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Introduction

In this supplementary material, we show the proofs and the details that were too lengthy to be put
in the principal manuscript. We show the proof of the Deferred Correction procedure in a general
framework in section [T} In section [2] we provide the proofs of the accuracy and of the properties
of the operators £ and £} of the bDeC method in the context of ODEs, and we show how the
sDeC method can be seen as a perturbation of the bDeC. In section |3| we prove the properties of
the operators £ and L} of the bDeC formulation for the continuous Galerkin (CG) finite element
framework and we investigate the issues experienced in many works with such formulation. Finally,
in section [4] we show how to find the analytical solution to the ODE modeling a monodimensional
vibrating system.

For each section, we recall the basic notions of the main document needed for the discussion, in
order to make this document as much self-contained as possible, and sometimes deepened, in order
to increase the understandability.

1 DeC in the abstract framework

Assume that we have two operators, depending on a parameter A, between two normed vector
spaces
LA LA X —Y (1)

then the following theorem holds.
Theorem 1.1 (Deferred Correction accuracy). Let the following hypotheses hold

1. Ezistence of a unique solution to L3
Flun € X solution of L% such that L% (up) = Oy;
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2. Coercivity-like property of L}
Jay > 0 independent of A s.t.

[£a(@) = La()[|y Z en|lw—wly, VoweX; (2)

3. Lipschitz-continuity-like property of L — L3
Jag > 0 independent of A s.t.

[(ch@) - £A@) - (Ch@w) - LA@w) [y € @b o -wly, VwweX.  (3)

Then, if we iteratively define u'P) as the solution of

Liu?)) = LR (u?™) - LA (uPV), p=1,... P, (4)

we have that »
"o = (32) [ -] :
Hg UAX_<a1 u ual|, (5)

Proof. By using the coercivity—like property of £4 and the definition of £} ( P)) in (@), we have

[ s <

X Y

(6)
Since u, is the solution of £, we have that £% (us) = Oy and we can add it inside the norm on
the right hand side of the equality in @ and we get

Hcl () - ﬁA(uA)Hyz071HQ@P*U)f.ci@”*”)fﬁz(m)H

1 _ _
HQ(P) _@AHX < — H {Q(g”’ V) — LA (u'F 1’)} — [Lh(un) —ﬁi(@A)]H : (7)
(65} Y
Now, by applying the Lipschitz-continuity-like property we get
N T R ®
By repeating these calculations recursively we get the thesis. O

2 The Deferred Correction for systems of ODEs
We will focus on the numerical solution of the general Cauchy problem

{gtu(t) = G(t,u(t)), telo,T],

u(0) = z, ©)

with u : R — R?, 2 € R? and G : R x R? — R? a continuous map Lipschitz continuous with
respect to uw uniformly with respect to ¢ with a Lipschitz constant L. This ensures the existence of
a unique solution for the system of ODEs (9)

We will assume here a classical one-step method setting: we discretize the time domain [0, 7]
by introducing N + 1 time nodes t,,, which are such that 0 =ty <t; < --- <ty =T and therefore
inducing N intervals [t,,t,11], we denote by u,, an approximation of the exact solution u(t,) at
the time t,, and we look for a recipe to compute w,; by knowing u,, for each n =0,1,..., N — 1.
We will focus on the generic time interval [t,,, t,+1] with At = t,41 — t,, and, as in the context of
a general consistency analysis, we will assume u,, = u(t,).



2.1 bDeC

In the general time step [t,,t, + At] we introduce M + 1 subtimenodes t°, ..., t* such that t,, =
0 <t < ... <tM =1t, + At, which are assumed here to be equispaced. We will refer to w(t™)
as the exact solution in the node t™ and to 4™ as the approximation of the solution in the same
node. Just for the first node, we set u° := u,, and, in the accuracy study, we will consider it to be
exact, i.e., u’ = u(t%) = u(t,) = u,.

2.1.1 Definition of £3

An exact integration of the system of ODEs over [t°, t™] would result in

m

w(t™) —u’ — G(t,u(t)dt=0, VYm=1,..., M, (10)

t0

from which we would have the exact solution w(t™).

Unfortunately, we cannot perform in general the exact integration and we need to make some
approximations. We replace G(t,u(t)) by the Lagrange interpolating polynomial of degree M
associated to the M + 1 nodes t™ with m =0,1,..., M, getting

trn M
u™ — ZG w(t))pi(t)dt =0, ¥Ym=1,..., M. (11)

Moving the finite sum and the vectors G(t¢, u(t’)) outside of the integral, can be recast as

M
u™ —u® - ALY 07G(t u(t') =0, Ym=1,...,M, (12)
£=0
where the coefficients 0} are the normalized integrals of the Lagrange basis functions and do not
depend on At.

Proposition 2.1. u™ satisfying is an (M + 1)-order accurate approzimation of w(t™).

Proof. For the proof, we will focus on the original equivalent formulation . Let us compute
u(t™) — u™ with 4™ got by . From , and the M-order accuracy on the approximation
of G(t,u(t)) due to the interpolation with Lagrange polynomials of degree M we have

th

w(t™) —u™ =u’ + Gt u(t))dt —u —/ th u(th) 't (t)dt

M
)3 G u(t)e >] (13

£=0

t’ﬂl
:/ O(AtM TN dt = O(AtMT2),
tO



Despite this result, the previous formula cannot be used in practice because the exact solution
u(t?) in the nodes t* with £ =1,..., M is not available.
We use the approximated values u’ in place of them, thus getting the following implicit formu-

lation
M

u™ —u’ — ALY 07G(tu) =0 Ym=1,...,M, (14)
£=0

which leads to the definition of our £3 operator

ul —ul — At szz\io 0;G(t", ub) u!
LA(uw) = | u™ —u® — At Zej\io Gt u) | withu=| u™ |. (15)
uM —u® — At MGt ut) u

Proposition 2.2. Let u™ be the m-th component of the solution of LA (w) = 0. Then, u™ is an
(M + 1)-order accurate approxzimation of w(t™).

Proof. Let us consider the following operator 7 : RIM*Q) — R(IMXQ) defined as

u® + At Zévio 0;G(t", ub) y!
y=Jw) = | u+ At oGt u') | withy=|[ y™ |. (16)
u® + At MGt ul) y

Again, we remark that u°, the vector corresponding to the initial subtimenode, is always fixed. The
proof consists of two parts. We will first show that, for At small enough, J is a contraction over
RMxQ) which is a finite dimensional space (and so complete with respect to the distance induced
by any norm). This will ensure, thanks to the Banach fixed-point theorem, that there exists a fixed
point @ such that @ = J(@) and that it is unique. It is very easy to see that this fixed point
is the (unique) solution to the operator £4. Then, by iteratively applying the operator, we will
generate a sequence of vectors converging to this fixed point and we will show that this limit is an
(M + 1)-order accurate approximation of the exact solution to the system of ODEs.

Let us first prove that J is a contraction for At¢ small enough. We recall that 6" are constant
coefficients independent on At and bounded by Cy = max|0}’| and that G(t,u) is Lipschitz-
continuous with respect to v uniformly with respect to ¢ with constant L. Now, using the triangular



inequality, we have

19(0) ~ T @)l =t |3 | 67 [G(#0) — Gt w)

6! [G(t, v') — G(t, w")]

M
<SALCy Y |Gt v — Gt w')|
=0

,Q

M
<AtCy ZL H've - wZHwQ < AtCyLM ||v — w]|, -
£=0
The last inequality follows from the fact that v — w contains as components all the vectors
vt —wl forall £ =1,..., M and from the fact that v° = w° = w° and so

||v€—w€H <|v-—w|,, Y=1,...,M, (18)

0,Q

where |[|-||,, o is the infinity norm over R?, while |||, is the infinity norm over RM®*®. For
At < Ceﬁ’ we have

1T (@) = T (W)l <dlv-wl (19)

with § < 1 and so J is a contraction. As anticipated, there exists a unique fixed point u, solution
of £%.

For the second part, we will prove the accuracy of the iteration of the fixed point procedure.
We consider the sequence {y(’“)}keN given by the following recursive definition

y® =T"*) (20)
with its general element being
yh ) Y1 © u
y® =1 ym® | withy® =] y™O@ | =[ «° [. (21)
y M) yM:(0) e

The general component y™*) of y(*) is a Q-dimensional vector. The first index m is referred
to the subtimenode, the second is the index of the sequence. In order to have a more compact
notation, we will not write G(t°,u’) as a separate term but we set y® ) = 40 Yk > 0, because the
value of the solution at the first subtimenode is known. From theory, we know that this sequence
converges to the fixed point of J and so to the solution of the operator £%.

