following.

For what follows, it is useful to define here the vector c(t) ∈ RI×Q, in which we collect all the
Q-dimensional components ci(t) associated to the DoFs.

Remark 7.1 (Link with Residual Distribution). It is possible to put the Continuous FEM formu-
lation (85) in a Residual Distribution framework. The interested reader is referred to [6].

7.2 DeC for CG

Here, we will define the operators L1
∆ and L2

∆ of the DeC formulation for CG FEM discretizations
proposed by Abgrall and we will characterize the updating formula. The key idea is to modify
the original method for ODEs by introducing a first order mass lumping in the operator L1

∆. This
modification has been originally introduced in the context of a bDeC formulation but can actually
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be performed on any general αDeC method. Without loss of generality, here we will consider the
bDeC formulation as the reference one. In this context, the parameter ∆ of the DeC is the mesh
parameter h of the space discretization. We assume CFL conditions on the timestep of the type
∆t ≤ Ch for some constant C not dependent on the discretization. In particular, we will have
∆ ≈ ∆t ≈ h.

7.2.1 Definition of L2
∆

The operator L2
∆ is the high order implicit operator that we would like to solve. Its definition

is not very different from the one seen in the context of the bDeC for ODEs. We introduce the
M + 1 subtimenodes tm with m = 0, . . . ,M in the interval [tn, tn +∆t] in which we will consider
the approximations of the values of the solution to our system of ODEs. We refer to c(tm) as the
exact solution in the node tm and to cm as the approximation of the solution in the same node.
Clearly, in this case c(tm) and cm contain as components all the coefficients corresponding to the
spatial DoFs, i.e., respectively the vectors ci(t

m) of the exact coefficients in the i-th DoF at the
time tm and the vectors cmi of the approximated ones. As usual, for the first subtimenode we set
c0 = c(t0) = c(tn) = cn without any approximation. Starting from the exact integration of (85)
over [t0, tm] and substituting ϕi(c(t)) with itsM -order interpolation in time associated to theM+1
subtimenodes we get

∑
K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cmj − c0j

)
+∆t

M∑
ℓ=0

θmℓ ϕi(c
ℓ) = 0 (87)

for any i = 1, . . . , I and m = 1, . . . ,M . Therefore, we can define the operator L2
∆ : R(I×Q×M) →

R(I×Q×M) as
L2
∆(c) =

(
L2
∆,1(c),L2

∆,2(c), . . . ,L2
∆,I(c)

)
, ∀c ∈ R(I×Q×M), (88)

where, for any i, we have

L2
∆,i(c) =



∑
K∈Ki

∑
xj∈K

(∫
K
φi(x)φj(x)dx

) (
c1j − c0j

)
+∆t

M∑
ℓ=0

θ1ℓϕi(c
ℓ)

...∑
K∈Ki

∑
xj∈K

(∫
K
φi(x)φj(x)dx

) (
cmj − c0j

)
+∆t

M∑
ℓ=0

θmℓ ϕi(c
ℓ)

...∑
K∈Ki

∑
xj∈K

(∫
K
φi(x)φj(x)dx

) (
cMj − c0j

)
+∆t

M∑
ℓ=0

θMℓ ϕi(c
ℓ)


. (89)

The solution c∆ to L2
∆ = 0 is (M + 1)-order accurate in the sense that it would contain as

components (M + 1)-order accurate approximations of the coefficients which represent the exact
solution to (85) in all the subtimenodes tm form = 1, . . . ,M . Unfortunately, the problem L2

∆(c) = 0
is a huge nonlinear system.
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7.2.2 Definition of L1
∆

As anticipated, in order to define the operator L1
∆ in this context, we couple the forward Euler time

discretization with a first order mass lumping, obtaining

Ci

(
cmi − c0i

)
+∆tβmϕi(c

0) = 0, ∀i = 1, . . . , I, ∀m = 1, . . . ,M, (90)

where Ci are constant quantities defined as

Ci =

∫
Ω

φi(x)dx =
∑

K∈Ki

∫
K

φi(x)dx, ∀i = 1, . . . , I. (91)

Remark 7.2 (Choice of the basis functions). For any m and i, it is straightforward to explicitly
compute cmi from (90) if and only if Ci ̸= 0. This means that the construction of the operator L1

∆ is
not always well-posed for any arbitrary basis of polynomials {φi}i=1,...,I .With Lagrange polynomials

it can happen that
∫
Ω
φi(x)dx = 0 for some i, for example for degree M = 2 on triangular meshes.

