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Introduction

In this supplementary material, we show the proofs and the details that were too lengthy to be put
in the principal manuscript. We show the proof of the Deferred Correction procedure in a general
framework in section 1. In section 2, we provide the proofs of the accuracy and of the properties
of the operators L2

∆ and L1
∆ of the bDeC method in the context of ODEs, and we show how the

sDeC method can be seen as a perturbation of the bDeC. In section 3, we prove the properties of
the operators L2

∆ and L1
∆ of the bDeC formulation for the continuous Galerkin (CG) finite element

framework and we investigate the issues experienced in many works with such formulation. Finally,
in section 4, we show how to find the analytical solution to the ODE modeling a monodimensional
vibrating system.

For each section, we recall the basic notions of the main document needed for the discussion, in
order to make this document as much self-contained as possible, and sometimes deepened, in order
to increase the understandability.

1 DeC in the abstract framework

Assume that we have two operators, depending on a parameter ∆, between two normed vector
spaces

L1
∆,L2

∆ : X −→ Y (1)

then the following theorem holds.

Theorem 1.1 (Deferred Correction accuracy). Let the following hypotheses hold

1. Existence of a unique solution to L2
∆

∃!u∆ ∈ X solution of L2
∆ such that L2

∆(u∆) = 0Y ;
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2. Coercivity-like property of L1
∆

∃α1 ≥ 0 independent of ∆ s.t.∥∥L1
∆(v)− L1

∆(w)
∥∥
Y
≥ α1 ∥v −w∥X , ∀v,w ∈ X; (2)

3. Lipschitz-continuity-like property of L1
∆ − L2

∆

∃α2 ≥ 0 independent of ∆ s.t.∥∥(L1
∆(v)− L2

∆(v)
)
−
(
L1
∆(w)− L2

∆(w)
)∥∥

Y
≤ α2∆ ∥v −w∥X , ∀v,w ∈ X. (3)

Then, if we iteratively define u(p) as the solution of

L1
∆(u

(p)) = L1
∆(u

(p−1))− L2
∆(u

(p−1)), p = 1, . . . , P, (4)

we have that ∥∥∥u(P ) − u∆

∥∥∥
X

≤
(
∆
α2

α1

)P ∥∥∥u(0) − u∆

∥∥∥
X
. (5)

Proof. By using the coercivity-like property of L1
∆ and the definition of L1

∆(u
(p)) in (4), we have∥∥∥u(P ) − u∆

∥∥∥
X

≤ 1

α1

∥∥∥L1
∆(u

(P ))− L1
∆(u∆)

∥∥∥
Y
=

1

α1

∥∥∥L1
∆(u

(P−1))− L2
∆(u

(P−1))− L1
∆(u∆)

∥∥∥
Y
.

(6)
Since u∆ is the solution of L2

∆, we have that L2
∆(u∆) = 0Y and we can add it inside the norm on

the right hand side of the equality in (6) and we get∥∥∥u(P ) − u∆

∥∥∥
X

≤ 1

α1

∥∥∥[L1
∆(u

(P−1))− L2
∆(u

(P−1))
]
−
[
L1
∆(u∆)− L2

∆(u∆)
]∥∥∥

Y
. (7)

Now, by applying the Lipschitz-continuity-like property we get∥∥∥u(P ) − u∆

∥∥∥
X

≤ ∆
α2

α1

∥∥∥u(P−1) − u∆

∥∥∥
X
. (8)

By repeating these calculations recursively we get the thesis.

2 The Deferred Correction for systems of ODEs

We will focus on the numerical solution of the general Cauchy problem{
d
dtu(t) = G(t,u(t)), t ∈ [0, T ],

u(0) = z,
(9)

with u : R+
0 → RQ, z ∈ RQ and G : R+

0 × RQ → RQ a continuous map Lipschitz continuous with
respect to u uniformly with respect to t with a Lipschitz constant L. This ensures the existence of
a unique solution for the system of ODEs (9).

We will assume here a classical one-step method setting: we discretize the time domain [0, T ]
by introducing N + 1 time nodes tn, which are such that 0 = t0 < t1 < · · · < tN = T and therefore
inducing N intervals [tn, tn+1], we denote by un an approximation of the exact solution u(tn) at
the time tn and we look for a recipe to compute un+1 by knowing un for each n = 0, 1, . . . , N − 1.
We will focus on the generic time interval [tn, tn+1] with ∆t = tn+1 − tn and, as in the context of
a general consistency analysis, we will assume un = u(tn).
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2.1 bDeC

In the general time step [tn, tn +∆t] we introduce M + 1 subtimenodes t0, . . . , tM such that tn =
t0 < t1 < · · · < tM = tn + ∆t, which are assumed here to be equispaced. We will refer to u(tm)
as the exact solution in the node tm and to um as the approximation of the solution in the same
node. Just for the first node, we set u0 := un and, in the accuracy study, we will consider it to be
exact, i.e., u0 = u(t0) = u(tn) = un.

2.1.1 Definition of L2
∆

An exact integration of the system of ODEs over [t0, tm] would result in

u(tm)− u0 −
∫ tm

t0
G(t,u(t))dt = 0, ∀m = 1, . . . ,M, (10)

from which we would have the exact solution u(tm).
Unfortunately, we cannot perform in general the exact integration and we need to make some

approximations. We replace G(t,u(t)) by the Lagrange interpolating polynomial of degree M
associated to the M + 1 nodes tm with m = 0, 1, . . . ,M, getting

um − u0 −
∫ tm

t0

M∑
ℓ=0

G(tℓ,u(tℓ))ψℓ(t)dt = 0, ∀m = 1, . . . ,M. (11)

Moving the finite sum and the vectors G(tℓ,u(tℓ)) outside of the integral, (11) can be recast as

um − u0 −∆t

M∑
ℓ=0

θmℓ G(tℓ,u(tℓ)) = 0, ∀m = 1, . . . ,M, (12)

where the coefficients θmℓ are the normalized integrals of the Lagrange basis functions and do not
depend on ∆t.

Proposition 2.1. um satisfying (12) is an (M + 1)-order accurate approximation of u(tm).

Proof. For the proof, we will focus on the original equivalent formulation (11). Let us compute
u(tm)−um with um got by (11). From (10), (11) and the M -order accuracy on the approximation
of G(t,u(t)) due to the interpolation with Lagrange polynomials of degree M we have

u(tm)− um = u0 +

∫ tm

t0
G(t,u(t))dt− u0 −

∫ tm

t0

M∑
ℓ=0

G(tℓ,u(tℓ))ψℓ(t)dt

=

∫ tm

t0

[
G(t,u(t))−

M∑
ℓ=0

G(tℓ,u(tℓ))ψℓ(t)

]
dt

=

∫ tm

t0
O(∆tM+1)dt = O(∆tM+2).

(13)
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Despite this result, the previous formula cannot be used in practice because the exact solution
u(tℓ) in the nodes tℓ with ℓ = 1, . . . ,M is not available.

We use the approximated values uℓ in place of them, thus getting the following implicit formu-
lation

um − u0 −∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ) = 0 ∀m = 1, . . . ,M, (14)

which leads to the definition of our L2
∆ operator

L2
∆(u) =



u1 − u0 −∆t
∑M

ℓ=0 θ
1
ℓG(tℓ,uℓ)

...

um − u0 −∆t
∑M

ℓ=0 θ
m
ℓ G(tℓ,uℓ)

...

uM − u0 −∆t
∑M

ℓ=0 θ
M
ℓ G(tℓ,uℓ)


with u =



u1

...
um

...
uM

 . (15)

Proposition 2.2. Let um be the m-th component of the solution of L2
∆(u) = 0. Then, um is an

(M + 1)-order accurate approximation of u(tm).

Proof. Let us consider the following operator J : R(M×Q) → R(M×Q) defined as

y = J (u) =



u0 +∆t
∑M

ℓ=0 θ
1
ℓG(tℓ,uℓ)

...

u0 +∆t
∑M

ℓ=0 θ
m
ℓ G(tℓ,uℓ)

...

u0 +∆t
∑M

ℓ=0 θ
M
ℓ G(tℓ,uℓ)


with y =



y1

...
ym

...
yM

 . (16)

Again, we remark that u0, the vector corresponding to the initial subtimenode, is always fixed. The
proof consists of two parts. We will first show that, for ∆t small enough, J is a contraction over
R(M×Q), which is a finite dimensional space (and so complete with respect to the distance induced
by any norm). This will ensure, thanks to the Banach fixed-point theorem, that there exists a fixed
point ũ such that ũ = J (ũ) and that it is unique. It is very easy to see that this fixed point
is the (unique) solution to the operator L2

∆. Then, by iteratively applying the operator, we will
generate a sequence of vectors converging to this fixed point and we will show that this limit is an
(M + 1)-order accurate approximation of the exact solution to the system of ODEs.

Let us first prove that J is a contraction for ∆t small enough. We recall that θmℓ are constant
coefficients independent on ∆t and bounded by Cθ = max |θmℓ | and that G(t,u) is Lipschitz-
continuous with respect to u uniformly with respect to t with constant L. Now, using the triangular
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inequality, we have

∥J (v)− J (w)∥∞ =∆t

∥∥∥∥∥∥∥∥∥∥∥∥
M∑
ℓ=0



θMℓ
[
G(tℓ,vℓ)−G(tℓ,wℓ)

]
...

θmℓ
[
G(tℓ,vℓ)−G(tℓ,wℓ)

]
...

θ1ℓ
[
G(tℓ,vℓ)−G(tℓ,wℓ)

]



∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤∆tCθ

M∑
ℓ=0

∥∥G(tℓ,vℓ)−G(tℓ,wℓ)
∥∥
∞,Q

≤∆tCθ

M∑
ℓ=0

L
∥∥vℓ −wℓ

∥∥
∞,Q

≤ ∆tCθLM ∥v −w∥∞ .

(17)

The last inequality follows from the fact that v − w contains as components all the vectors
vℓ −wℓ for all ℓ = 1, . . . ,M and from the fact that v0 = w0 = u0 and so∥∥vℓ −wℓ

∥∥
∞,Q

≤ ∥v −w∥∞ , ∀ℓ = 1, . . . ,M, (18)

where ∥·∥∞,Q is the infinity norm over RQ, while ∥·∥∞ is the infinity norm over RM×Q. For

∆t < 1
CθLM , we have

∥J (v)− J (w)∥∞ < δ ∥v −w∥∞ (19)

with δ < 1 and so J is a contraction. As anticipated, there exists a unique fixed point ũ, solution
of L2

∆.
For the second part, we will prove the accuracy of the iteration of the fixed point procedure.