Let us prove by induction on k that for all m =1,..., M, we have

ym,(k) — u(tm) + O(Atmin(k+1’M+2)). (22)



The base case, for k = 0, is clearly true as a simple Taylor expansion gives
w(t™) = u(t®) + AtG(°, u(t®))(t™ — t°) + O(AL?) = y™ ) + O(At), (23)

reminding that %u(t) = G(t, u(t)).

For the induction step, we assume that y™*) = w(t™) + O(A**+1LM+2)) and we will prove
that y™ *+1) = o (t™) 4 O(At™n(k+2,M+2)) By exploiting the Lipschitz-continuity of G, we have
that

G(te,u(tz)) _ G(te, yfy(k)) + VuG(te, y[,(k))(u(te) — yg’(k)) + O <Hu(t£) - ye,(k) H2 Q) (24)

— G(te, yi,(k)) + O(Atmin(k—i-l,M—‘rQ)),

where V,G(t, y“k)) is bounded in some norm by L. We are then able to prove that

M
Y™ D = (%) + ALY 0P G (' yh M)
£=0

(25)
M
=u(t’) + AtY 07 G(t u(t’)) + O(ALTmintkTLME)
=0
Now, thanks to the (M + 1)-order accuracy of (12), we have that
M .
Y™ = w(t0) + ALY 07 Gt u(t)) + O(AEH L)) (26)
=0

_ u(tm) + O(AtM+2) + O(At1+min(k+1,M+2)) _ U(tm) + O(Atmin(k+2’M+2)).

Hence, for k > M the components y*)™ are an (M + 1) accurate solution of u(t™) and their limit
for k — oo, i.e., the solutions of £3, is as well an (M + 1) approximation of the exact solution. [

2.1.2 Definition of L}

If we apply the Euler method to get the approximate solution 4™ in the node t"™ we have

u™ —u’ — At G(t°,u’) = 0, (27)

m__ 40
where ™ =1 Att .

Proposition 2.3. Let u™ be the solution of , then u™ is first order accurate, i.e., u(t™)—u™ =
O(A#?).

Proof. We consider the difference between the exact solution w(t") to our ODEs system and u™ got
from (27). Through a first order Taylor expansion of u(t) and from the fact that £u(t) = G(t, u(t)),
we have

w(t™) —u™ =u’ + G, u’) (™ — %) + O(At?) — u® — At G(t°, u’) = O(AP?), (28)
because u’ = u(t’) = u(t,) = u, and ™ = th’ttO O




Directly from , we get our explicit, low order operator L} : RMxQ) _y RIMXQ) defined as

ul —u’ — AtBLG (%, u®) ul
LA(w) = | v —u® - Atp"G(A%,u’) | withuw= | w™ |. (29)
uM —u® — AtBM G0, u?) uM

2.1.3 Proof of the properties of £} and £%

We equip X =Y = R(M*Q) with the infinity norm ||-|| and we recall here the hypotheses that are
needed to apply the Deferred Correction method from the abstract formulation but characterizing
them to our case.

i) Existence of a solution to £%
Jlu, € RM*EQ) solution of L3, i.e. such that £2 (uy) = 0;

ii) Coercivity-like property of £}
Ja; > 0 independent of At s.t.

|LA(@) = LA(w)|| . > oo —wll, Yv,weRM*D; (30)

iii) Lipschitz-continuity-like condition of £} — £
Jas > 0 independent of At s.t.

I[£A(w) — LA(w)] - [LA(w) — LA(w)]|| € wAt|v -], Yo,weRM*D  (31)

Proof. We prove in order the three properties.

i) Existence of a solution to £%
The first property, i.e., the existence of a unique solution to £%, has already been shown in
the proof of its (M + 1)-order accuracy by introducing the operator J : R(M*Q) — R(M*Q)
defined by . We showed that for At small enough it is a contraction over the space
RM*Q) equipped with the infinity norm, so, there exists a unique fixed point of 7, which is
the unique solution to £3.

ii) Coercivity-like property of £}

Let us now consider two generic vectors v, w € ROM*Q)
vl w!
v=| v |, w=| wm |, (32)
oM wM



with v and w™ form = 1,..., M generic Q-dimensional vectors. From a direct computation,
we have

Lx(v) — Li(w)

vl —u’ — AtBLG(t°, u?) w! —u® — AtBLG(t°, uP) vl —w!
= [ v™ —u® - AB"G(#, u) | — | w™ —u® — Atp"G (0 u’) | = | v —w™ |,
oM —ul — AtpM G (20, uP) wM —u® — AtpMG(t°, u?) M — wM
(33)
ie, LA (v) — LA (w) = v — w. Then,
[£a(v) = La(w)]| , = llv - wl|, (34)

and thus the coercivity-like property of £ is verified and results in an equality. Again, we
remark that u° is given, it is part of the problem and embedded in the operators /JlA and E2A.

iii) Lipschitz-continuity-like condition of £ — £%

Again, we consider a direct computation but focusing, for the sake of compactness, on the
(Q-dimensional component got for a general m

L5 (@) - £3"@)] = [£5" (w) - £X" ()]

M
=v" —u’ — AtB"G (%, u’) —v™ +u’ + Atz 07 G(t", v*)
=0
M (35)
- lwm —u® = AtBTG(H0, ul) —w™ +ul + ALY 607Gt w‘})]
=0

M
=AtY 07 (G(t,v") - G(t', wh)
=0

0 0

where clearly v° = w® = u®. As we pointed out several times, u° is not an unknown, it is a
given vector, it is “part” of the problem and is embedded in the operators. We use v° and
w? instead of u® for the sake of compactness. Let us recall that 67, for m = 1,..., M and
{=0,1,...,M, are fixed constant coefficients independent of At, thus bounded in absolute
value by a positive constant Cy, and that G(¢,w) is Lipschitz-continuous with respect to u
uniformly with respect to ¢ with a Lipschitz constant L. By applying the triangular inequality,



0; [G(t',v") — G(t", w")] G(t'v") — G(t*, w")
M . M .
=AY | 0 [G(tt 0" - Gt w")] < AtCy Y ||| G(t,v*) - Gt w)
=0 : {=0 :
oM [G(t' ) - Gt wh] ) || Gt ') - Gt w') ) || _

M M
=AtCy Y ||G(t'v") = Gt w)|| o< AtCy Y L|v” —w'|| | o< AtCLM v - w,
=0 £=0
(36)

where the last inequality follows from the fact that v — w contains as components all the
vectors v¢ — w’ for ¢ = 1,..., M and from the fact that v° = w® = w®. This proves the
Lipschitz-continuity-like condition of £} —£%. For more clarity, we underline that the infinity
norm |-, o is applied to Q-dimensional vectors (and not to (M x ())-dimensional vectors
like ||-||,). This completes the analysis of the Deferred Correction applied to the context of

the systems of ordinary differential equations.

O

2.2 sDeC

The construction of this DeC method makes use of the definition of the subtimenodes introduced
for the bDeC method. The main difference is that here we focus on the integration of the system
of ODEs in the intervals [t™~! ¢™] rather than [t°,¢t™].

2.2.1 Definition of £

We start from the exact integration of the system of ODEs in the interval [t™~1 #™], which would
result in

t7n
w(t™) —u(t™ ) - G(t,u(t)dt =0, VYm=1,...,M. (37)
tm—1
Again, in order to get an expression that can actually be used, we replace G(t, u(t)) with its M-
order accurate Lagrange interpolant of degree M associated to the M + 1 subtimenodes ¢t and
replace u(t‘) by u’ thus getting

tm

m

M
u Gt u' )Y (t)dt =0, Ym=1,...,M. (38)
£=0

t

m—1

Moving the finite sum and the vectors G(t¢,u’) outside of the integral and performing the exact
integration of the Lagrangian polynomial functions ¥*(t) in the subinterval [t™~!,¢™] we get

M
u™ —um! —AtZé?G(tz,ué) =0, Vm=1,...,M, (39)
=0



where, just like in the previous case, coefficients ¢;* are normalized integrals of the Lagrange basis
functions independent of At.
Our implicit (M + 1)-order accurate operator £ : RIM*Q) — RIMXQ) js therefore defined as

ul —u® — At LGt ul) u!
LA(w) = | wm™ —um! — At Zﬁi W OMG(t ut) | withu=| u™ |. (40)
ull — — At Ze 00 G(th uf) ul