On the other side, the construction is always well-posed with Bernstein bases for which Ci > 0 ∀i.
For the sake of brevity, we prove in the supplementary material that the solution to (90) is a first

order approximation of ci(t
m). Directly from (90), we can define the explicit low order operator

L1
∆ : R(I×Q×M) → R(I×Q×M) as

L1
∆(c) =

(
L1
∆,1(c),L1

∆,2(c), . . . ,L1
∆,I(c)

)
, ∀c ∈ R(I×Q×M), (92)

where for any i we have

L1
∆,i(c) =



Ci

(
c1i − c0i

)
+∆tβ1ϕi(c

0)
...

Ci

(
cmi − c0i

)
+∆tβmϕi(c

0)
...

Ci

(
cMi − c0i

)
+∆tβMϕi(c

0)

 . (93)

7.2.3 Updating formula

Let us characterize the iterative formula (4) in this context. We have

L1
∆(c

(p)) = L1
∆(c

(p−1))− L2
∆(c

(p−1)), p = 1, . . . , P, (94)

where c(p) ∈ R(I×Q×M), and c(p) denotes the approximation obtained at the p-th iteration and it
is made by M components cm,(p) corresponding to the approximations of the solution to (85) in

the subtimenodes tm m = 1, . . . ,M . Each of them contains I components c
m,(p)
i with dimension

Q. The reader is referred again to figure 1 for a better understanding. On the x-axis we have the
iterations while on the y-axis we have the subtimenodes. Just like in the ODE case, the procedure
(94) results in an explicit iterative algorithm due to the fact that the operator L1

∆ is explicit. The
update of the component associated to the general DoF i in the m-th subtimenode in the p-th
iteration reads

Ci

(
c
m,(p)
i − c0i

)
+∆tβmϕi(c

0) = Ci

(
c
m,(p−1)
i − c0i

)
+∆tβmϕi(c

0)

−
∑

K∈Ki

∑
xj∈K

(
c
m,(p−1)
j − c0j

)∫
K

φi(x)φj(x)dx+∆t

M∑
ℓ=0

θmℓ ϕi(c
ℓ,(p−1)),

(95)
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from which we get

c
m,(p)
i = c

m,(p−1)
i − 1

Ci

[ ∑
K∈Ki

∑
xj∈K

(
c
m,(p−1)
j − c0j

)∫
K

φi(x)φj(x)dx+∆t

M∑
ℓ=0

θmℓ ϕi(c
ℓ,(p−1))

]
.

(96)

We remark that also in this case we assume c
m,(p)
i = ci(tn) whenever p or m are equal to 0. Finally,

for what concerns the optimal number of iterations, analogous considerations to the ones that we
have made in the ODE case hold.

7.2.4 αDeCu for CG

Just like we did in the ODE context, it is possible to modify the original DeC for hyperbolic problems
presented above to get a new more efficient method by introducing interpolation processes between
the iterations. The underlying idea is the same, we increase the number of subtimenodes as the
accuracy of the approximation increases. Among the two presented interpolation strategies, only
the first one, involving the interpolation of the solution, can be extended in a straightforward way
to this context. At the general iteration p, the interpolation process allows to get c∗(p−1) from
c(p−1) and then we perform the iteration via (96) getting

c
m,(p)
i = c

∗m,(p−1)
i − 1

Ci

[ ∑
K∈Ki

∑
xj∈K

(
c
∗m,(p−1)
j − c0j

)∫
K

φi(x)φj(x)dx+∆t

M∑
ℓ=0

θmℓ ϕi(c
∗l,(p−1))

]
.

(97)

Again, we remark that such interpolation processes can be introduced in the context of any αDeC
for hyperbolic problems. Finally, it is worth to observe that the resulting new schemes cannot be
written in RK form due to the difference of the mass matrices in L1

∆ and L2
∆ (lumped and classic

respectively).

