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Abstract. We propose a novel Model Order Reduction framework that is able to handle so-
lutions of hyperbolic problems characterized by multiple travelling discontinuities. By means of an
optimization based approach, we introduce suitable calibration maps that allow us to transform the
original solution manifold into a lower dimensional one. The optimization process does not require
the knowledge of the discontinuities location. In the online phase, the coefficients of the projection
of the reduced order solution onto the reduced space are recovered by means of an Artificial Neural
Network. To validate the methodology, we present numerical results for the 1D Sod shock tube
problem and for the 2D double Mach reflection problem, also in the parametric case.

Key words. hyperbolic problems, multiple travelling discontinuities, calibration map, neural
network, model order reduction

MSC codes. 65M08,35L60,35L67,76L05

1. Introduction. The goal of MOR techniques [6, 15, 14], which are particularly
suited for the real-time computations and many-query context, is to obtain efficient
and reliable approximations of solutions of high dimensional systems of partial dif-
ferential equations (PDEs). Let us consider the approximate solution upt;µq P L2pΩq

of a parametrized PDE, with Ω Ă Rd, with the parameter µ P Pphys Ă Rs and with
time t P r0, tf s: for the spatial discretization one can consider, for instance, the Fi-
nite Volume (FV) discretization. We introduce the solution manifold related to this
parametric PDE: M “ tupt;µq P VN , µ P Pphys, t P r0, tf su, where VN is a suitable
functional space defined by the chosen spatial discretization. The key idea behind
MOR is to represent M with a finite dimensional linear space VN , such that N ! N ,
where N “ dimVN and N “ dimVN . To find the lower dimensional space VN , one can
use the well known Proper Orthogonal Decomposition (POD) strategy that, given in
input a set of discrete solutions (obtained, for example, with the FV method), is able
to extract a set of small cardinality N , which contains the so-called reduced basis
functions that best approximate the manifold. A pivotal aspect for the efficiency of
the MOR is the ability of the POD of compressing the discrete solution manifold M:
this concept is strictly related to the definition of Kolmogorov N -width of M and,
ultimately, to the reducibility of the problem of interest.

The Kolmogorov N -width dN of M is defined as

(1.1) dN pM, VN q “ inf
VNĂVN

dimVN“N

sup
fPM

inf
gPVN

||f ´ g||,

where ||¨|| is a suitable norm in VN . Definition (1.1) describes in a rigorous mathemati-
cal setting the capability of finite dimensional linear subspaces VN Ď V of reproducing
any element in M, that is, any discrete solution of the problem of interest. Therefore,
the faster dN decays the more efficient a linear MOR will be for such a problem, as
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N grows. Some rigorous bounds for dN , for particular classes of problems, are avail-
able in literature [9, 22]; as an alternative, one can look at the rate of decay of the
eigenvalues λk returned by the POD on M.

Despite the capability of standard MOR techniques to handle a vast number of
applications, problems advecting local structures still represent a challenge for the
MOR community. Indeed, for such problems the decay of the Kolmogorov N -width is
slow, see for example [13]. As a result, standard MOR struggles to suitably reproduce
steep features, such as solutions with (multiple) travelling shocks. For this reason, in
the last decade a great number of works appeared in the literature, offering numerous
approaches to deal with advection dominated problems. We mention the method of
freezing [28], the shifted POD [31], the generation of advection modes by means of an
optimal mass transport problem [16, 17, 19, 5], L1 minimization [1], the calibration
method introduced in [8, 7], Lagrangian based MOR techniques [25, 24], the prepro-
cessing of the snapshots used in [18, 26], the registration method [36, 11, 3], adaptive
basis methods [29], implicit feature tracking [23] and displace interpolation [34, 33].
Next to these more classical techniques, some nonlinear approaches have been lately
studied starting from convolutional autoencoders neural network based approaches
for learning the solution manifold [21, 12], passing through graph neural networks
autoencoders [30] to graph neural network to perform the limit to vanishing viscosity
[35]. Motivated by the interest that MOR for transport dominated problems sparks in
the applied mathematics community, the goal of this work is to propose a calibration
based reduced order algorithm that can be used to gain significant speedup in the sim-
ulations of solutions of hyperbolic PDEs. In particular, we are looking for a calibration
procedure similar to [36, 11, 8], which does not increase the computational costs of the
offline phase by means of more sophisticated techniques, as for the implicit feature
tracking [23], as we work in an explicit FOM framework where the computational
costs are limited. In this work, we will focus on time-dependent hyperbolic problems,
whose solutions are (quasi) self-similar: the formal definition of (quasi) self-similar
solution will be given in Section 1.1. In particular, we want to study problems where
multiple structures travel along the domain with different speeds. This is typical for
hyperbolic problems, where shocks, rarefactions and other discontinuities are gener-
ated and travel along the domain. The novelties of this work, in comparison to the
state of the art [11], lie in two key aspects. First, our optimization process operates
independently of the solution structure, eliminating the need for shock detectors or
similar tools. Secondly, our method demonstrates a broader range of applicability,
encompassing problems featuring multiple shocks whose positions undergo significant
variation, sometimes nearly colliding with each other.

The rest of the manuscript is structured as follows. In Section 1.1, we introduce
the problems of interest and the definition of self-similarity. In Section 2, we define
the calibration procedure and the optimization algorithms. In Section 3, we present
some geometrical transformations that interpolate the calibrated points and allow
to define the original problem onto a reference domain where all the structures do
not move. In Section 4, we describe the combination of classical MOR techniques
with the calibration process. In Section 5, we show the good performances of the
proposed reduced order model (ROM) onto one and two dimensional parametric time–
dependent problems and, in Section 6, we draw some conclusions.