2.2.2 Definition of £}

Also in this case the operator £} is obtained by a first-order approximation in the integration of
our initial system of ODEs. Applying the Euler method in the subinterval [t™~1, ¢™], we get

m

u™ —um - AtyGE™ T u™ ) =0 (41)

tm _tm,fl

where 4™ = 71— are normalized coefficients. The explicit, first-order order operator Lh
RM*Q) _ RIMXQ) ig defined as

ul —u® — Aty G(t°, uP) ul
La(u) = | u™ —u™ "t — Aty"GE" L um ) | withuw=| w™ |. (42)
uM _ uMAAwMG(tMA, uM-1) uM

2.2.3 sDeC as a perturbation of bDeC

The proofs seen for the previous formulation cannot be extended to this case in a straightforward
way, but it is possible to show that the second formulation is actually a perturbation of the first
one with no impact on the accuracy. Let us recall here, for more clarity, the updating formulas
of the bDeC and of the sDeC methods for the computation of u™ (") m-th component of the
approximated solution at the iteration p,

e bDeC
M
ugn’(p) =u’ + At Z 01 G(t, ui’(pfl)) (43)
£=0
e sDeC
m—1 M
ul ) = 4 ALY 4 (G(tz,uﬁ’(p)) — Gt ub D) ) + ALY PG ub ). (44)
£=0 £=0

10



The difference lies in the term
m—1
ALY A (G ub ) - Gt ulb 7)), (45)
=0

which consists in a sum of differences of evaluations of the function G multiplied by At. We
will show now why this term can be seen as a perturbation of the updating formula of the first
formulation with no impact on the accuracy. This actually depends on the fact that u®® and
u®®=1) are approximations of the same quantity.

Proposition 2.4 (sDeC accuracy). The approzimation u™ P provided by the sDeC is an
O(AtPTY) perturbation of uzn’(p) obtained through the bDeC .

Proof. We will prove it by induction over p and m. The base case of the induction is clearly true

as u;n’(p ) = uzn’(p ) = u® whenever p or m are equal to 0. We focus now on the induction step. We

select p,m > 1 and assume

k<p, W=1,...,M, or

(46)
k=p, WU<m-1

ui’(k) = ui’(k) + O(AtFT), for {

and we will prove that u?’(p) = uzn’(p) +O(AtP*T1). We start from and, thanks to the induction
hypothesis, to the Lipschitz-continuity of G and by definition of u;""(p ) in , we have that

m—1 M
WP = 4 AT (G ) - G ub D)) + A 0P G ul )
=0 £=0

m—1
—ul+ ALY (G ) - G uy V) + o(ar))
£=0

M
+ At <Z 07 Gt uy @y + O(Atp)>
£=0

m—1
_ ugn,(p) + At Z ’YHI (G(te,ui’(p)) _ G(te,ui’(p_l))) + O(Atpﬂ)'
£=0
Thanks again to the Lipschitz-continuity of G and to the results on the accuracy of the bDeC
method, for each £ =1,...,m — 1, we can write

HG(t‘,uﬁ"”’) — G, uf’(p_l))H <L Hugm _ ui,<p—1>Hoo .

~.Q (48)

< L|uh —ui +O(AP)|| o = O(A),

where uéA is the /-th component of w,, solution to £%; further, for £ = 0 we have G(tf,ui’(p)) —

G(te,ui’(p 71)) = 0 as the component at the initial subtimenode is always equal to u°. By the
previous fact, coming back to , we get the thesis

w™®) = ™ P L o(Arth. (49)
0

11



3 Continuous Galerkin FEM

Let © ¢ RP an open regular bounded domain. The general form of a hyperbolic system of balance
laws reads

%u(m,t) + divy F(u(x,t)) = S(x, u(x, t)), (x,t) € Q x RY, (50)

provided with some initial condition u(x,0) = ug(x) on  and some boundary conditions on 9.

Let us define 7}, a triangulation of Q and denote with K the general element, which we assume
to be convex and closed. Consider the continuous finite element space Vi, = {g € C°(Q) : g|x €
Py (K) VK € Tp}, let {@;}i=1,....1 be a basis of V}, such that each ¢; can be associated to a degree
of freedom x; €  and has support contained in K; := Ugek, K, where K; .= {K € T}, : «; € K}.
Further, we assume the basis functions normalized in such a way that Zle ; = 1. The general
form of the semidiscrete formulation of a continuous Galerkin FEM scheme consists in finding a
solution up(z) = Y, ¢;(t)p;(z), with ¢;(t) € R? at any time ¢, such that

Z Z (/K @i(w)cpj(w)dm> %Cj(t) + ¢i(c(t)) =0, Vi=1,...,1, (51)

KeK; ijK

where ST';(uy,) are some stabilization terms and the space residuals ¢;(c(t)) are defined as

oi(c(t)) = Z /K (divg F(up(x,t)) — S(x, up(x,t))) pi(x)de + ST;(up), (52)

KeK;

with ¢(t) € R’ containing as components all the Q-dimensional vectors ¢;(t) associated to the
DoFs.

3.1 DeC for CG

In this context, the parameter A of the Deferred Correction is the mesh parameter h of the space
discretization. We assume CFL conditions on the temporal step size, i.e., At < Ch for some fixed
constant C' > 0. We will implicitly assume the Bernstein polynomials as basis functions; never-
theless, the method can be extended also to other basis functions provided that some constraints
concerning the construction of the operator £}, specified in the following, are fulfilled.

3.1.1 Preliminary results

Here, we will present some useful preliminary results that will be used later to prove the first-order
accuracy of £} and the Lipschitz-continuity-like condition of £y — £3. In particular, we will prove
two propositions, via some intermediate lemmas. We will focus on the Bernstein polynomials;
nevertheless the results can be easily extended to other polynomial bases.

Let us consider a general element K, the vector space Py (K) of the scalar polynomial functions
of degree M defined on it and v € Pp(K). We can express v as a linear combination of the
Bernstein polynomials {¢; } r of degree M defined on the element because they are a basis of
Py (K). We have thus

r=1,...,

R
u(x) = Zcrgor(w), Vo € K, (53)

12



where the scalar coefficients ¢, are the Bernstein coefficients associated to the DoFs x, € K.
Another possibility is to express u in terms of the Lagrange basis functions {¢, }  defined on
K which constitute another basis of Py, (K). Therefore, we can also write

r=1,...,

R
u@) =) vp(x), VEeK, (54)
r=1

where the scalar coefficients v, are the values of u in the DoFs @, € K. We define the vector ¢ € RE
of the coefficients of u € Pj;(K) with respect to the Bernstein basis and the vector v € R of the
values of u in all the DoF's of K, i.e., the coefficients with respect to the Lagrange basis.

It is always possible to pass from the Bernstein coefficients to the values in the DoF's through
the transition matrix 7" defined as

p1(z1)  pa(z1) or(z1)
p1(z2)  p2(z2) ... pr(T2)

T = : : . X . (55)
oi(@r) ¢a(wr) ... er(@n)

The general element of T = (T};); j=1,...,r With row index ¢ and column index j is T;; = ¢;(x;) and
we have v = T'c and ¢ = T~ lw.

Remark 3.1 (Independence of the mesh parameter.). Neither the matriz T nor its inverse T—*
depend on the size of the element K. They just depend on the spatial dimension D and on the
degree M. Once we fix D and M, for any specific type of elements, for example the simplices, we
have a firted T and T1.

It is clear that the sum of the elements of each row of T is equal to 1, in fact
R R
N Tii=> ¢j(x)=1, Vi=1,...,R. (56)
j=1 j=1
This is due to the assumption on the basis functions, which are normalized in such a way that that
Z(pj(m) =1, VerekK. (57)

Also its inverse T~! enjoys the same property as we will prove in the next lemma.

Lemma 3.1. The sum of the elements of each row of T™1, inverse of the transition matriz defined

m , is equal to 1.

Proof. Let us observe that proving the thesis is equivalent to prove that 7-'1 = 1 where 1 € RF
is a vector with all the entries equal to 1. From we have that T1 = 1. Thanks to the previous
equality, we have that

T"1=T""'T1=1 (58)

which is the thesis. O
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The previous result will be used to prove the following lemma.

Lemma 3.2. For any polynomial u € Ppr(K) such that

R R
)= Zcrnpr(m) = Zvrgfvr(a:), Vo € K, (59)

where @, are the Bernstein polynomials of Py (K), ¢, the Bernstein coefficients, ¢, the Lagrange
polynomials of Ppr(K) and v, the Lagrange coefficients, it holds that

sup fei— ;| <C sup o — vy, (60)
i,j=1,....R i,j=1,....R

where C > 0 is independent of the size and aspect ratio of K.