8 Application to adaptivity

In this last theoretical section, before going to the numerical results, we will see how to exploit the
interpolation processes in the new schemes, αDeCu and αDeCdu, to design adaptive methods. In
the context of an original αDeC method with a fixed number of subtimenodes, iteration by iteration,
we increase the order of accuracy with respect to the solution u∆ to the operator L2

∆, for this reason,
performing a number of iterations higher than the order of accuracy of the discretization adopted
in the construction of the operator L2

∆ is formally useless, as we have already pointed out in remark
2.2 and proposition 3.3. Instead, in the context of an αDeCu or αDeCdu method, we could in
principle keep adding subtimenodes, through interpolation, always improving the accuracy of the
approximation with respect to the exact solution to (11). In fact, in such case, there is no bottleneck
suggesting to limit the number of iterations (and, hence, the final number of subtimenodes).

Therefore, the most natural way to design adaptive schemes out of the αDeCu and αDeCdu
methods is to continue performing the iterations, adding subtimenodes, until a convergence condi-
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tion on the final component of u(p) (always associated to tn+1) is met, for example∥∥up,(p) − up−1,(p−1)
∥∥∥∥up,(p)

∥∥ ≤ ε (98)

with ε a desired tolerance.

9 Numerical results

In this section, we will investigate numerically the new methods showing the computational advan-
tage with respect to the original ones. We remark that the general αDeC method of order P is
obtained with P iterations and a number of subtimenodes equal to M + 1 with M = P − 1 in case
of equispaced subtimenodes or M =

⌈
P
2

⌉
in case of Gauss–Lobatto subtimenodes. The same holds

for the general αDeCu and αDeCdu methods of order P , with M +1 being in this context the final
number of subtimenodes. Let us observe that all the αDeC, αDeCu and αDeCdu methods of order
2 coincide, therefore, we will focus on the methods from order 3 on.

9.1 ODE tests

In this section, we will assess the properties of the new methods on different tests, checking their
computational costs, their errors and the possibility of adaptively choosing the number of steps to
reach a certain threshold. In particular, we will focus on the methods got for α = 0 (bDeC) and
α = 1 (sDeC).

9.1.1 Linear system

The first test we study is a very simple 2× 2 system of equations.{
u′ = −5u+ v,

v′ = 5u− v,

(
u0
v0

)
=

(
0.9
0.1

)
, (99)

with exact solution u(t) = u0 + (1− e−6t)(−5u0 + v0) and v(t) = 1− u(t). We assume a final time
T = 1. First of all, we check that the order of accuracy of the novel methods stays equal to the one
of the original methods. Moreover, being this a linear problem, we expect the bDeC, the bDeCu
and the bDeCdu to be all equivalent, as they share the same stability function as shown in theorem
6.2. Furthermore, we expect the sDeCu and the sDeCdu to be equivalent due to theorem 6.3.

In figure 5, we plot the error decay for all methods with respect to the time discretization for
all orders from 3 to 9. As observed before, the bDeC, bDeCu and bDeCdu methods have the same
error as they coincide on linear problems and the observed order of accuracy is the expected one.
The sDeC methods show a more irregular behavior and, on average, the errors with the sDeCu and
sDeCdu are slightly larger than the one of sDeC for a fixed ∆t.

In figure 6, we plot the error against the computational time of the methods to see which one
is more efficient. For bDeC methods there is a huge advantage in using the novel methods, in fact,
the errors are the same as the schemes are equivalent in this case. We can see that the Pareto
front on the bottom left is composed only by the novel methods. For equispaced subtimenodes
there is a larger reduction in computational cost than for Gauss–Lobatto ones, as predicted by the
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Figure 5: Linear system: Error decay for DeC with continuous line, DeCu with dashed line, DeCdu
with dash-dotted line, reference order with dotted line, adaptive DeCu with dashed black line,
adaptive DeCdu with dash-dotted gray line. Equispaced subtimenodes on the left and Gauss–
Lobatto on the right

theory. For sDeC methods the situation is not as clear as in the bDeC case. We can systematically
see a difference between sDeCu and sDeCdu, being the latter more efficient than the former. In
the context of Gauss–Lobatto subtimenodes, the sDeCdu is slightly better than the original sDeC
method from order 5 on in the mesh refinement.