We consider the sequence {y(k)}k∈N given by the following recursive definition

y(k) = J (y(k−1)) (20)

with its general element being

y(k) =



y1,(k)

...
ym,(k)

...
yM,(k)

 , with y(0) =



y1,(0)

...
ym,(0)

...
yM,(0)

 =



u0

...
u0

...
u0

 . (21)

The general component ym,(k) of y(k) is a Q-dimensional vector. The first index m is referred
to the subtimenode, the second is the index of the sequence. In order to have a more compact
notation, we will not write G(t0,u0) as a separate term but we set y0,(k) = u0 ∀k ≥ 0, because the
value of the solution at the first subtimenode is known. From theory, we know that this sequence
converges to the fixed point of J and so to the solution of the operator L2

∆.
Let us prove by induction on k that for all m = 1, . . . ,M , we have

ym,(k) = u(tm) +O(∆tmin(k+1,M+2)). (22)
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The base case, for k = 0, is clearly true as a simple Taylor expansion gives

u(tm) = u(t0) + ∆tG(t0,u(t0))(tm − t0) +O(∆t2) = ym,(0) +O(∆t), (23)

reminding that d
dtu(t) = G(t,u(t)).

For the induction step, we assume that ym,(k) = u(tm) +O(∆tmin(k+1,M+2)) and we will prove
that ym,(k+1) = u(tm) +O(∆tmin(k+2,M+2)). By exploiting the Lipschitz-continuity of G, we have
that

G(tℓ,u(tℓ)) = G(tℓ,yℓ,(k)) +∇uG(tℓ,yℓ,(k))(u(tℓ)− yℓ,(k)) +O

(∥∥∥u(tℓ)− yℓ,(k)
∥∥∥2
∞,Q

)
= G(tℓ,yℓ,(k)) +O(∆tmin(k+1,M+2)),

(24)

where ∇uG(tℓ,yℓ,(k)) is bounded in some norm by L. We are then able to prove that

ym,(k+1) = u(t0) + ∆t

M∑
ℓ=0

θmℓ G(tℓ,yℓ,(k))

= u(t0) + ∆t

M∑
ℓ=0

θmℓ G(tℓ,u(tℓ)) +O(∆t1+min(k+1,M+2)).

(25)

Now, thanks to the (M + 1)-order accuracy of (12), we have that

ym,(k+1) = u(t0) + ∆t

M∑
ℓ=0

θmℓ G(tℓ,u(tℓ)) +O(∆t1+min(k+1,M+2))

= u(tm) +O(∆tM+2) +O(∆t1+min(k+1,M+2)) = u(tm) +O(∆tmin(k+2,M+2)).

(26)

Hence, for k > M the components y(k),m are an (M +1) accurate solution of u(tm) and their limit
for k → ∞, i.e., the solutions of L2

∆, is as well an (M +1) approximation of the exact solution.

2.1.2 Definition of L1
∆

If we apply the Euler method to get the approximate solution um in the node tm we have

um − u0 −∆tβmG(t0,u0) = 0, (27)

where βm = tm−t0

∆t .

Proposition 2.3. Let um be the solution of (27), then um is first order accurate, i.e., u(tm)−um =
O(∆t2).

Proof. We consider the difference between the exact solution u(tm) to our ODEs system and um got
from (27). Through a first order Taylor expansion of u(t) and from the fact that d

dtu(t) = G(t,u(t)),
we have

u(tm)− um = u0 +G(t0,u0)(tm − t0) +O(∆t2)− u0 −∆tβmG(t0,u0) = O(∆t2), (28)

because u0 = u(t0) = u(tn) = un and βm = tm−t0

∆t .
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Directly from (27), we get our explicit, low order operator L1
∆ : R(M×Q) → R(M×Q) defined as

L1
∆(u) =



u1 − u0 −∆tβ1G(t0,u0)
...

um − u0 −∆tβmG(t0,u0)
...

uM − u0 −∆tβMG(t0,u0)

 with u =



u1

...
um

...
uM

 . (29)

2.1.3 Proof of the properties of L1
∆ and L2

∆

We equip X = Y = R(M×Q) with the infinity norm ∥·∥∞ and we recall here the hypotheses that are
needed to apply the Deferred Correction method from the abstract formulation but characterizing
them to our case.

i) Existence of a solution to L2
∆

∃!u∆ ∈ R(M×Q) solution of L2
∆, i.e. such that L2

∆(u∆) = 0;

ii) Coercivity-like property of L1
∆

∃α1 ≥ 0 independent of ∆t s.t.∥∥L1
∆(v)− L1

∆(w)
∥∥
∞ ≥ α1 ∥v −w∥∞ , ∀v,w ∈ R(M×Q); (30)

iii) Lipschitz-continuity-like condition of L1
∆ − L2

∆

∃α2 ≥ 0 independent of ∆t s.t.∥∥[L1
∆(v)− L2

∆(v)
]
−
[
L1
∆(w)− L2

∆(w)
]∥∥

∞ ≤ α2∆t ∥v −w∥∞ , ∀v,w ∈ R(M×Q). (31)

Proof. We prove in order the three properties.

i) Existence of a solution to L2
∆

The first property, i.e., the existence of a unique solution to L2
∆, has already been shown in

the proof of its (M + 1)-order accuracy by introducing the operator J : R(M×Q) → R(M×Q)

defined by (16). We showed that for ∆t small enough it is a contraction over the space
R(M×Q) equipped with the infinity norm, so, there exists a unique fixed point of J , which is
the unique solution to L2

∆.

ii) Coercivity-like property of L1
∆

Let us now consider two generic vectors v,w ∈ R(M×Q)

v =



v1

...
vm

...
vM

 , w =



w1

...
wm

...
wM

 , (32)
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with vm andwm form = 1, . . . ,M genericQ-dimensional vectors. From a direct computation,
we have

L1
∆(v)− L1

∆(w)

=



v1 − u0 −∆tβ1G(t0,u0)
...

vm − u0 −∆tβmG(t0,u0)
...

vM − u0 −∆tβMG(t0,u0)

−



w1 − u0 −∆tβ1G(t0,u0)
...

wm − u0 −∆tβmG(t0,u0)
...

wM − u0 −∆tβMG(t0,u0)

 =



v1 −w1

...
vm −wm

...
vM −wM

 ,

(33)

i.e., L1
∆(v)− L1

∆(w) = v −w. Then,∥∥L1
∆(v)− L1

∆(w)
∥∥
∞ = ∥v −w∥∞ (34)

and thus the coercivity-like property of L1
∆ is verified and results in an equality. Again, we

remark that u0 is given, it is part of the problem and embedded in the operators L1
∆ and L2

∆.

iii) Lipschitz-continuity-like condition of L1
∆ − L2

∆

Again, we consider a direct computation but focusing, for the sake of compactness, on the
Q-dimensional component got for a general m[

L1,m
∆ (v)− L2,m

∆ (v)
]
−
[
L1,m
∆ (w)− L2,m

∆ (w)
]

=vm − u0 −∆tβmG(t0,u0)− vm + u0 +∆t

M∑
ℓ=0

θmℓ G(tℓ,vℓ)

−

[
wm − u0 −∆tβmG(t0,u0)−wm + u0 +∆t

M∑
ℓ=0

θmℓ G(tℓ,wℓ)

]

=∆t

M∑
ℓ=0

θmℓ
(
G(tℓ,vℓ)−G(tℓ,wℓ)

)
,

(35)

where clearly v0 = w0 = u0. As we pointed out several times, u0 is not an unknown, it is a
given vector, it is “part” of the problem and is embedded in the operators. We use v0 and
w0 instead of u0 for the sake of compactness. Let us recall that θmℓ , for m = 1, . . . ,M and
ℓ = 0, 1, . . . ,M , are fixed constant coefficients independent of ∆t, thus bounded in absolute
value by a positive constant Cθ, and that G(t,u) is Lipschitz-continuous with respect to u
uniformly with respect to t with a Lipschitz constant L. By applying the triangular inequality,
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we have∥∥[L1
∆(v)− L2

∆(v)
]
−
[
L1
∆(w)− L2

∆(w)
]∥∥

∞

=∆t

∥∥∥∥∥∥∥∥∥∥∥∥
M∑
ℓ=0



θ1ℓ
[
G(tℓ,vℓ)−G(tℓ,wℓ)

]
...

θmℓ
[
G(tℓ,vℓ)−G(tℓ,wℓ)

]
...

θMℓ
[
G(tℓ,vℓ)−G(tℓ,wℓ)

]



∥∥∥∥∥∥∥∥∥∥∥∥
∞

≤ ∆tCθ

M∑
ℓ=0

∥∥∥∥∥∥∥∥∥∥∥∥



G(tℓ,vℓ)−G(tℓ,wℓ)
...

G(tℓ,vℓ)−G(tℓ,wℓ)
...

G(tℓ,vℓ)−G(tℓ,wℓ)



∥∥∥∥∥∥∥∥∥∥∥∥
∞

=∆tCθ

M∑
ℓ=0

∥∥G(tℓ,vℓ)−G(tℓ,wℓ)
∥∥
∞,Q

≤ ∆tCθ

M∑
ℓ=0

L
∥∥vℓ −wℓ

∥∥
∞,Q

≤ ∆tCθLM ∥v −w∥∞ ,

(36)

where the last inequality follows from the fact that v − w contains as components all the
vectors vℓ − wℓ for ℓ = 1, . . . ,M and from the fact that v0 = w0 = u0. This proves the
Lipschitz-continuity-like condition of L1

∆−L2
∆. For more clarity, we underline that the infinity

norm ∥·∥∞,Q is applied to Q-dimensional vectors (and not to (M × Q)-dimensional vectors
like ∥·∥∞). This completes the analysis of the Deferred Correction applied to the context of
the systems of ordinary differential equations.

2.2 sDeC

The construction of this DeC method makes use of the definition of the subtimenodes introduced
for the bDeC method. The main difference is that here we focus on the integration of the system
of ODEs in the intervals [tm−1, tm] rather than [t0, tm].

2.2.1 Definition of L2
∆

We start from the exact integration of the system of ODEs in the interval [tm−1, tm], which would
result in

u(tm)− u(tm−1)−
∫ tm

tm−1

G(t,u(t))dt = 0, ∀m = 1, . . . ,M. (37)

Again, in order to get an expression that can actually be used, we replace G(t,u(t)) with its M -
order accurate Lagrange interpolant of degree M associated to the M + 1 subtimenodes tm and
replace u(tℓ) by uℓ thus getting

um − um−1 −
∫ tm

tm−1

M∑
ℓ=0

G(tℓ,uℓ)ψℓ(t)dt = 0, ∀m = 1, . . . ,M. (38)

Moving the finite sum and the vectors G(tℓ,uℓ) outside of the integral and performing the exact
integration of the Lagrangian polynomial functions ψℓ(t) in the subinterval [tm−1, tm] we get

um − um−1 −∆t

M∑
ℓ=0

δmℓ G(tℓ,uℓ) = 0, ∀m = 1, . . . ,M, (39)
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where, just like in the previous case, coefficients δmℓ are normalized integrals of the Lagrange basis
functions independent of ∆t.