Proof. The proof is a straightforward consequence of lemma From the fact that ¢ = T~ 'v we
know that every Bernstein coefficient ¢, can be expressed as a linear combination of the values vy
in the DoFs through the coefficients of the row 7 of the matrix 7!

R R
ci =Y (T iwvk, ;= > (T )jnvs (61)
k=1 k=1
and therefore
R R
— Cj| = Z lkvk Z gk'Uk . (62)
k=1 =1

Now, from lemma we know that the coefficients (T~ l)rk are such that

=1 ¥r=1,...,R. (63)

NE
G

k=1

This is in particular true for r = ¢ and r = j and so there exist some coefficients )\k > depending
on i and j, such that (62)) can be written as

R R

—CJ|_ Z zkvk_Z(T_ jkVE| = Z )\ k—’Ug . (64)

k=1 k=1 k=1

One simple choice of these coefficients is given by /\Z J = % and a simple computation
can be used to prove it. This might lead to suboptlmal values of the estimations. The coefficients
A%, like the coefficients T;; and (T‘l)ij, do not depend on the size of K, and, thus, they can
be bounded by a positive constant C), which depends just on the type of the element considered.
Then, thanks to the triangular inequality, (64) gives

R R R
lei — ¢j] = Z A (op —ve)| < Z |)\Z’J |, — ve| < Cy Z |k — vgl. (65)
kt=1 kt=1 kt=1
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Since the number of dimensions D and the degree M are fixed, also R is fixed and so the number
of terms in the sum. Therefore, from we get

R

lei —¢j] < Cy Z g —ve| <C sup  |v; —v; (66)
Py} i,j=1,..,R
for some C' = C'\R? independent of the size of K. O

This allows to prove the following result.

Lemma 3.3. For any polynomial u € Pp(K) such that u(x) = Zle cror(x), Vo € K, where o,
are the Bernstein polynomials of Py (K) and ¢, the Bernstein coefficients, then

sup e = ¢ < O [Vl | (67)

where C is the positive constant in (and thus independent of the size of K, dependent just on
the number of dimensions D, on the degree M and on the type of the element) and h is such that
diam(K) < h. The norm ||-||, is the 1-norm in RP, the norm [l e 7y s the L% norm over K.

Proof. This is a consequence of lemma[3.2] in fact, from basic analysis, we know that for any smooth
scalar function f € C*(K)

sup |£(@) = F@) < B IVad I i (65)
z,yc K

where we remark that K is assumed to be closed. Thus for the polynomial u, thanks to the
inequality , we have

sup Jei—el <O sup oy — vl < ChIVaull e e - (69)
3,5=1,...,R 1,5=1,....R
because v, are the values of v in the DoF's of K. O

We will continue now with the first proposition of this section, which will be used later in the
proofs of the first-order accuracy of £} and of the Lipschitz-continuity-like condition of £} — £3.

Proposition 3.4 (Mass lumping accuracy). Let us consider a scalar continuous piecewise poly-
nomial function u € V. We can write u as a linear combination of the Bernstein polynomials
{@i}izy,.. 1 associated to the tessellation which constitute a basis of V,, i.e., u(z) = Zle cipi(x) Ve e

Q with ¢; scalar coefficients. Then, we have Vi = 1,...,1 that

> o [e@ie= 3 3 o [ plae@ie] < OhlIVaul e, [ loi@ldz, (70

KeK; KeK;xz;eK

with h = maxgeT, diam(K) and C being a constant independent of h, dependent just on the
dimension D, on the degree M and on the type of the elements in the mesh.
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Proof. We will assume at first all the elements of the tessellation to be of the same type but this
hypothesis can be relaxed to the general case with different types of elements.

Let us focus on the left-hand side of . Thanks to the normalization of the basis functions
and to the fact that the only basis functions that are not identically zero in the element K are the
ones associated to the DoFs contained in that element, we can write

ch/% iz — 3 ZCJ/% Des@dz| = | 3 3 (e /M 2)p;(@)da)

KeK; KeK;xz;eK KeK;xz;eK
(71)

Now, thanks to the triangular inequality, to the fact that the absolute value of the basis functions
¢, can be bounded by a constant Co, independent of the size of K, dependent just on the dimension
D, on the degree M and on the type of the elements in the tessellation and also to the fact that
the number R of DoF's x; in each element K is fixed since D and M are fixed, we can write

S S (- /K @@z < 3 Y Jei—of /K ps()p; () da

KeK; z;€K KeK; ;€K
< T s leal [ a@la@lies © Y 6mp fael [a@ie 0
KeK; z ek P€K KeK; @€k
< Z RC, sup Icz—Ce|/ |pi()|d.
KeK;

By applying the previous proposition and from the fact that by definition K; = Ugek, K,
we can continue the sequence of inequalities and get

Z RCy sup |cz—ce|/ |pi(x)|de < Z RCo Ch ||| Vull, | oo () / |oi(x)|dx

KeK; €K KeK;

<RCCHIVatllymey Y [ lo(@lldz = ROCH Izl e, / pi()]| da.

KeK;

(73)

We take ¢ = RCyC and we have the thesis, in fact, none of R, Cy and C depend on h, but
they just depend on the dimension D, on the degree M and on the type of the elements in the
tessellation.

We remark that we assumed that all the elements of the tessellation were of the same type. To
deal with the general case in which we have different types of elements we suffice to take C' as the
maximum of the coefficients C' of lemma [3.3| associated to the different types of elements and R as
the highest number of degrees of freedom in a single element.

O

Before going ahead let us make some useful observations.

Remark 3.2. Since the Bernstein basis functions are not negative, we can actually remove the
absolute value inside the integral in . We left it on purpose to be more general. In fact, it
is easy to see that what is proved in this section is actually not limited to the specific case of
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Bernstein polynomials; the results can be easily extended to other polynomial bases, like for example
the Lagrange polynomials (for which the matriz T is the identity and the constant C' = 1) provided

that the normalization holds, i.e. Zilzl o(x) = 1.

Remark 3.3. The final result , which has been proven for a scalar polynomial u € V},, can be
easily extended to the vectorial case by applying it componentwise. If u € VhQ, then we have

I
m@:EZQ%@)Vmeﬁ (74)

with ¢; € RO Vi = 1,..., I being Q-dimensional vectors of coefficients and {p;}
basis and it holds that

2 (/}((pi(w)d:E) SR (/K%(w)wj(w)dw> ¢

KeK; KeK; x;€K

i=1,...1 the Bernstein

oo

< Ch Vol llmiey [, [ Wo@lds Vim11 (75)

where the norms ||-||; and ||| o (,) are applied to each scalar component while the norm ||-[| o, is
on R?.

The key point is that the result is uniform with respect to all the components of u and so
we can easily take the infinity norm of both sides to pass from the scalar to the vectorial case.

We focus now on another intermediate lemma before proving the second and final proposition
of this section.

Lemma 3.5. Let z € C*(K) and assume that its gradient is bounded in such a way that |||V zz||, ||LOQ(K) <
Cy. Then, for K small enough it holds

Izl s sy 2 O 12l ooy 1K, (76)

with |K| measure of K and C* a constant dependent on Cy and on ||z|| g but independent of
the size of K.

Proof. As K is closed and z € C1(K), then
Jr* € K st [2(2")] = ||z oo (g) < Fo00. (77)

Further, due to the continuity of z, the set B of the points in K for which the absolute value of

the function is larger or equal than V(ZJJ is non-empty and has a strictly positive measure, i.e.
|B| > 0 with
x*
B:{meK&tz@nng”}. (78)

We try now to find a lower bound for |B| by defining a set B* C B whose measure is known; in
particular we define

B* = {w € K sit. d(z, ") < |22(2:)| } (79)
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where d(-, -) is the Euclidean distance. Indeed, we have that B* C B. Let & € B*, then by a simple
Taylor expansion we get

2(2)] = |2(27) + Ve 2(s)(s — a7)] (80)

with s being a point, dependent on &, contained in the segment S(&, *) connecting & and x*. The
triangle inequality gives

2(®)] = [2(27) + Va2(s)(s — 2")| > |2(27)| = [Vaz(s)(s — z7)|. (81)

(=)]

Now, we have that |[Vzz(s)(s —x*)| < Z5- because of the regularity assumption on the gradient
of z and because d(s,x*) < d(Z,x*) as s belongs to the segment S(&,x*). This can be seen by
simple computations:

Vasla)a = 2)] < NVl ) < € 2 - EEDL (52)