Then, we analyze the adaptive methods, where at each time step the number of subtimenodes
is chosen in order to have a relative error smaller than the tolerance ε = 10−8 as in (98). As we
observe in figure 5 the error of these methods (in black and gray) is constant and independent of the
time discretization and the required computational time, see figure 6, is comparable to the very high
order schemes. In particular, the related lines are close to the Pareto front for very large ∆t steps,
while, decreasing ∆t the computational costs increase obtaining sub-optimal methods. In figure
7, we observe the average number of iterations ± half standard deviation for different adaptive
methods with respect to the time discretization. As expected, the smaller the timestep, the smaller
is the number of iterations necessary to reach the expected accuracy. It is also very interesting to
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Figure 6: Linear system: Error with respect to computational time for DeC with continuous line,
DeCu with dashed line, DeCdu with dash-dotted line, adaptive DeCu with dashed black line,
adaptive DeCdu with dash-dotted gray line. Equispaced subtimenodes on the left and Gauss–
Lobatto on the right

notice that the number of iterations, for a given ∆t, is particularly stable: the standard deviation
is almost negligible, meaning that fixing the tolerance and the time step is (informally) equivalent
to fixing the order of accuracy. This information could be possibly used to optimize even further
the adaptive methods on problems with a uniform regularity of the solution.

In figure 8, we display for different ∆t, the speed up factor of the bDeCdu method with respect
to the bDeC method computed as the ratio between the computational times required by the
bDeCdu and the bDeC method. For equispaced subtimenodes we see that, as the order increases,
the interpolation process reduces the computational time by an increasing factor which is almost
2 for order 9. For Gauss–Lobatto subtimenodes the reduction is smaller but still remarkable, close
to 4

3 the asymptotic limit, in particular for odd order methods.
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9.1.2 Vibrating system

Let us consider a vibrating system defined by the following ODE
my′′ + ry′ + ky = F cos(Ωt+ φ), t ∈ R+

0 ,

y(0) = A,

y′(0) = B,

(100)

with m, k,Ω > 0, r, F, ψ ≥ 0. It is possible to find its exact solutions through classical analytical
techniques, see for example [13], and it reads yex(t) = yh(t) + yp(t) with yp(t) = Yp cos(Ωt + ψ)
particular solution to the whole equation characterized by

Yp =
F√

(−mΩ2 + k)2 +Ω2r2
(101)

ψ = φ− arg (−mΩ2 + k + iΩr) (102)
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and yh(t) general solution to the homogeneous equation

yh(t) =


C1e

λ1t + C2e
λ2t, if r > 2

√
km,

C1e
λt + C2te

λt, if r = 2
√
km,

e−
r

2m t (C1 cos(ωt) + C2 sin(ωt)) , if r < 2
√
km,

(103)

where ω = 1
2m

√
4km− r2, λ1 and λ2 are the real roots of the characteristics polynomial associated

to (100), which are equal to λ when r = 2
√
km. C1 and C2 are two constants that can be computed

by imposing the initial conditions y(0) = A and y′(0) = B and solving the resulting 2× 2 algebraic
linear system. The mathematical steps needed to get the solution are reported in the supplementary
material, but, for the sake of compactness, are omitted here. The second order scalar ODE (100)
can be rewritten in a standard way as a vectorial first order ODE which can be numerically solved
through the methods that we have introduced. In the test, we have set m = 5, r = 2, k = 5, F = 1,
Ω = 2, φ = 0.1, A = 0.5 and B = 0.25 with a final time T = 4.

As before, we perform a convergence study for all methods for order from 3 to 9. In figure 9, we
show the error decay for all methods. Differently from the linear problems, here the methods are
not equivalent. Indeed, already for bDeC, bDeCu and bDeCdu we observe differences. Neverthe-
less, in terms of errors, they are very similar and, also comparing equispaced and Gauss–Lobatto
subtimenodes, we do not observe large deviations. On average the novel schemes are slightly less
accurate for a fixed ∆t, even if this is not true for all orders of accuracy. For the sDeC, there is
a larger difference in the errors between sDeC and sDeCu or sDeCdu, though being the order of
accuracy always correct.