Our implicit (M + 1)-order accurate operator L2
∆ : R(M×Q) → R(M×Q) is therefore defined as

L2
∆(u) =



u1 − u0 −∆t
∑M

ℓ=0 δ
1
ℓG(tℓ,uℓ)

...

um − um−1 −∆t
∑M

ℓ=0 δ
m
ℓ G(tℓ,uℓ)

...

uM − uM−1 −∆t
∑M

ℓ=0 δ
M
ℓ G(tℓ,uℓ)


with u =



u1

...
um

...
uM

 . (40)

2.2.2 Definition of L1
∆

Also in this case the operator L1
∆ is obtained by a first-order approximation in the integration of

our initial system of ODEs. Applying the Euler method in the subinterval [tm−1, tm], we get

um − um−1 −∆tγmG(tm−1,um−1) = 0 (41)

where γm = tm−tm−1

∆t are normalized coefficients. The explicit, first-order order operator L1
∆ :

R(M×Q) → R(M×Q) is defined as

L1
∆(u) =



u1 − u0 −∆tγ1G(t0,u0)
...

um − um−1 −∆tγmG(tm−1,um−1)
...

uM − uM−1∆tγMG(tM−1,uM−1)

 with u =



u1

...
um

...
uM

 . (42)

2.2.3 sDeC as a perturbation of bDeC

The proofs seen for the previous formulation cannot be extended to this case in a straightforward
way, but it is possible to show that the second formulation is actually a perturbation of the first
one with no impact on the accuracy. Let us recall here, for more clarity, the updating formulas
of the bDeC and of the sDeC methods for the computation of um,(p), m-th component of the
approximated solution at the iteration p,

• bDeC

u
m,(p)
b = u0 +∆t

M∑
ℓ=0

θmℓ G(tℓ,u
ℓ,(p−1)
b ) (43)

• sDeC

um,(p)
s = u0 +∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,uℓ,(p)

s )−G(tℓ,uℓ,(p−1)
s )

)
+∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ,(p−1)
s ). (44)
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The difference lies in the term

∆t

m−1∑
ℓ=0

γℓ
(
G(tℓ,uℓ,(p)

s )−G(tℓ,uℓ,(p−1)
s )

)
, (45)

which consists in a sum of differences of evaluations of the function G multiplied by ∆t. We
will show now why this term can be seen as a perturbation of the updating formula of the first
formulation with no impact on the accuracy. This actually depends on the fact that uℓ,(p) and
uℓ,(p−1) are approximations of the same quantity.

Proposition 2.4 (sDeC accuracy). The approximation u
m,(p)
s provided by the sDeC (44) is an

O(∆tp+1) perturbation of u
m,(p)
b obtained through the bDeC (43).

Proof. We will prove it by induction over p and m. The base case of the induction is clearly true

as u
m,(p)
s = u

m,(p)
b = u0 whenever p or m are equal to 0. We focus now on the induction step. We

select p,m ≥ 1 and assume

uℓ,(k)
s = u

ℓ,(k)
b +O(∆tk+1), for

{
k < p, ∀ℓ = 1, . . . ,M, or

k = p, ∀ℓ ≤ m− 1
(46)

and we will prove that u
m,(p)
s = u

m,(p)
b +O(∆tp+1). We start from (44) and, thanks to the induction

hypothesis, to the Lipschitz-continuity of G and by definition of u
m,(p)
b in (43), we have that

um,(p)
s = u0 +∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,uℓ,(p)

s )−G(tℓ,uℓ,(p−1)
s )

)
+∆t

M∑
ℓ=0

θmℓ G(tℓ,uℓ,(p−1)
s )

= u0 +∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,u

ℓ,(p)
b )−G(tℓ,u

ℓ,(p−1)
b ) +O(∆tp)

)
+∆t

(
M∑
ℓ=0

θmℓ G(tℓ,u
ℓ,(p−1)
b ) +O(∆tp)

)

= u
m,(p)
b +∆t

m−1∑
ℓ=0

γℓ+1
(
G(tℓ,u

ℓ,(p)
b )−G(tℓ,u

ℓ,(p−1)
b )

)
+O(∆tp+1).

(47)

Thanks again to the Lipschitz-continuity of G and to the results on the accuracy of the bDeC
method, for each ℓ = 1, . . . ,m− 1, we can write∥∥∥G(tℓ,u

ℓ,(p)
b )−G(tℓ,u

ℓ,(p−1)
b )

∥∥∥
∞,Q

≤ L
∥∥∥uℓ,(p)

b − u
ℓ,(p−1)
b

∥∥∥
∞,Q

≤ L
∥∥uℓ

∆ − uℓ
∆ +O(∆tp)

∥∥
∞,Q

= O(∆tp),
(48)

where uℓ
∆ is the ℓ-th component of u∆, solution to L2

∆; further, for ℓ = 0 we have G(tℓ,u
ℓ,(p)
b ) −

G(tℓ,u
ℓ,(p−1)
b ) = 0 as the component at the initial subtimenode is always equal to u0. By the

previous fact, coming back to (47), we get the thesis

um,(p)
s = u

m,(p)
b +O(∆tp+1). (49)
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3 Continuous Galerkin FEM

Let Ω ⊂ RD an open regular bounded domain. The general form of a hyperbolic system of balance
laws reads

∂

∂t
u(x, t) + divxF (u(x, t)) = S(x,u(x, t)), (x, t) ∈ Ω× R+

0 , (50)

provided with some initial condition u(x, 0) = u0(x) on Ω and some boundary conditions on ∂Ω.
Let us define Th a triangulation of Ω and denote with K the general element, which we assume

to be convex and closed. Consider the continuous finite element space Vh = {g ∈ C0(Ω) : g|K ∈
PM (K) ∀K ∈ Th}, let {φi}i=1,...,I be a basis of Vh such that each φi can be associated to a degree
of freedom xi ∈ Ω and has support contained in Ki := ∪K∈KiK, where Ki := {K ∈ Th : xi ∈ K}.
Further, we assume the basis functions normalized in such a way that

∑I
i=1 φi ≡ 1. The general

form of the semidiscrete formulation of a continuous Galerkin FEM scheme consists in finding a
solution uh(x) =

∑
i ci(t)φi(x), with ci(t) ∈ RQ at any time t, such that

∑
K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)
d

dt
cj(t) + ϕi(c(t)) = 0, ∀i = 1, . . . , I, (51)

where ST i(uh) are some stabilization terms and the space residuals ϕi(c(t)) are defined as

ϕi(c(t)) =
∑

K∈Ki

∫
K

(divxF (uh(x, t))− S(x,uh(x, t)))φi(x)dx+ ST i(uh), (52)

with c(t) ∈ RI×Q containing as components all the Q-dimensional vectors ci(t) associated to the
DoFs.

3.1 DeC for CG

In this context, the parameter ∆ of the Deferred Correction is the mesh parameter h of the space
discretization. We assume CFL conditions on the temporal step size, i.e., ∆t ≤ Ch for some fixed
constant C > 0. We will implicitly assume the Bernstein polynomials as basis functions; never-
theless, the method can be extended also to other basis functions provided that some constraints
concerning the construction of the operator L1

∆, specified in the following, are fulfilled.

3.1.1 Preliminary results

Here, we will present some useful preliminary results that will be used later to prove the first-order
accuracy of L1

∆ and the Lipschitz-continuity-like condition of L1
∆−L2

∆. In particular, we will prove
two propositions, via some intermediate lemmas. We will focus on the Bernstein polynomials;
nevertheless the results can be easily extended to other polynomial bases.

Let us consider a general element K, the vector space PM (K) of the scalar polynomial functions
of degree M defined on it and u ∈ PM (K). We can express u as a linear combination of the
Bernstein polynomials {φr}r=1,...,R of degree M defined on the element because they are a basis of
PM (K). We have thus

u(x) =

R∑
r=1

crφr(x), ∀x ∈ K, (53)
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where the scalar coefficients cr are the Bernstein coefficients associated to the DoFs xr ∈ K.
Another possibility is to express u in terms of the Lagrange basis functions {φ̂r}r=1,...,R defined on
K which constitute another basis of PM (K). Therefore, we can also write

u(x) =

R∑
r=1

vrφ̂r(x), ∀x ∈ K, (54)

where the scalar coefficients vr are the values of u in the DoFs xr ∈ K. We define the vector c ∈ RR

of the coefficients of u ∈ PM (K) with respect to the Bernstein basis and the vector v ∈ RR of the
values of u in all the DoFs of K, i.e., the coefficients with respect to the Lagrange basis.

It is always possible to pass from the Bernstein coefficients to the values in the DoFs through
the transition matrix T defined as

T =


φ1(x1) φ2(x1) . . . φR(x1)
φ1(x2) φ2(x2) . . . φR(x2)

...
...

. . .
...

φ1(xR) φ2(xR) . . . φR(xR)

 . (55)

The general element of T = (Tij)i,j=1,...,R with row index i and column index j is Tij = φj(xi) and
we have v = Tc and c = T−1v.

Remark 3.1 (Independence of the mesh parameter.). Neither the matrix T nor its inverse T−1

depend on the size of the element K. They just depend on the spatial dimension D and on the
degree M . Once we fix D and M , for any specific type of elements, for example the simplices, we
have a fixed T and T−1.

It is clear that the sum of the elements of each row of T is equal to 1, in fact

R∑
j=1

Tij =

R∑
j=1

φj(xi) = 1, ∀i = 1, . . . , R. (56)

This is due to the assumption on the basis functions, which are normalized in such a way that that

R∑
j=1

φj(x) ≡ 1, ∀x ∈ K. (57)

Also its inverse T−1 enjoys the same property as we will prove in the next lemma.

Lemma 3.1. The sum of the elements of each row of T−1, inverse of the transition matrix defined
in (55), is equal to 1.

Proof. Let us observe that proving the thesis is equivalent to prove that T−11 = 1 where 1 ∈ RR

is a vector with all the entries equal to 1. From (56) we have that T1 = 1. Thanks to the previous
equality, we have that

T−11 = T−1T1 = 1 (58)

which is the thesis.
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The previous result will be used to prove the following lemma.

Lemma 3.2. For any polynomial u ∈ PM (K) such that

u(x) =

R∑
r=1

crφr(x) =

R∑
r=1

vrφ̂r(x), ∀x ∈ K, (59)

where φr are the Bernstein polynomials of PM (K), cr the Bernstein coefficients, φ̂r the Lagrange
polynomials of PM (K) and vr the Lagrange coefficients, it holds that

sup
i,j=1,...,R

|ci − cj | ≤ C̃ sup
i,j=1,...,R

|vi − vj |, (60)

where C̃ > 0 is independent of the size and aspect ratio of K.