Coming back to with this information, we can write

2@)] 2 [2(a")] ~ Varls)(s — )| 2 (@) - EEN - T (53)

and hence £ € B and B* C B.
We are able to estimate the measure of B* providing therefore a lower bound for |B|, indeed,
by definition, such set is the intersection between K and the ball B,(x*) centered in * with radius

p = IZ(gg)\. If the ball B,(x*) is entirely contained in K then B* = B,(x*) and its measure is

given by |B*| = |B,(z*)| = CspP where C; is the measure of the unitary ball in RP. If this does
not hold, it is anyway always possible to find a lower bound for the measure of B* of the type

|B*| > min (C, |K|) (84)
with C,, constant dependent only on the aspect ratio of K but not on its size. Therefore, from the
definition of B and from |B| > |B*| > min (C,p?, |K]), we get

( “)l [2(2")] | oy o 12(27)]
el = [ Je@lde > [ |z(@)ide > EEN ) > EE B > EE min (Cop, 1),
(85)
Now, recalling that |z(z*)| = [|z[| = ), we have
[ ||L<>o CopP
sy = s 2 min (52, 1) (56)
) K]

We define thus C* := 5 mln (C‘ T ) and we observe that, since C,, only depends on geometrical

properties of K and p only depends on z, for K small enough C* = % and we get the thesis.
O

Now, let us generalize this result to the whole domain for piecewise C! functions, even discon-
tinuous, by proving the last result of this section.
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Proposition 3.6 (Relation between L> and L' norms). Letz € {z € L'(Q) s.t. z|x € CY(K), VK € Ty}
satisfying locally in each element the hypotheses of the previous lemma, i.e. ||\|sz\|1||LOO(K) <Cy

and K small enough. Assume the mesh to be regular in the sense that for any i =1,...,1 it holds
that

/ lpi()|dx < Cpy / i (a)|de, VK, K € K;, (87)
K K

; 15 the basis of Vi, given by Bernstein polynomials. Then,

I
Z ||Z||Loo(;ci)
i=1

where C* is a positive constant independent of the mesh parameter.

where {@;},_,

.....

3 /K pi@)lda < 2] 1o (88)

KeK,;

Proof. Let K* € K, be the element such that 2l e,y = 12l o (rey; then, using the mesh

regularity assumption and the fact that the basis functions are bounded in absolute value by
a constant Cj independent of the mesh parameter, we have

I I
Z”ZHLOOUQ) > /K|<Pz‘(90)|d$zz > HZ||Loo(1ci)/K|<Pi($)|d$
=1

KEK; i=1 KeK;
I
=3 % Felimue [ oi(olde
il KEeK; (89)
<> > cum ||z||Lm(K7~,)/ |pi(z)|dz
i=1 KEK; K
I .
< Z Z CrmCo |2 oo 51y [ K-
1=1 KeK;

We apply now the previous lemma [3.5] and, switching the sums over the elements and the DoFs,
we get

I ! CmC
, 0
Z Z CmCo |12l oo 5oy 1K' SZ Z THZHLl(Ki)
i=1 KEK; i=1 KeK;
o (90)
MmCo
= S S S el
KeTh €K

where C* is the minimal coefficient of lemma among the ones associated to all the elements K*.
If R is the maximal number of DoFs in a single element in the whole mesh, we can continue and
write

CmCo RCMCy
40 S S Bl < 2L S wp el o1

KeTh x,€K KeT, @

Now, in , each element K in the tessellation is contributing to the sum with the L' norm of z
over one element K* among the ones associated to the DoFs x; € K. The generic element K* can
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be present in the sum at most a number of times equal to M,, + 1 where M,, represents the maximal
number of neighbors that an element can have in the tessellation. Hence, we get

RCCo RCMCy
o > sup 120 riy < T(Mn‘*‘ D[zl 11 q) - (92)
KeT, ©€K
Observe that none of the coefficients R, Caq, Co, C* or M, depend on the mesh parameter,
therefore, by setting C* = %(Mn + 1), we get the thesis. O

Also in this case, we remark that, in the context of Bernstein polynomials, which are non-
negative, the absolute value on ; is not necessary. We kept it just to be more general. Indeed, all
the results can be generalized to other basis functions like the Lagrange polynomials.

3.1.2 Definition of £3

The operator £ is the high order implicit operator that we would like to solve. Its definition
is not very different from the one seen in the context of the bDeC for ODEs. We introduce the
M + 1 subtimenodes t™ with m = 0,..., M in the interval [t,,t, + At] in which we will consider
the approximations of the values of the solution to our system of ODEs. We refer to c(t™) as
the exact solution in the node t™ and to ¢™ as the approximation of the solution in the same
node. Clearly, in this case ¢(t"™) and ¢™ contain as components all the coefficients corresponding
to the spatial DoFs, i.e., respectively the vectors ¢;(¢™) of the exact coefficients in the DoF's at
the time ¢ and the vectors ¢]* of the approximated ones. As usual, for the first subtimenode we
set ¢ = c(t’) = c(t,) = ¢, without any approximation. Starting from the exact integration of
over [t°,¢™] and substituting ¢;(c(t)) with its M-order interpolation in time associated to the
M + 1 subtimenodes, we get

M
S>> (/ 0;(x )da:)(;”—cg)—&—At;)%”qbi(cz):O, Vi=1,...,1¥m=1,...,M.

KeK; €K
(93)
Therefore, we can define the operator £3 : RUXQXM) _y RUXQXM) 49
Li(e) = (LA1(0), LAs(),- - LA (e),  VeeRUXMD, (94)
where for any ¢ we have
YoKeK, ZwJeK (Jx pi(= )d":) (c — 6 ) + At Zz 00 #i(c’)
£2A,i(2) = ZKeK,- ijeK (fK ‘Pi(x)Wj(m)dJ:) (C ) + At Ee 09 (CZ) . (95)

ZKeK ZwJeK (fK pi(x )da:) ( C?) + At sz\io ‘%Md’i(cl)

with the general argument ¢ € RUX@*M) haying M components ¢™ € RU*®?) each one associated

to a subtimenode and having I components ¢]* each one associated to a DoF'.

The solution ¢x to LA (ca) = 0 is (M + 1)-order accurate in the sense that would contain as
components (M + 1)-order accurate approximations of the coefficients which represent the exact
solution to in all the subtimenodes ™ m = 1,..., M. Unfortunately, the problem £% (c) =0
is a huge nonlinear system.
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3.1.3 Definition of £}
Performing an Euler approximation in time to numerically solve in [t t™] we get

> > (/ ()dw>(”‘—c§)+At6m¢i(c0)=0, Vi=1,...,I, ¥Ym=1,...,M.

KeK;x;cK
(96)

Further, we perform a first-order mass lumping in space to get a fully explicit approximation formula
for ¢
Ci (" =)+ At ¢i(c”) =0, Vi=1,....] Ym=1,...,.M (97)

where C; are constant quantities defined as
C'Z::/goZ )dx = Z/gpi )dx, Vi=1,...,I. (98)
KeK;

We assume a choice of the basis functions such that C; # 0 Vi so that is well-posed. For
example, if we choose the Bernstein polynomials, we have C; > 0 Vi as the basis functions ¢; are
nonnegative. Indeed, ¢ got from (7)) is a first order approximation of the exact coefficient ¢;(t™),
as proved in the next proposition.

Proposition 3.7 (First order accuracy of ) The solution to @ is first-order accurate with
respect to the exact solution c(t) to evaluated in all the subtimenodes t™ form=1,... M.

Proof. We can equivalently show that if we insert the exact solution to evaluated in all the
subtimenodes t™ m = 1,..., M into the left-hand side of we get an error O(AP*2) where D
is the number of spatial dimensions and the parameter A is the mesh parameter h of the space
discretization. Therefore, we want to prove that

Ci (ci(t™) — ) + AtB™¢i(c”) = O(APT?), Vi=1,....,1, Vm=1,...,M. (99)

We know that by plugging the exact solution ¢(t) in we get an error O(AP+2):

>N (/ (:c)d:c) (c;(t™) = €9) + AtB™i(c") = O(APT2). (100)
KeK; ;€K
Hence, instead of (09)), we can show that the difference of and is an O(AP*2), ie.,
Ci (e - > (/ i (@ )dw) (cj(t™) — %) = O(AP+2). (101)
KeK; ;€K

By definition of the coefficients C; in and the preliminary result , we can write

¢, (e -3 3 ([ a@pitis) 0 - )

KeK;z;eK - (102)
I [ test@de,

<Ch HHHVw(uh(m,tm) — (@, )|y | o
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where we remark that the internal norms ||-[|; and ||-[| .« x,, are applied componentwise while the
external one, |||, is on R?. From a Taylor expansion it is easy to see that

Ve (up (2, ™) — up(x, 1) = O(At). (103)

Moreover, [ |pi(z)|dz = O(AP), hence, we have

Ci(ei(t™) =)= > > </Kg0i(m)g0j(a:)d:c) (c;(t™) = I)|| =oAalt?). (104)

O

Directly from , we can define the explicit low order operator £} : RUXQ@XM) _y RUXQxM)
as

‘ClA(Q) = (‘ClAJ(Q)v ‘C’lA,Q(Q)’ te ’ElA,I(Q» ’ VQ € R(IXQXM)’ (105)
where for any ¢ we have

Ci (el =€) + AtB (")
Li(0) = | Ci(e ) + At (%) | . (106)

Ci (M — ) + AtEM ()

(3

in which the convention on the indices of the components of the general argument ¢ € RU*@xM)

is the same that we had for the operator £%.