These effects are visible also in figure 10. There, for bDeC with equispaced subtimenodes
the advantages of using the novel methods are evident: the error is almost the same and the
computational time reduces by almost half for high order schemes. For bDeC methods with Gauss–
Lobatto subtimenodes the computational advantage of the novel methods is not as big as the one
registered in the previous case as expected from theory, see table 6 and table 7, but still pretty
visible. For what concerns the sDeC methods with equispaced subtimenodes, the performance of
sDeCdu is similar to the one of sDeC until order 5, while, from order 6 on, the novel method is
definitely more convenient. The sDeCu method is always less efficient than the sDeCdu one; in
particular, only for very high orders it appears to be preferable to the standard method. The
general trend of the sDeC methods with Gauss–Lobatto subtimenodes is that the sDeCdu and the
sDeCu always perform, respectively, slightly better and slightly worse than the original sDeC.

The results of the adaptive methods for this test are qualitatively similar to the ones seen in the
context of the previous test. Also in this case, the threshold for the relative error has been chosen
equal to 10−8. The methods produce a constant error for any ∆t, as can be seen in figure 10. The
analysis of the error with respect to the computational cost, in figure 10, confirms the advantage in
using such methods for big values of ∆t: the associated lines progressively diverge from the Pareto
front as ∆t decreases.

The average number of iterations performed with respect to ∆t, for different adaptive methods,
is represented in figure 11 and, just like in the previous case, an increase of the timestep is, com-
prehensibly, associated to an increase in the number of iterations to match the threshold. Also in
the context of this test, one can observe a strong consistency in the number of iterations performed
in the whole simulation for a fixed ∆t with a non-relevant standard deviation.

Finally, in figure 12, we display the speed up factor of the new bDeCdu methods with respect
to the original bDeC is plotted with respect to the time step: as expected from theory, it increases
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Figure 9: Vibrating system: Error decay for DeC with continuous line, DeCu with dashed line,
DeCdu with dash-dotted line, reference order with dotted line, adaptive DeCu with dashed black
line, adaptive DeCdu with dash-dotted gray line. Equispaced subtimenodes on the left and Gauss–
Lobatto on the right

in accord with the order of accuracy with a computational advantage which is more evident for
equispaced subtimenodes.

9.1.3 Three body problem

The last ODE test we study is the three body problem in two dimensions. For each body i = 1, 2, 3,
we have to solve the following system for position xi ∈ R2 and velocity vi ∈ R2{

d
dtxi = vi,
d
dtvi =

∑
j ̸=i

mjG
||xi−xj ||3 (xi − xj),

(104)
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Figure 10: Vibrating system: Error with respect to computational time for DeC with continuous
line, DeCu with dashed line, DeCdu with dash-dotted line, adaptive DeCu with dashed black line,
adaptive DeCdu with dash-dotted gray line. Equispaced subtimenodes on the left and Gauss–
Lobatto on the right

where G = 6.67 · 10−11 is the gravitational constant, m1 = 1.98892 · 1030, m2 = 5.9722 · 1024 and
m3 = 6.4185 · 1023 are the masses of the three bodies. The initial conditions are the following

x1(0) = (0, 0), v1(0) = (0, 0), (105)

x2(0) = (149 · 109, 0), v2(0) = (0, 30 · 103), (106)

x3(0) = (−226 · 109, 0), v3(0) = (0,−24 · 103), (107)

which approximate the behavior of Sun, Earth and Mars.
The analytical solution for such problem is not known, hence, we will proceed with the same

study we did in the previous tests, with the difference that, instead of the analytical solution, we
will use a solution obtained with a high order method with a very fine grid.

In figure 13, we study the error decay of all the proposed methods. In most of the simulations
the error of the original DeC methods and the one of DeCu and DeCdu are comparable. On average
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Figure 12: Vibrating system test: Speed up factor for the bDeCdu method computed as the
computational time of the original bDeC method over the computational time of the bDeCdu
method. Equispaced subtimenodes on the left and Gauss–Lobatto on the right

the error of the classical methods are smaller, but in few simulations the opposite holds.
Looking at performances in figure 14, we see a clear advantage in the new methods with respect

to the classic one in the bDeC case, in particular in the equispaced setting. In the Gauss-Lobatto
setting, the bDeCu seems the best performing method, while for sDeC methods still the classical
methods are slightly better than the novel ones as their errors are smaller. It is remarkable that the
adaptive methods, set with a tolerance of the relative error of ε = 10−8 shows very stable results
for all ∆t. Moreover, they always reach the Pareto front for large ∆t.