Proof. The proof is a straightforward consequence of lemma 3.1. From the fact that c = T−1v we
know that every Bernstein coefficient cr can be expressed as a linear combination of the values vk
in the DoFs through the coefficients of the row r of the matrix T−1

ci =

R∑
k=1

(T−1)ikvk, cj =

R∑
k=1

(T−1)jkvk (61)

and therefore

|ci − cj | =

∣∣∣∣∣
R∑

k=1

(T−1)ikvk −
R∑

k=1

(T−1)jkvk

∣∣∣∣∣ . (62)

Now, from lemma 3.1, we know that the coefficients (T−1)rk are such that

R∑
k=1

(T−1)rk = 1 ∀r = 1, . . . , R. (63)

This is in particular true for r = i and r = j and so there exist some coefficients λi,jk,ℓ, depending
on i and j, such that (62) can be written as

|ci − cj | =

∣∣∣∣∣
R∑

k=1

(T−1)ikvk −
R∑

k=1

(T−1)jkvk

∣∣∣∣∣ =
∣∣∣∣∣∣

R∑
k,ℓ=1

λi,jk,ℓ(vk − vℓ)

∣∣∣∣∣∣ . (64)

One simple choice of these coefficients is given by λi,jk,ℓ =
(T−1)ik−(T−1)jk

R and a simple computation
can be used to prove it. This might lead to suboptimal values of the estimations. The coefficients
λi,jk,ℓ, like the coefficients Tij and (T−1)ij , do not depend on the size of K, and, thus, they can
be bounded by a positive constant Cλ, which depends just on the type of the element considered.
Then, thanks to the triangular inequality, (64) gives

|ci − cj | =

∣∣∣∣∣∣
R∑

k,ℓ=1

λi,jk,ℓ(vk − vℓ)

∣∣∣∣∣∣ ≤
R∑

k,ℓ=1

|λi,jk,ℓ||vk − vℓ| ≤ Cλ

R∑
k,ℓ=1

|vk − vℓ|. (65)
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Since the number of dimensions D and the degree M are fixed, also R is fixed and so the number
of terms in the sum. Therefore, from (65) we get

|ci − cj | ≤ Cλ

R∑
k,ℓ=1

|vk − vℓ| ≤ C̃ sup
i,j=1,...,R

|vi − vj | (66)

for some C̃ = CλR
2 independent of the size of K.

This allows to prove the following result.

Lemma 3.3. For any polynomial u ∈ PM (K) such that u(x) =
∑R

r=1 crφr(x), ∀x ∈ K, where φr

are the Bernstein polynomials of PM (K) and cr the Bernstein coefficients, then

sup
i,j=1,...,R

|ci − cj | ≤ C̃h ∥∥∇xu∥1∥L∞(K)
(67)

where C̃ is the positive constant in (60) (and thus independent of the size of K, dependent just on
the number of dimensions D, on the degree M and on the type of the element) and h is such that
diam(K) ≤ h. The norm ∥·∥1 is the 1-norm in RD, the norm ∥·∥L∞(K) is the L∞ norm over K.

Proof. This is a consequence of lemma 3.2, in fact, from basic analysis, we know that for any smooth
scalar function f ∈ C1(K)

sup
x,y∈K

|f(x)− f(y)| ≤ h ∥∥∇xf∥1∥L∞(K)
, (68)

where we remark that K is assumed to be closed. Thus for the polynomial u, thanks to the
inequality (60), we have

sup
i,j=1,...,R

|ci − cj | ≤ C̃ sup
i,j=1,...,R

|vi − vj | ≤ C̃h ∥∥∇xu∥1∥L∞(K)
, (69)

because vr are the values of u in the DoFs of K.

We will continue now with the first proposition of this section, which will be used later in the
proofs of the first-order accuracy of L1

∆ and of the Lipschitz-continuity-like condition of L1
∆ − L2

∆.

Proposition 3.4 (Mass lumping accuracy). Let us consider a scalar continuous piecewise poly-
nomial function u ∈ Vh. We can write u as a linear combination of the Bernstein polynomials
{φi}i=1,...,I associated to the tessellation which constitute a basis of Vh, i.e., u(x) =

∑I
i=1 ciφi(x) ∀x ∈

Ω with ci scalar coefficients. Then, we have ∀i = 1, . . . , I that∣∣∣∣∣∣
∑

K∈Ki

ci

∫
K

φi(x)dx−
∑

K∈Ki

∑
xj∈K

cj

∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣ ≤ Ĉh ∥∥∇xu∥1∥L∞(Ki)

∫
Ki

|φi(x)| dx, (70)

with h = maxK∈Th
diam(K) and Ĉ being a constant independent of h, dependent just on the

dimension D, on the degree M and on the type of the elements in the mesh.
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Proof. We will assume at first all the elements of the tessellation to be of the same type but this
hypothesis can be relaxed to the general case with different types of elements.

Let us focus on the left-hand side of (70). Thanks to the normalization (57) of the basis functions
and to the fact that the only basis functions that are not identically zero in the element K are the
ones associated to the DoFs contained in that element, we can write∣∣∣∣∣∣

∑
K∈Ki

ci

∫
K

φi(x)dx−
∑

K∈Ki

∑
xj∈K

cj

∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

K∈Ki

∑
xj∈K

(ci − cj)

∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣ .
(71)

Now, thanks to the triangular inequality, to the fact that the absolute value of the basis functions
φj can be bounded by a constant C0, independent of the size of K, dependent just on the dimension
D, on the degree M and on the type of the elements in the tessellation and also to the fact that
the number R of DoFs xj in each element K is fixed since D and M are fixed, we can write∣∣∣∣∣∣

∑
K∈Ki

∑
xj∈K

(ci − cj)

∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣ ≤
∑

K∈Ki

∑
xj∈K

|ci − cj |
∣∣∣∣∫

K

φi(x)φj(x)dx

∣∣∣∣
≤
∑

K∈Ki

∑
xj∈K

sup
xℓ∈K

|ci − cℓ|
∫
K

|φi(x)||φj(x)|dx ≤
∑

K∈Ki

∑
xj∈K

C0 sup
xℓ∈K

|ci − cℓ|
∫
K

|φi(x)|dx

≤
∑

K∈Ki

RC0 sup
xℓ∈K

|ci − cℓ|
∫
K

|φi(x)|dx.

(72)

By applying the previous proposition (67) and from the fact that by definition Ki = ∪K∈Ki
K,

we can continue the sequence of inequalities and get∑
K∈Ki

RC0 sup
xℓ∈K

|ci − cℓ|
∫
K

|φi(x)|dx ≤
∑

K∈Ki

RC0 C̃h ∥∥∇xu∥1∥L∞(K)

∫
K

|φi(x)|dx

≤RC0C̃h ∥∥∇xu∥1∥L∞(Ki)

∑
K∈Ki

∫
K

|φi(x)|dx = RC0C̃h ∥∥∇xu∥1∥L∞(Ki)

∫
Ki

|φi(x)| dx.
(73)

We take Ĉ = RC0C̃ and we have the thesis, in fact, none of R, C0 and C̃ depend on h, but
they just depend on the dimension D, on the degree M and on the type of the elements in the
tessellation.

We remark that we assumed that all the elements of the tessellation were of the same type. To
deal with the general case in which we have different types of elements we suffice to take C̃ as the
maximum of the coefficients C̃ of lemma 3.3 associated to the different types of elements and R as
the highest number of degrees of freedom in a single element.

Before going ahead let us make some useful observations.

Remark 3.2. Since the Bernstein basis functions are not negative, we can actually remove the
absolute value inside the integral in (70). We left it on purpose to be more general. In fact, it
is easy to see that what is proved in this section is actually not limited to the specific case of
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Bernstein polynomials; the results can be easily extended to other polynomial bases, like for example
the Lagrange polynomials (for which the matrix T is the identity and the constant C̃ = 1) provided

that the normalization (57) holds, i.e.
∑I

i=1 φ(x) ≡ 1.

Remark 3.3. The final result (70), which has been proven for a scalar polynomial u ∈ Vh, can be

easily extended to the vectorial case by applying it componentwise. If u ∈ V Q
h , then we have

u(x) =

I∑
i=1

ciφi(x) ∀x ∈ Ω (74)

with ci ∈ RQ ∀i = 1, . . . , I being Q-dimensional vectors of coefficients and {φi}i=1,...,I the Bernstein
basis and it holds that∥∥∥∥∥∥

∑
K∈Ki

(∫
K

φi(x)dx

)
ci −

∑
K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)
cj

∥∥∥∥∥∥
∞

≤ Ĉh
∥∥∥∥∥∇xu∥1∥L∞(Ki)

∥∥∥
∞

∫
Ki

|φi(x)| dx ∀i = 1, . . . , I (75)

where the norms ∥·∥1 and ∥·∥L∞(Ki)
are applied to each scalar component while the norm ∥·∥∞ is

on RQ.
The key point is that the result (70) is uniform with respect to all the components of u and so

we can easily take the infinity norm of both sides to pass from the scalar to the vectorial case.

We focus now on another intermediate lemma before proving the second and final proposition
of this section.

Lemma 3.5. Let z ∈ C1(K) and assume that its gradient is bounded in such a way that ∥∥∇xz∥1∥L∞(K)
≤

Cg. Then, for K small enough it holds

∥z∥L1(K) ≥ C∗ ∥z∥L∞(K) |K|, (76)

with |K| measure of K and C∗ a constant dependent on Cg and on ∥z∥L∞(K) but independent of
the size of K.

Proof. As K is closed and z ∈ C1(K), then

∃x∗ ∈ K s.t. |z(x∗)| = ∥z∥L∞(K) < +∞. (77)

Further, due to the continuity of z, the set B of the points in K for which the absolute value of

the function is larger or equal than |z(x∗)|
2 is non-empty and has a strictly positive measure, i.e.

|B| > 0 with

B :=

{
x ∈ K s.t. |z(x)| ≥ |z(x∗)|

2

}
. (78)

We try now to find a lower bound for |B| by defining a set B∗ ⊆ B whose measure is known; in
particular we define

B∗ :=

{
x ∈ K s.t. d(x,x∗) ≤ |z(x∗)|

2Cg

}
. (79)
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where d(·, ·) is the Euclidean distance. Indeed, we have that B∗ ⊆ B. Let x̃ ∈ B∗, then by a simple
Taylor expansion we get

|z(x̃)| = |z(x∗) +∇xz(s)(s− x∗)| (80)

with s being a point, dependent on x̃, contained in the segment S(x̃,x∗) connecting x̃ and x∗. The
triangle inequality gives

|z(x̃)| = |z(x∗) +∇xz(s)(s− x∗)| ≥ |z(x∗)| − |∇xz(s)(s− x∗)|. (81)

Now, we have that |∇xz(s)(s−x∗)| ≤ |z(x∗)|
2 because of the regularity assumption on the gradient

of z and because d(s,x∗) ≤ d(x̃,x∗) as s belongs to the segment S(x̃,x∗). This can be seen by
simple computations:

|∇xz(s)(s− x∗)| ≤ ∥∥∇xz∥1∥L∞(K)
d(s,x∗) ≤ Cg

|z(x∗)|
2Cg

=
|z(x∗)|

2
. (82)

Coming back to (81) with this information, we can write

|z(x̃)| ≥ |z(x∗)| − |∇xz(s)(s− x∗)| ≥ |z(x∗)| − |z(x∗)|
2

=
|z(x∗)|

2
(83)

and hence x̃ ∈ B and B∗ ⊆ B.
We are able to estimate the measure of B∗ providing therefore a lower bound for |B|, indeed,

by definition, such set is the intersection between K and the ball Bρ(x
∗) centered in x∗ with radius

ρ := |z(x∗)|
2Cg

. If the ball Bρ(x
∗) is entirely contained in K then B∗ = Bρ(x

∗) and its measure is

given by |B∗| = |Bρ(x
∗)| = Csρ

D where Cs is the measure of the unitary ball in RD. If this does
not hold, it is anyway always possible to find a lower bound for the measure of B∗ of the type

|B∗| ≥ min (Cαρ
D, |K|) (84)

with Cα constant dependent only on the aspect ratio of K but not on its size. Therefore, from the
definition of B and from |B| ≥ |B∗| ≥ min (Cαρ

D, |K|), we get

∥z∥L1(K) =

∫
K

|z(x)|dx ≥
∫
B

|z(x)|dx ≥ |z(x∗)|
2

|B| ≥ |z(x∗)|
2

|B∗| ≥ |z(x∗)|
2

min (Cαρ
D, |K|).