3.1.4 Proof of the properties of L} and £%

The operators £} and £% act from X to Y with X =Y = RUXQ@XM) = Tt us recall again the
hypotheses that are needed in order to apply the Deferred Correction method

i) Existence of a solution to £%
Jlu, € RUXQXM) golution of L3, i.e. such that £ (u,) = 0;

ii) Coercivity-like property of £
Ja; > 0 independent of A s.t.

|LA(@) = LA(w)]|y > onllv—w|y, Yo,weRIX@M: (107)

iii) Lipschitz-continuity-like condition of £} — £%
Jas > 0 independent of A s.t.

I[£a@) = LA@)] = [£a(w) = La(w)] [y < a2 o —w]y, Vo,we RIS (108)
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We remark that in this context the parameter A is the mesh parameter h and that we assume
the temporal step size At < Ch for some fixed constant C.

We will not prove the first property, i.e., the existence of a unique solution to £%, because the
proof is identical to the one we had in the ODE case up to the inversion of the mass matrix: from
L2 we can define an operator J : RUXQxM) _, RUXQXM) whose fixed points (if any) are solutions
to L£%; further, we can show that for A small enough the operator is a contraction over the space
RUXQXM) equipped with the infinity norm and, hence, there exists a unique fixed point of 7 which
is the unique solution to £%.

Before going to the proofs of the other two properties, we need to define the norms adopted on
the spaces X and Y. Despite having X =Y = RUXQ@*M) we will equip X and Y with two different
norms, differently from what we have done in the ODE case. We will specify the norms after the
following useful observation.

Remark 3.4 (Remark on the indices). The main complication of the proofs is that we have to deal
with many indices. We remind that

e i =1,...,1 is referred to the DoFs;

e g=1,...,Q is referred to the components of the approrimated solution wuy to the system of
balance laws ;
em = 1,..., M is referred to the subtimenodes t"™, even if we remark that we also have an

ingtial subtimenode t° = t,, in which the quantities are not unknown.

We are already used to the fact that the general element ¢ € RUXQXM) muyst be thought as a
collection of M components ¢™ € RUXQ) m = 1,... M. Each component ¢™ can be thought as
the vector of the coefficients of a wvectorial continuous piecewise polynomial function wp(x,t) =
Zle ci(t)pi(x) evaluated in the subtimenode t™. In fact, each ™ is made by I components
cl' e R® withi=1,...,I associated to the DoFs. Finally, each c™ is made by Q components ¢
q=1,...,Q, scalar coefficients associated to the components of the solution to the system of PDEs
that we would like to solve, i.e.,

ct cr chm
K3
c= em € RUX@xM) = gm ci” eRUXQ) em = [ ™ | cRE. (109)
CM C:}” C?,m
In the proofs, we are going to focus on a single scalar component ¢ = 1,...,Q of a single
subtimenode m = 1,..., M and our results will be uniform with respect to the indices ¢ and m, so

we will be able to pass from the scalar results to the desired vectorial results through an infinity
norm ||-||  on R(@*M) “similarly to what we did when we passed from (70]) to in the preliminary
results. Therefore, the norm that we choose for the single component of ¢ € X = RUXQXM) ith
fixed indices ¢ and m, denoted by ¢%™ € R’ is the W}’l(Q)—norm, a discrete version of the classical
Wh1(Q)-norm. In particular, on a scalar function u : & — R the W11 (Q)-norm is defined as

D
ullyrag = llull g + ‘u = [Jull 1) + I Vaull, ; (110)
WL.1(Q) L1(Q) dE::l Oy o) L1(Q) IRFAY(9))
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from which we define the corresponding discrete norm on R, defined by ||-||W11,1(Q) ‘R - R as

I

q,m
E C Pi

i=1

ch’mHWI“(Q) = (111)

WL1(Q)

Using then the classical infinity norm on the space R¢*M defined by [|-|| o ps : ROM = Ry, we
introduce the X norm ||-|| : RIX@*M — R as

(112)

lelly = H{||Cq’m||w}=1(ﬂ)}

Instead, we equip Y with a different norm; we choose for the single component 2™ € R with
fixed indices ¢ and m of & € Y = RUX@*M) the I-norm ||, ; : R — Ry defined as

1
&y, =Y ler™, (113)
i=1
then the norm on the whole space Y = RUXQXM) .|| . RUX@XM) 5 R¥ is defined by

(114)

)

q=1,....Q
m=1,....M

lélly = H{neq’mll,f}

0,Q,M

Remark 3.5. We remark that the initial subtimenode m = 0 is not kept into account in the norms
(112)) and (114) as it is a datum of the problem.

Remark 3.6 (On the choice of the norms). The reason of the difference in the norms assumed on X
andY is intuitively due to the following fact. Practically speaking, the elements of X, the arguments
of LA and L given respectively by and (and so by and ), are the coefficients
associated to a vectorial continuous piecewise polynomial function evaluated in the subtimenodes t™
m =1,..., M. Therefore, on the space X we take an integral norm for “functions”. Instead, the
elements of the space Y, the images of LA and L, are consistent with integrals of the mentioned
function associated to the coefficients. In order to guarantee the consistency of the terms in the
inequalities to prove and to compare |-|| v and ||-||y, we must take for Y a norm which does not
modify the integral “character” of the components of the elements of the space.

It is straightforward to prove that (112) and (114]) are norms but we will not do it for the sake
of brevity. In the context of the proofs of the properties of £% and L}, we are going to make use
of the two following regularity assumptions.

Assumption 3.8 (Poincaré-like inequality). We assume that we are working with coefficients reg-
ular enough to guarantee that the associated functions gy, for some C, > 0 independent of A, are
such that

th”WLl(Q) <G ||thL1(Q) ) (115)

i.e., we assume that we can control the norm of the gradient of all functions that we will consider
with the norm of the functions.
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Assumption 3.9 (Smoothness of the space residuals). We assume the functions ¢; defined in
to be smooth.

Finally, the notation in eq. will hold for two generic vectors v, w € RUXQXM) that will
be used in the proof.

In order to deal with the single component got for fixed m and ¢, as we are going to do in a few
lines, it is very useful to define here the scalar continuous piecewise polynomial functions

I I
o™ (@) = ol M), wiT(e) =) wiei(x) (116)
i=1 i=1
associated to the scalar coefficients v)"™ and w?™ i =1,..., 1.

Now, we have all the elements that we need in order to handle the proofs of the properties of
the two operators.

Proposition 3.10 (Coercivity-like property of £1). Let £} : X — Y be the operator defined in
(105) and (L06]), v,w € X and suppose that assumption holds, then day > 0 independent of A
s.1.

[La(w) = LAy > arllv —wllx,  Vo,w e REXPAD, (117)

Proof. From a direct computation we have, for everyi=1,..., I, m=1,.... M andg=1,...,0Q,
that

LXY™ (0) = LK% (w) = C; (o7 = 1) + A" ¢ (%) = Ci (wl ™= ¢1) — A" (")

K2

= Ci (vf " —wi™).

(118)

We remark again that ¢ is known and so also ¢). We will start by proving the coercivity-like
property for a fixed component ¢ and a fixed subtimenode m, i.e., we will prove that the 1-norm of
(118]) over the indexes i = 1,...,1 is such that

ek @) - 2k @) = an o™ = wf ™y ey (119)

for some «; independent of A for all m and ¢. Recalling the definition of the coefficients
Ci = |, wi(z)dx and the fact that the Bernstein basis functions are nonnegative, we have

I I
k@ - ekt = 16w —ut = 3 [ 168 - wt @)l ds. (120)
’ i=1 i=1

Using the triangular inequality and recalling the definition (116|) of the scalar continuous piecewise
polynomial functions v and w}'™, from the previous equation we get

I
ek - el > [ S8 - utee) | do
’ =1
_ /Q o™ (@) — wf™ (@) de = o™ — 0" (121)
1
== llop™ = wZ’mel,l(Q) = on [Jo™ = w;ZL’m”Wl,l(Q) )

=C,
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where, in the last inequality, we used the Poincaré-like inequality and o = c% with C,
independent of A, which is the intermediate result that we wanted to show.