In figure 15, the average number of iterations ± half standard deviation for the adaptive DeC
are depicted for different ∆t. As for the previous tests, we see an increment in the number of
iterations and increase of the order of accuracy as the timestep increases, keeping the final error
constant, and a very stable number of iterations once ∆t has been fixed.

Finally, in figure 16 we can see the enormous speed-up we obtain for the bDeCdu with respect to
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Figure 13: Three body problem: Error decay for DeC with continuous line, DeCu with dashed
line, DeCdu with dash-dotted line, reference order with dotted line, adaptive DeCu with dashed
black line, adaptive DeCdu with dash-dotted gray line. Equispaced subtimenodes on the left and
Gauss–Lobatto on the right

the bDeC, in particular for equispaced subtimenodes, where for order 8 and 9 we reach a speed-up
factor of 1.6. For the Gauss-Lobatto nodes, the advantage is less remarkable, but the novel methods
are anyway faster, up to a speed-up factor of 1.2.

9.2 Hyperbolic PDE tests

In the context of the numerical results for hyperbolic PDEs, we will focus on the bDeC and the
bDeCu methods with equispaced subtimenodes; furthermore, the order of the DeC is chosen ac-
cordingly to the one of the space discretization, i.e., for basis functions of degreeM we will consider
DeC methods of order M + 1. We will present two tests: a linear advection equation test in one
dimension and a shallow water equations one in two dimensions. We will use two stabilizations
respectively introduced in [20] and [18] and deeply studied in [44] and [45]:
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Figure 14: Three body problem: Error with respect to computational time for DeC with continuous
line, DeCu with dashed line, DeCdu with dash-dotted line, adaptive DeCu with dashed black line,
adaptive DeCdu with dash-dotted gray line. Equispaced subtimenodes on the left and Gauss–
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• Continuous interior penalty (CIP)

ST i(uh) =
∑
f∈Fh

αCIP
f

∫
f

[[∇νf
φi]] · [[∇νf

uh]]dσ(x), (108)

where αCIP
f = δCIPρ̄fh

2
f , Fh is the set of the (D−1)-dimensional faces shared by two elements

of Th, [[·]] is the jump across the face f , ∇νf
is the partial derivative in the direction νf normal

to the face f , ρ̄f is a local reference value for the spectral radius of the normal Jacobian of
the flux, hf is the diameter of f and δCIP is a parameter that must be tuned;

• Orthogonal subscale stabilization (OSS)

ST i(uh) =
∑

K∈Th

αOSS
K

∫
K

∇xφi (∇xuh −wh) dx, (109)
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adaptive DeC for different time steps. Equispaced subtimenodes on the left and Gauss–Lobatto on
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where αOSS
K = δOSSρ̄KhK , wh is the L2 projection of∇xuh onto V Q×D

h , ρ̄K is a local reference
value for the spectral radius of the normal Jacobian of the flux, hK is the diameter of K and
δOSS is a parameter that must be tuned.

9.2.1 Linear Advection Equation

The linear advection equation (LAE) in one dimension reads

ut + aux = 0, a ∈ R. (110)

We assume periodic boundary conditions. The exact solution is u(x, t) = u0(x − at) with u0(x)
being the initial condition [42]. In the numerical tests, we assume a = 1, a domain Ω = (0, 1), a
final time T = 1 and u0(x) = cos(2πx). For the spatial discretization, we considered three class of
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Figure 17: 1D LAE: bDeC with continuous line, bDeCu with dashed line, reference order with
dotted line. Convergence analysis on the left and error with respect to computational time on the
right

B2 P2 PGL2 B3 P3∗ PGL3 PGL4∗

δCIP 0.016 0.00242 0.00346 0.00702 0.00702 0.000113 0.000113

Table 8: Coefficients δCIP used for LAE in one dimension. ∗The coefficients adopted for P3 and
PGL4 are not provided in [44].