(85)

Now, recalling that |z(x∗)| = ∥z∥L∞(K), we have

∥z∥L1(K) ≥
∥z∥L∞(K)

2
|K|min

(
Cαρ

D

|K|
, 1

)
(86)

We define thus C∗ := 1
2 min

(
CαρD

|K| , 1
)
and we observe that, since Cα only depends on geometrical

properties of K and ρ only depends on z, for K small enough C∗ = 1
2 and we get the thesis.

Now, let us generalize this result to the whole domain for piecewise C1 functions, even discon-
tinuous, by proving the last result of this section.

18



Proposition 3.6 (Relation between L∞ and L1 norms). Let z ∈
{
z ∈ L1(Ω) s.t. z|K ∈ C1(K), ∀K ∈ Th

}
satisfying locally in each element the hypotheses of the previous lemma, i.e. ∥∥∇xz∥1∥L∞(K)

≤ Cg

and K small enough. Assume the mesh to be regular in the sense that for any i = 1, . . . , I it holds
that ∫

K

|φi(x)|dx ≤ CM

∫
K̃

|φi(x)|dx, ∀K, K̃ ∈ Ki, (87)

where {φi}i=1,...,I is the basis of Vh given by Bernstein polynomials. Then,

I∑
i=1

∥z∥L∞(Ki)

∑
K∈Ki

∫
K

|φi(x)|dx ≤ C̃∗ ∥z∥L1(Ω) , (88)

where C̃∗ is a positive constant independent of the mesh parameter.

Proof. Let Ki ∈ Ki be the element such that ∥z∥L∞(Ki)
= ∥z∥L∞(Ki); then, using the mesh

regularity assumption (87) and the fact that the basis functions are bounded in absolute value by
a constant C0 independent of the mesh parameter, we have

I∑
i=1

∥z∥L∞(Ki)

∑
K∈Ki

∫
K

|φi(x)|dx =

I∑
i=1

∑
K∈Ki

∥z∥L∞(Ki)

∫
K

|φi(x)|dx

=

I∑
i=1

∑
K∈Ki

∥z∥L∞(Ki)

∫
K

|φi(x)|dx

≤
I∑

i=1

∑
K∈Ki

CM ∥z∥L∞(Ki)

∫
Ki

|φi(x)|dx

≤
I∑

i=1

∑
K∈Ki

CMC0 ∥z∥L∞(Ki) |K
i|.

(89)

We apply now the previous lemma 3.5 and, switching the sums over the elements and the DoFs,
we get

I∑
i=1

∑
K∈Ki

CMC0 ∥z∥L∞(Ki) |K
i| ≤

I∑
i=1

∑
K∈Ki

CMC0

C∗ ∥z∥L1(Ki)

=
CMC0

C∗

∑
K∈Th

∑
xi∈K

∥z∥L1(Ki)

(90)

where C∗ is the minimal coefficient of lemma 3.5 among the ones associated to all the elements Ki.
If R is the maximal number of DoFs in a single element in the whole mesh, we can continue and
write

CMC0

C∗

∑
K∈Th

∑
xi∈K

∥z∥L1(Ki) ≤
RCMC0

C∗

∑
K∈Th

sup
xi∈K

∥z∥L1(Ki) . (91)

Now, in (91), each element K in the tessellation is contributing to the sum with the L1 norm of z
over one element Ki among the ones associated to the DoFs xi ∈ K. The generic element Ki can
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be present in the sum at most a number of times equal toMn+1 whereMn represents the maximal
number of neighbors that an element can have in the tessellation. Hence, we get

RCMC0

C∗

∑
K∈Th

sup
xi∈K

∥z∥L1(Ki) ≤
RCMC0

C∗ (Mn + 1) ∥z∥L1(Ω) . (92)

Observe that none of the coefficients R, CM, C0, C
∗ or Mn depend on the mesh parameter,

therefore, by setting C̃∗ = RCMC0

C∗ (Mn + 1), we get the thesis.

Also in this case, we remark that, in the context of Bernstein polynomials, which are non-
negative, the absolute value on φi is not necessary. We kept it just to be more general. Indeed, all
the results can be generalized to other basis functions like the Lagrange polynomials.

3.1.2 Definition of L2
∆

The operator L2
∆ is the high order implicit operator that we would like to solve. Its definition

is not very different from the one seen in the context of the bDeC for ODEs. We introduce the
M + 1 subtimenodes tm with m = 0, . . . ,M in the interval [tn, tn +∆t] in which we will consider
the approximations of the values of the solution to our system of ODEs. We refer to c(tm) as
the exact solution in the node tm and to cm as the approximation of the solution in the same
node. Clearly, in this case c(tm) and cm contain as components all the coefficients corresponding
to the spatial DoFs, i.e., respectively the vectors ci(t

m) of the exact coefficients in the DoFs at
the time tm and the vectors cmi of the approximated ones. As usual, for the first subtimenode we
set c0 = c(t0) = c(tn) = cn without any approximation. Starting from the exact integration of
(51) over [t0, tm] and substituting ϕi(c(t)) with its M -order interpolation in time associated to the
M + 1 subtimenodes, we get∑
K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cmj − c0j

)
+∆t

M∑
ℓ=0

θmℓ ϕi(c
ℓ) = 0, ∀i = 1, . . . , I ∀m = 1, . . . ,M.

(93)
Therefore, we can define the operator L2

∆ : R(I×Q×M) → R(I×Q×M) as

L2
∆(c) =

(
L2
∆,1(c),L2

∆,2(c), . . . ,L2
∆,I(c)

)
, ∀c ∈ R(I×Q×M), (94)

where for any i we have

L2
∆,i(c) =



∑
K∈Ki

∑
xj∈K

(∫
K
φi(x)φj(x)dx

) (
c1j − c0j

)
+∆t

∑M
ℓ=0 θ

1
ℓϕi(c

ℓ)
...∑

K∈Ki

∑
xj∈K

(∫
K
φi(x)φj(x)dx

) (
cmj − c0j

)
+∆t

∑M
ℓ=0 θ

m
ℓ ϕi(c

ℓ)
...∑

K∈Ki

∑
xj∈K

(∫
K
φi(x)φj(x)dx

) (
cMj − c0j

)
+∆t

∑M
ℓ=0 θ

M
ℓ ϕi(c

ℓ)


. (95)

with the general argument c ∈ R(I×Q×M) having M components cm ∈ R(I×Q) each one associated
to a subtimenode and having I components cmi each one associated to a DoF.

The solution c∆ to L2
∆(c∆) = 0 is (M + 1)-order accurate in the sense that would contain as

components (M + 1)-order accurate approximations of the coefficients which represent the exact
solution to (51) in all the subtimenodes tm m = 1, . . . ,M . Unfortunately, the problem L2

∆(c) = 0
is a huge nonlinear system.
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3.1.3 Definition of L1
∆

Performing an Euler approximation in time to numerically solve (51) in [t0, tm] we get∑
K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cmj − c0j

)
+∆tβmϕi(c

0) = 0, ∀i = 1, . . . , I, ∀m = 1, . . . ,M.

(96)
Further, we perform a first-order mass lumping in space to get a fully explicit approximation formula
for cmi

Ci

(
cmi − c0i

)
+∆tβmϕi(c

0) = 0, ∀i = 1, . . . , I ∀m = 1, . . . ,M (97)

where Ci are constant quantities defined as

Ci :=

∫
Ω

φi(x)dx =
∑

K∈Ki

∫
K

φi(x)dx, ∀i = 1, . . . , I. (98)

We assume a choice of the basis functions such that Ci ̸= 0 ∀i so that (97) is well-posed. For
example, if we choose the Bernstein polynomials, we have Ci > 0 ∀i as the basis functions φi are
nonnegative. Indeed, cmi got from (97) is a first order approximation of the exact coefficient ci(t

m),
as proved in the next proposition.

Proposition 3.7 (First order accuracy of (97)). The solution to (97) is first-order accurate with
respect to the exact solution c(t) to (51) evaluated in all the subtimenodes tm for m = 1, . . . ,M .

Proof. We can equivalently show that if we insert the exact solution to (51) evaluated in all the
subtimenodes tm m = 1, . . . ,M into the left-hand side of (97) we get an error O(∆D+2) where D
is the number of spatial dimensions and the parameter ∆ is the mesh parameter h of the space
discretization. Therefore, we want to prove that

Ci

(
ci(t

m)− c0i
)
+∆tβmϕi(c

0) = O(∆D+2), ∀i = 1, . . . , I, ∀m = 1, . . . ,M. (99)

We know that by plugging the exact solution c(t) in (96) we get an error O(∆D+2):∑
K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cj(t

m)− c0j
)
+∆tβmϕi(c

0) = O(∆D+2). (100)

Hence, instead of (99), we can show that the difference of (99) and (100) is an O(∆D+2), i.e.,

Ci

(
ci(t

m)− c0i
)
−
∑

K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cj(t

m)− c0j
)
= O(∆D+2). (101)

By definition of the coefficients Ci in (98) and the preliminary result (75), we can write∥∥∥∥∥∥Ci

(
ci(t

m)− c0i
)
−
∑

K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cj(t

m)− c0j
)∥∥∥∥∥∥

∞

≤Ĉh
∥∥∥∥∥∥∥∇x(uh(x, t

m)− uh(x, t
0))
∥∥
1

∥∥
L∞(Ki)

∥∥∥
∞

∫
Ki

|φi(x)| dx,

(102)
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where we remark that the internal norms ∥·∥1 and ∥·∥L∞(Ki)
are applied componentwise while the

external one, ∥·∥∞, is on RQ. From a Taylor expansion it is easy to see that

∇x(uh(x, t
m)− uh(x, t

0)) = O(∆t). (103)

Moreover,
∫
Ki

|φi(x)|dx = O(∆D), hence, we have∥∥∥∥∥∥Ci

(
ci(t

m)− c0i
)
−
∑

K∈Ki

∑
xj∈K

(∫
K

φi(x)φj(x)dx

)(
cj(t

m)− c0j
)∥∥∥∥∥∥

∞

= O(∆D+2). (104)

Directly from (97), we can define the explicit low order operator L1
∆ : R(I×Q×M) → R(I×Q×M)

as

L1
∆(c) =

(
L1
∆,1(c),L1

∆,2(c), . . . ,L1
∆,I(c)

)
, ∀c ∈ R(I×Q×M), (105)

where for any i we have

L1
∆,i(c) =



Ci

(
c1i − c0i

)
+∆tβ1ϕi(c

0)
...