In order to get the final result, it suffices to observe that the previous inequality is uniform with
respect to the indices ¢ and m, so, we can take the infinity norm on these indices of both the sides
and get

|LA(@) = LA(w)]|y > a1 llv—w] (122)

using the definitions (112)) and ((114)). O
Proposition 3.11 (Lipschitz-continuity-like condition of £} —£3%). Let LA, L% : X — Y the oper-
ators defined in (L05]) and . Consider v,w € X regular enough and suppose that assumption
holds. Then, Jas > 0 independent of A s.t.

|[£a(v) — LA(v)] = [La(w) — LA(w)]]y < A [lv —w] . (123)

Proof. Focusing on one DoF i € {1,...,I} and on one subtimenode m € {1,..., M}, we have
1,m 2,m 1,m 2,m
‘CA,i (v) — LA,i (2)} - |:£A,i (w) — LA,i (Q)} =

G —w - 3 Y (- wp) [

KeK;x;eK K

M (124)
pi(@)pj(@)de — ALY 07" [pi(v') — ¢i(w")] .
=0

Just like we did when we proved the coercivity-like property of £}, we will work on the single
component of for fixed g =1,...,Q and m = 1,..., M, then we will derive the final result
on the norms of X and Y by considering the co-norm over the indices ¢ and m.

Let us thus focus on

[£R5" (@) — £X5" ()]~ 255" (w) — £35" ()] = O (of ™ — ™)

DN

KcK; ;€K K

M (125)
pi(@)p;(@)dr — ALY 07" [61(v") — ¢f(w')]
=0

where ¢(-) represents the ¢g-th component of the space residual ¢;(-). We want to show now that
the 1-norm, over all the indices i, of (125]), for fixed g and m, is such that

|5 @) - Lirm@)] - ek ) - L3 @) ||| < ond o -wly. (126)

for some a4 independent of A, from which we will get the final result by taking the infinity norm
of the left hand side with respect to the indices ¢ and m. Thanks to the triangular inequality we
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have

| [ehem @) — £k @)] = [eko™ () - 230 )] | (127)

1,1

I
.MN

£k @) - 2257 )] - [£kt™ () - 2257 ()| (128)

=1

I
SZ Z (v?’mfwf’m)/ i(x)dx — Z Z (vjq-’mfw?’m)/ oi(x)p;j(x)dx (129)
i=1 |KeK; K KeK; ;€K K
=:F
I M
+Y|Aaty o [¢3(vz)—¢3(we)]| (130)
i=1| =0

=:F>

recalling the definition of C; = Y- ek, [f¢ ¢(x)da in (98).
Thanks to the previous inequality, we can deal separately with the two terms of the right hand

side, the first one (129) concerning the mass matrix and the second one ([130]) involving the space
residuals, and show that they can be bounded in the following way

Er < CoA v -, (131)
Ey <Al —wlly, (132)
with C, and Cj independent of A which would give us the desired result.
e First term concerning the mass matrix

In order to bound this term, we can directly apply the preliminary result in proposition [3.4] and we
get

S @ - wtm /K pi@dz— 33 (08" — wt™) / pi(@)p; (@)dz

KeK; KEK; z;€K K

< CAG; ||| Ve (0™ - || PR S Y § (133)

with C independent of the mesh parameter A = h, dependent just on the number of dimensions
D, on the degree M and on the type of the elements in the mesh. From (133 we have

I
E, = Z Z (vF™ —wd™) /K i(x)dx — Z Z (v}”m — w}lm) /K vi(z)p;(z)dx
i—1 |KeK; KeK; z;€K
I
i=1

Thanks to proposition |3.6/taking z = ||v;"™ — w™ |||, then (134)) can be bounded in the following
way

I
CAY [IVa (@f™ = wi ™|y e,y Co < CACT [V (0™ = ™)y [ 11y (135)
i=1
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Hence, by definition of the W11(€2)-norm (110]), of the Wll’l(Q)—norm (111) and of the X norm
(112)), we have

By < CAC ||[|Va (0™ — wi

< CeA o™ —wib

m)HlHl,l(Q) < éé*A ||'Uh’m _ wfl

Q) <C,A ||Q_QHX )

s,
W) (136)

"l
(

with C, = CC* independent of A.

e Second term involving the space residuals
By applying the triangular inequality, recalling that 6}" are fixed normalized constant coefficients,
thus, bounded in absolute value by a positive constant Cy, and that At < Ch = C'A for some fixed
constant C, we have

I M
<ACC S S It — gl(wh)].  (13)

i=1 ¢=0

I M
By=)" At;ez" [6(v") — ¢! (w")]
=0

i=1

From the fact that v° = w® = ¢°, we have

{oi(v™) = & (w™)} 4=1,..0

H (138)
m=1,..sMlloo,Q,M

I M I
ACCy 33161 (v") — ¢ (w')] < ACCM Y

i=1 =0 i=1

Then, we use the assumption of smoothness of the space residuals ¢;(-). In particular, we assume
the following Lipschitz-continuity-like condition

I

>

i=1

{o](v™) = &l (w™)} 4=1,..0

m=1,..., MHOO,Q,M

< C¢ H”Qh _Qhle,l(Q)Hoo o = C¢ HQ_QHX

(139)
with Cy independent of A. Using this, from (138]) we get
E; <CA|lv —wl (140)

with C, = CCyMCy independent of A, obtaining .

Now, that we have proven and , the Lipschitz inequality is proven with as =
C, + Cy independent of A. Finally, we get the final result by observing that what we have proved
holds for any component with fixed indices ¢ = 1,...,Q and m = 1,..., M. So, applying the
infinity norm of the left hand side with respect to these indices, we get

ma|| [ L5 (v) = £X°" (v)] - [£5*™ () - £3°" (w)]

I, .
= ||[£A(v) — LA (v)] — [£A(w) — LA ()] ]|y < a2Allv — w]|y

which is the thesis. O
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3.2 Issues with the DeC for CG

We discuss here a negative result seen in the numerical tests even on the monodimensional linear
advection equation (LAE) reported in the main document and in many other works, e.g. [2 [6] [7].
The DeC formulation for PDEs with the lumping of the mass matrix does not give the expected
formal order of accuracy for space discretizations of order higher than or equal to 4 if one performs
the theoretical optimal number of iterations. In this section, we will try to investigate the problem
by numerically assessing the impact of the number of iterations P, of the CFL and of the CIP
stabilization on higher order derivatives. Before starting, we remark that the loss in the accuracy
is not registered in the context of steady problems, indeed, in [I] the expected order of accuracy is
obtained with B3 on a nontrivial steady test for the bidimensional Euler equations. Further, one of
the authors is involved in a project [4] on some novel CIP stablizations for the monodimensional SW
equations, soon to be submitted, in which the right order of accuracy is obtained for P3, B3 and B4
with the theoretical optimal number of iterations on all the considered steady tests. Therefore, we
will focus on the same unsteady test for the monodimensional LAE presented in the main document
and, in particular, we will consider P3, B3 and B4 as basis functions and the original formulation
of the bDeC for PDEs without interpolations between the iterations as timestepping method. For
P3 and B3 we will use, in the context of the CIP stabilization, the same coefficients adopted in the
main document, §°IF = 0.00702. As the optimal coefficient for B4 is not provided in [5], we will
adopt the same coefficient as for B3 and P3. The reference CFL adopted for the tests with B3 and
P3 is 0.1, instead, with B4 it is 0.05. Where not specified, such values have been adopted.

3.2.1 Impact of the number of iterations

The numerical results for different number of iterations are reported in fig. [I} In all the cases we
can see the same trend: the optimal number of iterations gives order 2, increasing the number of
iterations improves the accuracy allowing to reach the formal order. Nevertheless, it is important
to notice that many more iterations, with respect to the optimal number, are needed in order to
achieve the right order of convergence: 10 for P3, 80 for B3, 320 for B4.

3.2.2 Impact of the CFL

The numerical results for different values of the CFL are reported in fig. 2] Such parameter seems
not to have impact on the order. For P3, CFL = 0.1 performs better than CFL = 0.01 and
CFL = 0.001; for the other basis functions one gets similar results for the different values of the
CFL meaning that spatial error is dominating with respect to the error in time.