polynomial basis functions with degree n: Bn, the Bernstein polynomials [2, 5]; Pn, the Lagrange
polynomials associated to equispaced nodes; PGLn, the Lagrange polynomials associated to the
Gauss–Lobatto nodes [44]. For Bn and Pn, we used the bDeC version for hyperbolic PDEs (97)
introduced by Abgrall; for PGLn, we adopted the bDeC formulation for ODEs (20), as, in this
case, the choice of the quadrature formula associated to the Lagrangian nodes leads to a high order
diagonal mass matrix. For all of them, we used the CIP stabilization (108) with the coefficients
δCIP reported in [44] to minimize the dispersion error, even if, differently from there, we assumed
here a constant CFL = 0.1 and, clearly, the modified version of the bDeC. The coefficients are
reported in table 8. In particular, since the coefficients for P3 and PGL4 were not provided, we
used for the former the same coefficient as for B3, while, for the latter the same coefficient as for
PGL3.

The results of the convergence analysis and of the computational cost analysis are displayed in
figure 17. For a fixed number of elements, the errors of the bDeC and of the bDeCu methods are
identical and it is impossible to distinguish the lines associated to the two methods, as can bee
seen from the plot on the left. This leads to a remarkable computational advantage of the novel
method with respect to the original bDeC, visible in the plot on the right, where the error against
the computational time is depicted. The formal order of accuracy is recovered in all the cases but
for B3 and P3 for which we get only second order for both bDeC and bDeCu.

Remark 9.1 (Issues with the DeC for PDEs). The loss of accuracy for bDeC(4) and B3 elements
has been registered in other works, e.g. [44, 45, 55]. Actually, even in the original paper [5], in
which the method has been introduced, the author underlines the necessity to perform more iterations
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than what expected from theory for discretizations of order greater than or equal to 4 to recover the
formal order of accuracy. According to authors’ opinion the problem deserves a particular attention,
for this reason, the results related to B3 and P3 have not been omitted. The pathology seems to
have effect only in the context of unsteady tests and it is maybe due to a high order weak instability.
The phenomenon is currently under investigation; more details can be found in the supplementary
material. However, we remark that the problem does not occur for elements which allow a proper
mass lumping like PGL (or Cubature in 2D), as can be seen from the numerical results.

The speed up factor of the novel bDeCu with respect to the original method in the one-
dimensional tests is reported in figure 18. The speed up factors are higher than the ODE ones,
because in the implementation of the DeC for PDEs the major cost is not given by the flux evalu-
ation of previously computed stages, but the evolution of the new stages. This slightly changes the
expected and the observed speed up, providing even larger computational advantages.

9.2.2 Shallow Water Equations

The Shallow Water (SW) equations in two dimensions are a system of hyperbolic PDEs, in the
form (81), characterized by

u =

(
H
Hv

)
, F (u) =

(
Hv

Hv ⊗ v + gH2

2 I

)
, S(x,u) = 0, (111)

where H is the water height, v = (v1, v2)
T ∈ R2 is the vertically averaged speed of the flow, g is

the gravitational constant, I ∈ RD×D is the identity matrix and D = 2 is the number of physical
dimensions. We consider the computational domain Ω = (0, 3)×(0, 3). The test consists of a C6(Ω)
compactly supported unsteady vortex from the collection presented in [54] given by

u = u∞ +

{
ur0(r), if r = ||x− xm(t)||2 < r0,

0, else,
(112)

where u∞ = (1, 1, 1)T , xm(t) = xc + t · (1, 1)T and

ur0(r) =

 1
g

(
Γ
ω

)2
(λ(ωr)− λ(π))

Γ (1 + cos(ωr))
2
(x2 − xm,2)

−Γ (1 + cos(ωr))
2
(x1 − xm,1)

 , Γ =
12π

√
g∆H

r0
√
315π2 − 2048

(113)

with ω = π
r0

and the function λ defined by

λ(s) =
20

3
cos(s) +

27

16
cos(s)2 +

4

9
cos(s)3 +

1

16
cos(s)4 +

20

3
s sin(s)

+
35

16
s2 +

27

8
s cos(s) sin(s) +

4

3
s cos(s)2 sin(s) +

1

4
s cos(s)3 sin(s).