Ci

(
cmi − c0i

)
+∆tβmϕi(c

0)
...

Ci

(
cMi − c0i

)
+∆tβMϕi(c

0)

 . (106)

in which the convention on the indices of the components of the general argument c ∈ R(I×Q×M)

is the same that we had for the operator L2
∆.

3.1.4 Proof of the properties of L1
∆ and L2

∆

The operators L1
∆ and L2

∆ act from X to Y with X = Y = R(I×Q×M). Let us recall again the
hypotheses that are needed in order to apply the Deferred Correction method

i) Existence of a solution to L2
∆

∃!u∆ ∈ R(I×Q×M) solution of L2
∆, i.e. such that L2

∆(u∆) = 0;

ii) Coercivity-like property of L1
∆

∃α1 ≥ 0 independent of ∆ s.t.∥∥L1
∆(v)− L1

∆(w)
∥∥
Y
≥ α1 ∥v −w∥X , ∀v,w ∈ R(I×Q×M); (107)

iii) Lipschitz-continuity-like condition of L1
∆ − L2

∆

∃α2 ≥ 0 independent of ∆ s.t.∥∥[L1
∆(v)− L2

∆(v)
]
−
[
L1
∆(w)− L2

∆(w)
]∥∥

Y
≤ α2∆ ∥v −w∥X , ∀v,w ∈ R(I×Q×M). (108)
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We remark that in this context the parameter ∆ is the mesh parameter h and that we assume
the temporal step size ∆t ≤ Ch for some fixed constant C.

We will not prove the first property, i.e., the existence of a unique solution to L2
∆, because the

proof is identical to the one we had in the ODE case up to the inversion of the mass matrix: from
L2
∆ we can define an operator J : R(I×Q×M) → R(I×Q×M) whose fixed points (if any) are solutions

to L2
∆; further, we can show that for ∆ small enough the operator is a contraction over the space

R(I×Q×M) equipped with the infinity norm and, hence, there exists a unique fixed point of J which
is the unique solution to L2

∆.
Before going to the proofs of the other two properties, we need to define the norms adopted on

the spaces X and Y . Despite having X = Y = R(I×Q×M) we will equip X and Y with two different
norms, differently from what we have done in the ODE case. We will specify the norms after the
following useful observation.

Remark 3.4 (Remark on the indices). The main complication of the proofs is that we have to deal
with many indices. We remind that

• i = 1, . . . , I is referred to the DoFs;

• q = 1, . . . , Q is referred to the components of the approximated solution uh to the system of
balance laws (50);

• m = 1, . . . ,M is referred to the subtimenodes tm, even if we remark that we also have an
initial subtimenode t0 = tn in which the quantities are not unknown.

We are already used to the fact that the general element c ∈ R(I×Q×M) must be thought as a
collection of M components cm ∈ R(I×Q) m = 1, . . . ,M . Each component cm can be thought as
the vector of the coefficients of a vectorial continuous piecewise polynomial function uh(x, t) =∑I

i=1 ci(t)φi(x) evaluated in the subtimenode tm. In fact, each cm is made by I components
cmi ∈ RQ with i = 1, . . . , I associated to the DoFs. Finally, each cmi is made by Q components cq,mi

q = 1, . . . , Q, scalar coefficients associated to the components of the solution to the system of PDEs
that we would like to solve, i.e.,

c =



c1

...
cm

...
cM

 ∈ R(I×Q×M), cm =



cm1
...
cmi
...
cmI

 ∈ R(I×Q), cmi =



c1,mi
...

cq,mi
...

cQ,m
i

 ∈ RQ. (109)

In the proofs, we are going to focus on a single scalar component q = 1, . . . , Q of a single
subtimenode m = 1, . . . ,M and our results will be uniform with respect to the indices q and m, so
we will be able to pass from the scalar results to the desired vectorial results through an infinity
norm ∥·∥∞ on R(Q×M), similarly to what we did when we passed from (70) to (75) in the preliminary
results. Therefore, the norm that we choose for the single component of c ∈ X = R(I×Q×M) with
fixed indices q and m, denoted by cq,m ∈ RI , is theW 1,1

I (Ω)-norm, a discrete version of the classical
W 1,1(Ω)-norm. In particular, on a scalar function u : Ω → R the W 1,1(Ω)-norm is defined as

∥u∥W 1,1(Ω) := ∥u∥L1(Ω) +

D∑
d=1

∥∥∥∥ ∂

∂xd
u

∥∥∥∥
L1(Ω)

= ∥u∥L1(Ω) + ∥∥∇xu∥1∥L1(Ω)
, (110)
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from which we define the corresponding discrete norm on RI , defined by ∥·∥W 1,1
I (Ω) : R

I → R+
0 as

∥cq,m∥W 1,1
I (Ω) :=

∥∥∥∥∥
I∑

i=1

cq,mi φi

∥∥∥∥∥
W 1,1(Ω)

. (111)

Using then the classical infinity norm on the space RQ×M defined by ∥·∥∞,Q,M : RQ×M → R+
0 , we

introduce the X norm ∥·∥X : RI×Q×M → R+
0 as

∥c∥X :=

∥∥∥∥∥{∥cq,m∥W 1,1
I (Ω)

}
q=1,...,Q
m=1,...,M

∥∥∥∥∥
∞,Q,M

. (112)

Instead, we equip Y with a different norm; we choose for the single component c̃q,m ∈ RI with
fixed indices q and m of c̃ ∈ Y = R(I×Q×M) the 1-norm ∥·∥1,I : RI → R+

0 defined as

∥c̃q,m∥1,I :=

I∑
i=1

|c̃q,mi |, (113)

then the norm on the whole space Y = R(I×Q×M), ∥·∥Y : R(I×Q×M) → R+
0 , is defined by

∥c̃∥Y =

∥∥∥∥∥{∥c̃q,m∥1,I
}

q=1,...,Q
m=1,...,M

∥∥∥∥∥
∞,Q,M

. (114)

Remark 3.5. We remark that the initial subtimenode m = 0 is not kept into account in the norms
(112) and (114) as it is a datum of the problem.

Remark 3.6 (On the choice of the norms). The reason of the difference in the norms assumed on X
and Y is intuitively due to the following fact. Practically speaking, the elements of X, the arguments
of L2

∆ and L1
∆ given respectively by (94) and (105) (and so by (95) and (106)), are the coefficients

associated to a vectorial continuous piecewise polynomial function evaluated in the subtimenodes tm

m = 1, . . . ,M . Therefore, on the space X we take an integral norm for “functions”. Instead, the
elements of the space Y , the images of L2

∆ and L1
∆, are consistent with integrals of the mentioned

function associated to the coefficients. In order to guarantee the consistency of the terms in the
inequalities to prove and to compare ∥·∥X and ∥·∥Y , we must take for Y a norm which does not
modify the integral “character” of the components of the elements of the space.

It is straightforward to prove that (112) and (114) are norms but we will not do it for the sake
of brevity. In the context of the proofs of the properties of L2

∆ and L1
∆, we are going to make use

of the two following regularity assumptions.

Assumption 3.8 (Poincaré-like inequality). We assume that we are working with coefficients reg-
ular enough to guarantee that the associated functions gh, for some Cp ≥ 0 independent of ∆, are
such that

∥gh∥W 1,1(Ω) ≤ Cp ∥gh∥L1(Ω) , (115)

i.e., we assume that we can control the norm of the gradient of all functions that we will consider
with the norm of the functions.
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Assumption 3.9 (Smoothness of the space residuals). We assume the functions ϕi defined in (52)
to be smooth.

Finally, the notation in eq. (109) will hold for two generic vectors v,w ∈ R(I×Q×M) that will
be used in the proof.

In order to deal with the single component got for fixed m and q, as we are going to do in a few
lines, it is very useful to define here the scalar continuous piecewise polynomial functions

vq,mh (x) =

I∑
i=1

vq,mi φi(x), wq,m
h (x) =

I∑
i=1

wq,m
i φi(x) (116)

associated to the scalar coefficients vq,mi and wq,m
i i = 1, . . . , I.

Now, we have all the elements that we need in order to handle the proofs of the properties of
the two operators.

Proposition 3.10 (Coercivity-like property of L1
∆). Let L1

∆ : X → Y be the operator defined in
(105) and (106), v,w ∈ X and suppose that assumption 3.8 holds, then ∃α1 > 0 independent of ∆
s.t. ∥∥L1

∆(v)− L1
∆(w)

∥∥
Y
≥ α1 ∥v −w∥X , ∀v,w ∈ R(I×Q×M). (117)

Proof. From a direct computation we have, for every i = 1, . . . , I, m = 1, . . . ,M and q = 1, . . . , Q,
that

L1,q,m
∆,i (v)− L1,q,m

∆,i (w) = Ci

(
vq,mi − c0,qi

)
+∆tβmϕq

i (c
0)− Ci

(
wq,m

i − c0,qi

)
−∆tβmϕq

i (c
0)

= Ci (v
q,m
i − wq,m

i ) .
(118)

We remark again that c0 is known and so also c0i . We will start by proving the coercivity-like
property for a fixed component q and a fixed subtimenode m, i.e., we will prove that the 1-norm of
(118) over the indexes i = 1, . . . , I is such that∥∥∥L1,q,m

∆ (v)− L1,q,m
∆ (w)

∥∥∥
1,I

≥ α1 ∥vq,mh − wq,m
h ∥

W 1,1(Ω)
(119)

for some α1 independent of ∆ for all m and q. Recalling the definition (98) of the coefficients
Ci =

∫
Ω
φi(x)dx and the fact that the Bernstein basis functions are nonnegative, we have

∥∥∥L1,q,m
∆ (v)− L1,q,m

∆ (w)
∥∥∥
1,I

=

I∑
i=1

|Ci (v
q,m
i − wq,m

i ) | =
I∑

i=1

∫
Ω

|(vq,mi − wq,m
i )φi(x)| dx. (120)

Using the triangular inequality and recalling the definition (116) of the scalar continuous piecewise
polynomial functions vq,mh and wq,m

h , from the previous equation we get

∥∥∥L1,q,m
∆ (v)− L1,q,m

∆ (w)
∥∥∥
1,I

≥
∫
Ω

∣∣∣∣∣
I∑

i=1

(vq,mi − wq,m
i )φi(x)

∣∣∣∣∣ dx
=

∫
Ω

|vq,mh (x)− wq,m
h (x)| dx = ∥vq,mh − wq,m

h ∥
L1(Ω)

≥ 1

Cp
∥vq,mh − wq,m

h ∥
W 1,1(Ω)

= α1 ∥vq,mh − wq,m
h ∥

W 1,1(Ω)
,

(121)
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where, in the last inequality, we used the Poincaré-like inequality (115) and α1 = 1
Cp

with Cp

independent of ∆, which is the intermediate result that we wanted to show.
In order to get the final result, it suffices to observe that the previous inequality is uniform with

respect to the indices q and m, so, we can take the infinity norm on these indices of both the sides
and get ∥∥L1

∆(v)− L1
∆(w)

∥∥
Y
≥ α1 ∥v −w∥X (122)

using the definitions (112) and (114).