3.2.3 Impact of the stabilization on higher order derivatives

The CIP stabilization on the first derivative that we have presented can be actually generalized to
keep into account higher order derivatives as in [3]

R
STi(up) = > > aflF / [[v;f%]] : [[v;fuh]]da(m), QWP — §OP 5 p2r (142)
fe€FnT=1 I

where Fy, is the set of the (D — 1)-dimensional faces shared by two elements of 7y, VJ, is the r-th
partial derivative in the direction vy normal to the face f and ST are constant parameters which
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Figure 3: 1D LAE: tests with different stabilization parameters on the second derivative.

must be tuned. We will focus on the stabilization of the first and second derivatives only, R = 2.
The results obtained with 6™ = 0.00702 and different values of 6$'F are displayed in fig. [3} For
B3 and B4, the extra stabilization seems to help in decreasing the errors but still it is not sufficient
to achieve the right order of accuracy.

3.2.4 Final remarks

The conclusion of the previous analysis is that, in the context of unsteady problems, with the optimal
number of iterations one obtains second order accuracy. Among the three aspects numerically
analyzed, only the first one seems to have an effect on the order of accuracy; in particular, many
more iterations than expected are needed to reach the formal order. For the moment we do not
further investigate this issue, but we have other ideas on how to proceed. First of all, an analysis
of the combination of the three parameters studied above could give better results and a linear
stability /dispersion analysis, in the style of [5] [6], can help in determining the optimal setting to
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achieve the best possible results. Further, higher order derivatives stabilization terms could be
taken in consideration hoping for a better stabilization, this has been suggested also in [7, 6]. More
in general, other stabilizations other than CIP and OSS could be considered. Moreover, the authors
suspect that assumption [3.8is not verified by the approximations and a stronger estimate on the
H' norm of the solution of the discrete problem should be provided with weaker hypotheses to
guarantee the accuracy results.

We conclude this section remarking that the mentioned problem does not occur with cubature
elements also in the DeC framework, which provide accurate and fast results.

4 Vibrating system

Let us consider a general sinusoidal function
z(t) = X cos (Qt + ), (143)

then we refer to X € R(T as the amplitude, to 2 € R as the frequency and to ¢ € [0, 27| modulo
2mn with n € Z as the phase.
Let us introduce two general sinusoidal functions

zj(t) = Xjcos (Qt + ¢;), forj=1,2, (144)
characterized by the same frequency € > 0, amplitudes X7, Xs > 0 and phases ¢1,p2 € [0, 27]
modulo 2n7 with n € Z.

Proposition 4.1. The sum x4(t) = x1(t) + z2(t) between two sinusoidal functions with the same
frequency 2 is another sinusoidal function with the same frequency.

Proof. If 21 (t)+x2(t) = 0 or at least one between X; or Xj is zero, then the proof is straightforward
so let us focus on the case in which x;(¢) + z2(f) # 0 and both X; and X are different from 0.
From basic trigonometry, we have

xj(t) = X, cos (U + ¢;) = Xj[cos () cos (¢;) — sin () sin (¢,)], for j =1,2, (145)

then
xs(t) = x1(t) + x2(t) = Acos (Qt) — Bsin (Qt), (146)
with A := X7 cos (¢1) + X2 cos (¢2), B := X sin (p1) + Xasin (¢2). (147)

We consider now the point (A4, B) € R?, different from (0,0) by assumption, and the induced vector
of length X; = /A2 + B? and phase ¢, = Z(A, B), so that A = X cos (ps) and B = X, sin (¢s).
By definition of such vector, (146)) can be recast as

x1(t) + 2 (t) = X cos (¢s) cos (Qt) — X sin (¢s) sin (Qt) = X cos (U + ¢5), (148)
which completes the proof. O

We introduce now a bijection S from the quotient set of the sinusoidal functions with a fixed
frequency Q defined by (X, ¢), in which we identify all the functions characterized by X = 0, onto
the complex plane

Xei? if X #0

. 149
0 it X=0 (149)

S(x(t) = S(X, ¢) ={
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The complex number X := S(x(t)) is called phasor associated to the sinusoidal function z(t).

Proposition 4.2. If we have two sinusoidal functions x1(t), z2(t) with the same frequency ) then
the phasor X s associated to the sum x4(t) of the two sinusoidal functions is the sum of the phasors
X1, X5 associated to the single sinusoidal functions.

Proof. The phasors related to the sinusoidal functions (144) are given by
X, = X;e"¥ = X, [cos (p;) +isin (p;)], for j=1,2. (150)

If one between X; or X5 is zero then the proof is straightforward therefore we focus on the case in
which they are both different from 0. Further, we assume for the moment that z1(¢) + z2(t) # 0.
The sum of the phasors gives

X, =X+ X (151)
= [X7 cos (p1) + X2 cos (p2)] + i [X1sin (1) + Xasin (p2)] = A+ iB
with A and B defined exactly as in (147) leading to
X, = X, e¥r (152)

with X, = X, and ¢, = ¢, with X and ¢ defined from the phasor associated to z(t).
If 1 (t) + 22(t) = 0, by simple considerations, we must have X5 = X; and 3 = 1 + 7 modulo
27, which leads to

Yl = )(16“017 YQ = Xlei(“"lJr”) = —Yl. (153)

Then, we clearly have X; + X5 = 0. Indeed, also the phasor X associated to the sum is 0 and this
completes the proof. O

It is clear that if we have a sinusoidal function z(t) = X cos (Qt 4+ ¢) then its derivative in time
is still a sinusoidal function with the same frequency

#'(t) = QX sin (O + ) = QX cos (U + ¢+ g) (154)
Then the phasor X’ associated to the derivative in time 2/(t) is
X = Qxel(#13) = iQXei® = iQX. (155)

By the same argument we have that the phasor X’ associated to the second derivative in time
x’(t) is

X7 =iQX" =iQ>i0X) = —0*X. (156)
We consider the scalar ODE

my// + Ty/ +ky= FCOS(Qt + (P)7 te Rg
y(o) a (157)
y'(0) =B,
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with the real nonnegative constants m, k,Q > 0 and r, F > 0 with ¢ € [0, 27 modulo 27n with
n € Z. The solution to (157)) is given by

y(t) = yn(t) + yp(t) (158)

where yy,(t) is a solution to the homogeneus equation and y,(¢) is a solution to the whole equation.
We first focus on the homogeneus problem

my" +ry +ky=0 (159)

and we look for a solution in the form y(¢) = Ae** which is nontrivial and so we assume A # 0. We
substitute it in the homogeneus equation and we get

(mA? + 1A+ k) AeM =0 (160)
and since Ae* # 0 Vt € R because A # 0 then we get the characteristic equation
Mira\+p6=0 (161)

witha =L >0and 8 = % > 0. The roots are given by

Moo= 2 (—a +/a? - 45) (162)

2

and, depending on the parameters of the problem, we have three possibilities
1. A{ # )Xo, real, negative and different if o > 2v/B < r > 2vVkm;
2. A1 = Ay = ), real, negative and coincident if o = 2\/B & r = 2Vkm;

r
m

3. A1,2 = a £ iw, complex and conjugate with negative real part if o < 2¢/8 < r < 2vVkm.

Thus, the solution to our homogeneous ODE is

CreMt 4 Cyert, if a>2yB&r>2Vkm,
yn(t) =  CreM + Cate, if a=2yB&r=2Vkm, (163)

e~ 2t (Crcos(wt) + Casin(wt)), if a < 2y/B < r < 2Vkm.

Now, we focus on the whole ODE (157) and we assume a sinusoidal solution of the type y, =
Y, cos(Q2t + 1), we substitute it in (157) and we solve the equation in the space of the phasors.
Recalling the expression of the phasors associated to the first and the second derivatives of a

sinusoidal function given by (155 and (156) we have
—mQ*Y, +iQrY, + kY, = Fe'#. (164)

Then .
— Fe'®
V. — 165
P _mO2 + k4 i (165)

from which we get

F ) .
Y, = N TR = —arg (—mQ° + k +iQr), (166)
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where by arg (-) we denote the phase of the argument up to 2nm with n € Z. Once we compute Y,
we automatically get the unique associated sinusoidal function y,(t) = Y, cos (Qt + v).

So, the final solution to our ODE (157)) is y(t) = yn(t) + yp(t), where y,(¢) is given by (163) and

yp(t) is a sinusoidal function whose amplitude and phase are given by (166]).

The two constants Cq and Cs in y,(t) are computed by imposing the initial conditions y(0) = A

and y'(0) = B and solving the resulting 2 by 2 linear system.
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