(114)

The other parameters are g = 9.81, r0 = 1, ∆H = 0.1, xc = (1, 1)T with a final time T = 1 and
Dirichlet boundary conditions.

For the spatial discretization, we considered two basis functions: Bn, the Bernstein polynomi-
als; Cn, the Cubature elements introduced in [19]. The Cubature elements are a generalization
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of the PGLn elements in two dimensions. They select Lagrangian nodes which coincide with the
quadrature ones, such that the order of accuracy is the correct one and the mass matrix is diagonal.
For Cn elements we used the bDeC (20) for ODEs, instead, for Bn we considered the PDE formu-
lation (97). For the Bernstein polynomials we adopted a CIP stabilization (108), for the Cubature
elements we adopted the OSS stabilization (109).

The tests with B2 have been run with CFL = 0.1 and δCIP = 0.04; for C2 elements we have
set CFL = 0.12 and δOSS = 0.07, the optimal coefficients minimizing the dispersion error of the
original bDeC according to the linear analysis performed in [45]; for C3 we adopted CFL = 0.015
and δOSS = 0.2.
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Figure 18: Speed up in the hyperbolic tests of bDeCu with respect to bDeC. 1D LAE on the left
and 2D SW on the right
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Figure 19: 2D SW: bDeC with continuous line, bDeCu with dashed line, reference order with dotted
line. Convergence analysis on the left and error with respect to computational time on the right

The results of the convergence analysis and of the computational cost analysis are displayed
in figure 19. From the plot on the left, we can see that, also in this case, the errors produced by
the novel and the original bDeC method are very close to the point that the related lines coincide.
This is surprising as, differently from before, in this case we are dealing with a nonlinear system.
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The resulting computational advantage can be seen in the plot on the right. The formal order of
accuracy is recovered in all the cases and the speed up factor, plotted in 18, proves the convenience
in using the novel bDeCu formulation instead of the original bDeC.

We conclude this section with one last remark: the computational advantage registered with B2
is much higher with respect to the one of C2 and even of C3. This is due to the fact that we have run
the simulations with different codes: the results obtained with B2 are referred to an implementation
in Fortran, while, for C2 and C3 we used Parasol, a Python implementation developed by Sixtine
Michel for [45] and kindly provided to us. A more careful implementation would increase further
the speed up factors associated to such elements.

Remark 9.2 (On the expected computational gain). Looking at table 6, one can see that the
number of stages of bDeC3 and bDeCu3 is identical. Nevertheless, as observed in remark 5.1, the
number of stages does not strictly correspond to the computational time. If we do not consider the
stages computed via interpolation, we get the theoretical speed up factor 5

4 = 1.25, which is what we
obtained in the numerical test for B2.

10 Conclusions and further developments

In this work, we have investigated the analytical and numerical aspects of two novel families of
efficient explicit DeC methods. The novel methods are obtained by the introduction of interpolation
processes between the iterations, which increase the number of nodes in order to match the accuracy
of the approximation associated to the current iteration. In particular, we proved that for some of
the novel methods the stability region coincides with the one of the original methods. The novel
methods have been tested on classical benchmarks in the ODE context revealing, in most of the
cases, a remarkable computational advantage with respect to the original ones. Furthermore, the
interpolation strategies have been used to design adaptive schemes. Finally, we successfully proved
the good performances of the novel methods in the context of the numerical solution of hyperbolic
PDEs with continuous space discretizations. Overall, we believe that this work can alleviate the
computational costs of DeC methods, which have been recently used also for complicated problems,
but also for other similar schemes that suffer of the same iteration issue. Investigations of other
numerical frameworks are planned and, in particular, we are working on applications to hyperbolic
PDEs (with FV and ADER schemes), in which also the order of the space reconstruction is increased
gradually iteration by iteration. We hope to spread broadly this technique in the community in
order to save computational time and energy for computing various ODE and PDE problems, as
only little effort is required to embed the novel modification in an existing DeC code.

Supplementary information

The interested reader is referred to the supplementary material for all the proofs omitted in this
document for the sake of compactness.
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