Proposition 3.11 (Lipschitz-continuity-like condition of L1
∆−L2

∆). Let L1
∆,L2

∆ : X → Y the oper-
ators defined in (105) and (94). Consider v,w ∈ X regular enough and suppose that assumption 3.9
holds. Then, ∃α2 > 0 independent of ∆ s.t.∥∥[L1

∆(v)− L2
∆(v)

]
−
[
L1
∆(w)− L2

∆(w)
]∥∥

Y
≤ α2∆ ∥v −w∥X . (123)

Proof. Focusing on one DoF i ∈ {1, . . . , I} and on one subtimenode m ∈ {1, . . . ,M}, we have[
L1,m
∆,i (v)− L2,m

∆,i (v)
]
−
[
L1,m
∆,i (w)− L2,m

∆,i (w)
]
=

Ci (v
m
i −wm

i )−
∑

K∈Ki

∑
xj∈K

(
vm
j −wm

j

) ∫
K

φi(x)φj(x)dx−∆t

M∑
ℓ=0

θmℓ
[
ϕi(v

ℓ)− ϕi(w
ℓ)
]
.

(124)

Just like we did when we proved the coercivity-like property of L1
∆, we will work on the single

component of (124) for fixed q = 1, . . . , Q and m = 1, . . . ,M , then we will derive the final result
on the norms of X and Y by considering the ∞-norm over the indices q and m.

Let us thus focus on[
L1,q,m
∆,i (v)− L2,q,m

∆,i (v)
]
−
[
L1,q,m
∆,i (w)− L2,q,m

∆,i (w)
]
= Ci (v

q,m
i − wq,m

i )

−
∑

K∈Ki

∑
xj∈K

(
vq,mj − wq,m

j

) ∫
K

φi(x)φj(x)dx−∆t

M∑
ℓ=0

θmℓ
[
ϕqi (v

ℓ)− ϕqi (w
ℓ)
] (125)

where ϕqi (·) represents the q-th component of the space residual ϕi(·). We want to show now that
the 1-norm, over all the indices i, of (125), for fixed q and m, is such that∥∥∥[L1,q,m

∆ (v)− L2,q,m
∆ (v)

]
−
[
L1,q,m
∆ (w)− L2,q,m

∆ (w)
]∥∥∥

1,I
≤ α2∆ ∥v −w∥X , (126)

for some α2 independent of ∆, from which we will get the final result by taking the infinity norm
of the left hand side with respect to the indices q and m. Thanks to the triangular inequality we
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have∥∥∥[L1,q,m
∆ (v)− L2,q,m

∆ (v)
]
−
[
L1,q,m
∆ (w)− L2,q,m

∆ (w)
]∥∥∥

1,I
(127)

=

I∑
i=1

∣∣∣[L1,q,m
∆,i (v)− L2,q,m

∆,i (v)
]
−
[
L1,q,m
∆,i (w)− L2,q,m

∆,i (w)
]∣∣∣ (128)

≤
I∑

i=1

∣∣∣∣∣∣
∑

K∈Ki

(vq,mi − wq,m
i )

∫
K

φi(x)dx−
∑

K∈Ki

∑
xj∈K

(
vq,mj − wq,m

j

) ∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣︸ ︷︷ ︸
=:E1

(129)

+

I∑
i=1

∣∣∣∣∣∆t
M∑
ℓ=0

θmℓ
[
ϕqi (v

ℓ)− ϕqi (w
ℓ)
]∣∣∣∣∣︸ ︷︷ ︸

=:E2

(130)

recalling the definition of Ci =
∑

K∈Ki

∫
K
φ(x)dx in (98).

Thanks to the previous inequality, we can deal separately with the two terms of the right hand
side, the first one (129) concerning the mass matrix and the second one (130) involving the space
residuals, and show that they can be bounded in the following way

E1 ≤ Ca∆ ∥v −w∥X , (131)

E2 ≤ Cb∆ ∥v −w∥X , (132)

with Ca and Cb independent of ∆ which would give us the desired result.

• First term concerning the mass matrix
In order to bound this term, we can directly apply the preliminary result in proposition 3.4 and we
get ∣∣∣∣∣∣

∑
K∈Ki

(vq,mi − wq,m
i )

∫
K

φi(x)dx−
∑

K∈Ki

∑
xj∈K

(
vq,mj − wq,m

j

) ∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣
≤ Ĉ∆Ci

∥∥∥∇x (vq,mh − wq,m
h )∥

1

∥∥
L∞(Ki)

, ∀i = 1, . . . , I, (133)

with Ĉ independent of the mesh parameter ∆ = h, dependent just on the number of dimensions
D, on the degree M and on the type of the elements in the mesh. From (133) we have

E1 =

I∑
i=1

∣∣∣∣∣∣
∑

K∈Ki

(vq,mi − wq,m
i )

∫
K

φi(x)dx−
∑

K∈Ki

∑
xj∈K

(
vq,mj − wq,m

j

) ∫
K

φi(x)φj(x)dx

∣∣∣∣∣∣
≤ Ĉ∆

I∑
i=1

∥∥∥∇x (vq,mh − wq,m
h )∥

1

∥∥
L∞(Ki)

Ci. (134)

Thanks to proposition 3.6 taking z = ∥vq,mh − wq,m
h ∥

1
, then (134) can be bounded in the following

way

Ĉ∆

I∑
i=1

∥∥∥∇x (vq,mh − wq,m
h )∥

1

∥∥
L∞(Ki)

Ci ≤ Ĉ∆C̃∗ ∥∥∥∇x (vq,mh − wq,m
h )∥

1

∥∥
L1(Ω)

. (135)
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Hence, by definition of the W 1,1(Ω)-norm (110), of the W 1,1
I (Ω)-norm (111) and of the X norm

(112), we have

E1 ≤ Ĉ∆C̃∗ ∥∥∥∇x (vq,mh − wq,m
h )∥

1

∥∥
L1(Ω)

≤ ĈC̃∗∆ ∥vq,mh − wq,m
h ∥

W 1,1(Ω)

≤ Ca∆ ∥vq,mh − wq,m
h ∥

W 1,1(Ω)
≤ Ca∆ ∥v −w∥X ,

(136)

with Ca = ĈC̃∗ independent of ∆.

• Second term involving the space residuals
By applying the triangular inequality, recalling that θmℓ are fixed normalized constant coefficients,
thus, bounded in absolute value by a positive constant Cθ, and that ∆t ≤ Ch = C∆ for some fixed
constant C, we have

E2 =
I∑

i=1

∣∣∣∣∣∆t
M∑
ℓ=0

θmℓ
[
ϕqi (v

ℓ)− ϕqi (w
ℓ)
]∣∣∣∣∣ ≤ ∆CCθ

I∑
i=1

M∑
ℓ=0

|ϕqi (v
ℓ)− ϕqi (w

ℓ)|. (137)

From the fact that v0 = w0 = c0, we have

∆CCθ

I∑
i=1

M∑
ℓ=0

|ϕqi (v
ℓ)− ϕqi (w

ℓ)| ≤ ∆CCθM

I∑
i=1

∥∥∥∥{ϕqi (vm)− ϕqi (w
m)} q=1,...,Q

m=1,...,M

∥∥∥∥
∞,Q,M

. (138)

Then, we use the assumption of smoothness of the space residuals ϕi(·). In particular, we assume
the following Lipschitz-continuity-like condition

I∑
i=1

∥∥∥∥{ϕqi (vm)− ϕqi (w
m)} q=1,...,Q

m=1,...,M

∥∥∥∥
∞,Q,M

≤ Cϕ

∥∥∥∥vh −wh∥W 1,1(Ω)

∥∥∥
∞,Q,M

= Cϕ ∥v −w∥X

(139)
with Cϕ independent of ∆. Using this, from (138) we get

E2 ≤ Cb∆ ∥v −w∥X (140)

with Cb = CCθMCϕ independent of ∆, obtaining (132).
Now, that we have proven (131) and (132), the Lipschitz inequality (126) is proven with α2 =

Ca + Cb independent of ∆. Finally, we get the final result by observing that what we have proved
holds for any component with fixed indices q = 1, . . . , Q and m = 1, . . . ,M . So, applying the
infinity norm of the left hand side with respect to these indices, we get

max
q,m

∥∥∥[L1,q,m
∆ (v)− L2,q,m

∆ (v)
]
−
[
L1,q,m
∆ (w)− L2,q,m

∆ (w)
]∥∥∥

1,I

=
∥∥[L1

∆(v)− L2
∆(v)

]
−
[
L1
∆(w)− L2

∆(w)
]∥∥

Y
≤ α2∆ ∥v −w∥X ,

(141)

which is the thesis.
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3.2 Issues with the DeC for CG

We discuss here a negative result seen in the numerical tests even on the monodimensional linear
advection equation (LAE) reported in the main document and in many other works, e.g. [2, 6, 7].
The DeC formulation for PDEs with the lumping of the mass matrix does not give the expected
formal order of accuracy for space discretizations of order higher than or equal to 4 if one performs
the theoretical optimal number of iterations. In this section, we will try to investigate the problem
by numerically assessing the impact of the number of iterations P , of the CFL and of the CIP
stabilization on higher order derivatives. Before starting, we remark that the loss in the accuracy
is not registered in the context of steady problems, indeed, in [1] the expected order of accuracy is
obtained with B3 on a nontrivial steady test for the bidimensional Euler equations. Further, one of
the authors is involved in a project [4] on some novel CIP stablizations for the monodimensional SW
equations, soon to be submitted, in which the right order of accuracy is obtained for P3, B3 and B4
with the theoretical optimal number of iterations on all the considered steady tests. Therefore, we
will focus on the same unsteady test for the monodimensional LAE presented in the main document
and, in particular, we will consider P3, B3 and B4 as basis functions and the original formulation
of the bDeC for PDEs without interpolations between the iterations as timestepping method. For
P3 and B3 we will use, in the context of the CIP stabilization, the same coefficients adopted in the
main document, δCIP = 0.00702. As the optimal coefficient for B4 is not provided in [5], we will
adopt the same coefficient as for B3 and P3. The reference CFL adopted for the tests with B3 and
P3 is 0.1, instead, with B4 it is 0.05. Where not specified, such values have been adopted.

3.2.1 Impact of the number of iterations

The numerical results for different number of iterations are reported in fig. 1. In all the cases we
can see the same trend: the optimal number of iterations gives order 2, increasing the number of
iterations improves the accuracy allowing to reach the formal order. Nevertheless, it is important
to notice that many more iterations, with respect to the optimal number, are needed in order to
achieve the right order of convergence: 10 for P3, 80 for B3, 320 for B4.

3.2.2 Impact of the CFL

The numerical results for different values of the CFL are reported in fig. 2. Such parameter seems
not to have impact on the order. For P3, CFL = 0.1 performs better than CFL = 0.01 and
CFL = 0.001; for the other basis functions one gets similar results for the different values of the
CFL meaning that spatial error is dominating with respect to the error in time.

3.2.3 Impact of the stabilization on higher order derivatives

The CIP stabilization on the first derivative that we have presented can be actually generalized to
keep into account higher order derivatives as in [3]

ST i(uh) =
∑
f∈Fh

R∑
r=1

αCIP
f,r

∫
f

r
∇r

νf
φi

z
·
r
∇r

νf
uh

z
dσ(x), αCIP

f,r = δCIP
r ρ̄fh

2r
f (142)

where Fh is the set of the (D − 1)-dimensional faces shared by two elements of Th, ∇r
νf

is the r-th

partial derivative in the direction νf normal to the face f and δCIP
r are constant parameters which
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Figure 1: 1D LAE: tests with different numbers of iterations
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Figure 2: 1D LAE: tests with different CFLs

31



1014 × 100 6 × 100 2 × 101 3 × 101

Nelements

10 6

10 5

10 4

10 3

10 2

L1  e
rro

r

CIP
2 =0.00000
CIP
2 =0.00005
CIP
2 =0.00010
CIP
2 =0.00020

order 2
order 3
order 4
order 5

(a) P3.

1014 × 100 6 × 100 2 × 101 3 × 101

Nelements

10 6

10 5

10 4

10 3

10 2

L1  e
rro

r

CIP
2 =0.00000
CIP
2 =0.00351
CIP
2 =0.00702
CIP
2 =0.01404

order 2
order 3
order 4
order 5

(b) B3.

1014 × 100 6 × 100 2 × 101 3 × 101

Nelements

10 7

10 6

10 5

10 4

10 3

10 2

L1  e
rro

r

CIP
2 =0.00000
CIP
2 =0.00351
CIP
2 =0.00702

order 2
order 3
order 4
order 5

(c) B4.

Figure 3: 1D LAE: tests with different stabilization parameters on the second derivative.

must be tuned. We will focus on the stabilization of the first and second derivatives only, R = 2.
The results obtained with δCIP

1 = 0.00702 and different values of δCIP
2 are displayed in fig. 3. For

B3 and B4, the extra stabilization seems to help in decreasing the errors but still it is not sufficient
to achieve the right order of accuracy.

3.2.4 Final remarks

The conclusion of the previous analysis is that, in the context of unsteady problems, with the optimal
number of iterations one obtains second order accuracy. Among the three aspects numerically
analyzed, only the first one seems to have an effect on the order of accuracy; in particular, many
more iterations than expected are needed to reach the formal order. For the moment we do not
further investigate this issue, but we have other ideas on how to proceed. First of all, an analysis
of the combination of the three parameters studied above could give better results and a linear
stability/dispersion analysis, in the style of [5, 6], can help in determining the optimal setting to

32



achieve the best possible results. Further, higher order derivatives stabilization terms could be
taken in consideration hoping for a better stabilization, this has been suggested also in [7, 6]. More
in general, other stabilizations other than CIP and OSS could be considered. Moreover, the authors
suspect that assumption 3.8 is not verified by the approximations and a stronger estimate on the
H1 norm of the solution of the discrete problem should be provided with weaker hypotheses to
guarantee the accuracy results.

We conclude this section remarking that the mentioned problem does not occur with cubature
elements also in the DeC framework, which provide accurate and fast results.

4 Vibrating system

Let us consider a general sinusoidal function

x(t) = X cos (Ωt+ φ), (143)

then we refer to X ∈ R+
0 as the amplitude, to Ω ∈ R+ as the frequency and to φ ∈ [0, 2π[ modulo

2πn with n ∈ Z as the phase.
Let us introduce two general sinusoidal functions

xj(t) = Xj cos (Ωt+ φj), for j = 1, 2, (144)

characterized by the same frequency Ω > 0, amplitudes X1, X2 ≥ 0 and phases φ1, φ2 ∈ [0, 2π[
modulo 2nπ with n ∈ Z.

Proposition 4.1. The sum xs(t) = x1(t) + x2(t) between two sinusoidal functions with the same
frequency Ω is another sinusoidal function with the same frequency.

Proof. If x1(t)+x2(t) = 0 or at least one between X1 or X2 is zero, then the proof is straightforward
so let us focus on the case in which x1(t) + x2(t) ̸= 0 and both X1 and X2 are different from 0.

From basic trigonometry, we have

xj(t) = Xj cos (Ωt+ φj) = Xj [cos (Ωt) cos (φj)− sin (Ωt) sin (φj)], for j = 1, 2, (145)

then

xs(t) = x1(t) + x2(t) = A cos (Ωt)−B sin (Ωt), (146)

with A := X1 cos (φ1) +X2 cos (φ2), B := X1 sin (φ1) +X2 sin (φ2). (147)

We consider now the point (A,B) ∈ R2, different from (0, 0) by assumption, and the induced vector
of length Xs =

√
A2 +B2 and phase φs = ∠(A,B), so that A = Xs cos (φs) and B = Xs sin (φs).

By definition of such vector, (146) can be recast as

x1(t) + x2(t) = Xs cos (φs) cos (Ωt)−Xs sin (φs) sin (Ωt) = Xs cos (Ωt+ φs), (148)

which completes the proof.

We introduce now a bijection S from the quotient set of the sinusoidal functions with a fixed
frequency Ω defined by (X,φ), in which we identify all the functions characterized by X = 0, onto
the complex plane

S(x(t)) = S(X,φ) =

{
Xeiφ if X ̸= 0

0 if X = 0
. (149)
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The complex number X := S(x(t)) is called phasor associated to the sinusoidal function x(t).

Proposition 4.2. If we have two sinusoidal functions x1(t), x2(t) with the same frequency Ω then
the phasor Xs associated to the sum xs(t) of the two sinusoidal functions is the sum of the phasors
X1, X2 associated to the single sinusoidal functions.

Proof. The phasors related to the sinusoidal functions (144) are given by

Xj = Xje
iφj = Xj [cos (φj) + i sin (φj)] , for j = 1, 2. (150)

If one between X1 or X2 is zero then the proof is straightforward therefore we focus on the case in
which they are both different from 0. Further, we assume for the moment that x1(t) + x2(t) ̸= 0.
The sum of the phasors gives

Xr = X1 +X2

= [X1 cos (φ1) +X2 cos (φ2)] + i [X1 sin (φ1) +X2 sin (φ2)] = A+ iB
(151)

with A and B defined exactly as in (147) leading to

Xr = Xre
iφr (152)

with Xr = Xs and φr = φs with Xs and φs defined from the phasor associated to xs(t).
If x1(t) + x2(t) = 0, by simple considerations, we must have X2 = X1 and φ2 = φ1 + π modulo

2π, which leads to

X1 = X1e
iφ1 , X2 = X1e

i(φ1+π) = −X1. (153)

Then, we clearly have X1+X2 = 0. Indeed, also the phasor Xs associated to the sum is 0 and this
completes the proof.

It is clear that if we have a sinusoidal function x(t) = X cos (Ωt+ φ) then its derivative in time
is still a sinusoidal function with the same frequency

x′(t) = −ΩX sin (Ωt+ φ) = ΩX cos
(
Ωt+ φ+

π

2

)
. (154)

Then the phasor X ′ associated to the derivative in time x′(t) is

X ′ = ΩXei(φ+π
2 ) = iΩXeiφ = iΩX. (155)

By the same argument we have that the phasor X ′′ associated to the second derivative in time
x′′(t) is

X ′′ = iΩX ′ = iΩ(iΩX) = −Ω2X. (156)

We consider the scalar ODE
my′′ + ry′ + ky = F cos(Ωt+ φ), t ∈ R+

0

y(0) = A,

y′(0) = B,

(157)
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with the real nonnegative constants m, k,Ω > 0 and r, F ≥ 0 with φ ∈ [0, 2π[ modulo 2πn with
n ∈ Z. The solution to (157) is given by

y(t) = yh(t) + yp(t) (158)

where yh(t) is a solution to the homogeneus equation and yp(t) is a solution to the whole equation.
We first focus on the homogeneus problem

my′′ + ry′ + ky = 0 (159)

and we look for a solution in the form y(t) = Aeλt which is nontrivial and so we assume A ̸= 0. We
substitute it in the homogeneus equation and we get(

mλ2 + rλ+ k
)
Aeλt = 0 (160)

and since Aeλt ̸= 0 ∀t ∈ R+
0 because A ̸= 0 then we get the characteristic equation

λ2 + αλ+ β = 0 (161)

with α = r
m ≥ 0 and β = k

m > 0. The roots are given by

λ1,2 =
1

2

(
−α±

√
α2 − 4β

)
(162)

and, depending on the parameters of the problem, we have three possibilities

1. λ1 ̸= λ2, real, negative and different if α > 2
√
β ⇔ r > 2

√
km;

2. λ1 = λ2 = λ, real, negative and coincident if α = 2
√
β ⇔ r = 2

√
km;

3. λ1,2 = α± iω, complex and conjugate with negative real part if α < 2
√
β ⇔ r < 2

√
km.

Thus, the solution to our homogeneous ODE is

yh(t) =


C1e

λ1t + C2e
λ2t, if α > 2

√
β ⇔ r > 2

√
km,

C1e
λt + C2te

λt, if α = 2
√
β ⇔ r = 2

√
km,

e−
α
2 t (C1cos(ωt) + C2sin(ωt)) , if α < 2

√
β ⇔ r < 2

√
km.

(163)

Now, we focus on the whole ODE (157) and we assume a sinusoidal solution of the type yp =
Yp cos(Ωt + ψ), we substitute it in (157) and we solve the equation in the space of the phasors.
Recalling the expression of the phasors associated to the first and the second derivatives of a
sinusoidal function given by (155) and (156) we have

−mΩ2Y p + iΩrY p + kY p = Feiφ. (164)

Then

Y p =
Feiφ

−mΩ2 + k + iΩr
, (165)

from which we get

Yp =
F√

(−mΩ2 + k)2 +Ω2r2
, ψ = φ− arg (−mΩ2 + k + iΩr), (166)
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where by arg (·) we denote the phase of the argument up to 2nπ with n ∈ Z. Once we compute Y p,
we automatically get the unique associated sinusoidal function yp(t) = Yp cos (Ωt+ ψ).

So, the final solution to our ODE (157) is y(t) = yh(t)+yp(t), where yh(t) is given by (163) and
yp(t) is a sinusoidal function whose amplitude and phase are given by (166).

The two constants C1 and C2 in yh(t) are computed by imposing the initial conditions y(0) = A
and y′(0) = B and solving the resulting 2 by 2 linear system.
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