1.1. Motivation. We begin by introducing the problem of interest that we will
tackle in this manuscript: we focus here on hyperbolic time–dependent conservation
laws. As an example, we turn our attention to Euler equations, but the same frame-
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work can be applied to other conservation and balance laws. Let Ω Ă Rd, d ě 1,
be our physical domain. We restrict ourselves to rectangular domains of the type
Ω “ ra1, b1s ˆ ¨ ¨ ¨ ˆ rad, bds, with ai, bi P R for i “ 1, . . . , d. The generalization for
more complex domains can be performed as in [37]. Let r0, tf s Ă R be the time span
of the problem and let µ P P Ă Rs`1, s ě 0, be the collection of all parameters (in-
cluding time). From now on, we will assume that s “ 0 in the non parametric regime,
i.e., µ “ t and P “ r0, tf s, or s ě 1 in the parametric regime, i.e., µ “ pµ, tq and
P “ Pphys ˆr0, tf s. The parameteric Euler equations of gas dynamics, in conservative
form, read as follows: find the density ρ : P ˆΩ ÞÑ R, the momentum m : P ˆΩ ÞÑ Rd

and the total energy E : P ˆ Ω ÞÑ R such that

(1.2)

$

’

’

&

’

’

%

Btρ ` ∇x ¨ m “ 0 in P ˆ Ω,

Btm ` ∇x ¨

´

mbm
ρ ` p I

¯

“ 0 in P ˆ Ω,

BtE ` ∇x ¨

´

m
ρ pE ` pq

¯

“ 0 in P ˆ Ω,

where ∇x¨ is the divergence with respect to x P Ω, I P Rdˆd is the identity matrix
and the pressure p is defined through the following equation of state p “ pγ ´ 1qpE ´

0.5|m|2{ρq, with γ “ 1.4 being the adiabatic constant. System (1.2) is then completed
by some proper initial conditions (IC) and boundary conditions (BC). We will consider
as IC some Riemann problems both in one and two dimensional problems: the Sod
shock tube problem [39] and the 2D double Mach reflection problem [40]. In these
examples, the solution of (1.2) turns out to be self-similar, with features as shocks,
contact discontinuities and rarefaction waves traveling in the physical domain.

Definition 1.1. Let R Ă Rd be a reference domain, which is time (and parame-
ter) independent. We call self–similar a solution manifold M for which there exists
a reference solution ū : R Ñ Rd and a transformation T´1rµsp¨q : Ω Ñ R such that we
have upµqpT´1rµspxqq « ūpxq for all µ P P, @x P R. When this condition is not satis-
fied, but still all solutions in M “ tupµquµPP present the same features, with different
values of the solution in between these features, we will call such manifold quasi–self–
similar. More precisely, M is quasi–self–similar if there exists a transformation
T such that the transformed solution manifold M̂ :“ tupµqpT´1rµsp¨qqu has a fast
decay of the Kolmogorov N -width.

We start by considering a simple 1D Sod shock tube problem, in the non–
parametric regime. Here, Ω “ r0, 1s, and the following initial data is considered:

“

ρ u p
‰

pt “ 0q “

#

r1 0 1sT if x ă 0.5,

r0.1 0 0.125sT if x ą 0.5,

where u : Ω ÞÑ Rd is the velocity. The initial conditions in conservative variables m
and E can be derived using m “ ρu and E “ p{pγ ´ 1q ` 1{2|m|2{ρ. Figure 1 shows
the density ρpµq for the Sod shock tube problem (left), and the corresponding modes
(right), obtained by running a POD on the solution manifold Mρ: the solution of the
Sod shock tube problem is exact, and its analytical expression has been taken from
[39]. The density presents a shock, a contact discontinuity and a rarefaction wave that
travel in the domain: as a consequence, the POD modes exhibit an highly oscillatory
behavior, struggling to correctly capture the position of the moving features. Still,
the solutions are self-similar as we need just transport each feature onto reference
positions. Indeed, as observed in [17], the optimal transport for the density of the
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Fig. 1. The density ρ, solution of the Sod shock tube problem at different timesteps, and the
corresponding POD modes (right).

Sod 1D problem would lead to the exact solution, without the need for further ROM
techniques. Nevertheless, we are interested also in higher dimensional problems with
more complicated discontinuity structures. Hence, we will not proceed in the optimal
transport direction.

2. Calibration of the snapshots. We now present the calibration technique
that we use to align the different features of our snapshots, to obtain a solution mani-
fold with a faster decaying Kolmogorov N -width. The key of the proposed calibration
is that it can be used to align different travelling features (shocks, contact disconti-
nuities, rarefaction waves), without the need to know explicitly the exact location of
these features, as opposed to, for example, what is assumed in [26, 11]. Moreover, we
assume to calibrate the density ρ of the Euler system (1.2), other scalar quantities
depending on the system unknowns, e.g., the entropy, can be equivalently used.

Let R be the reference domain, similarly to what is used in the Arbitrary La-
grangian Eulerian (ALE) formalism [38], and let Ω be the physical domain. For

every µ P P Ă Rs`1, we introduce a grid of M “
śd

i“1 Mi control points that are
collected in the vector wpµq P ΩM that we use for the calibration. These control
points should lead the transformation to align the different features at different µ.
Let α “ pα1, . . . , αdq P Nd be a multi-index with αi “ 1, . . . ,Mi. Each control point
wpµqα can either belong to the physical domain, i.e., wpµqα P 8Ω, or to the boundary
of the domain, namely wpµqα P BΩ. If wpµqα P BΩ, then this point is constrained for
all µ to the boundary hyperplanes where it belongs. We then introduce θpwpµqq P RQ

that is the vector of the free coordinates of the control points, with Q ď d ˆ M . We
remark that there is a bijection between w and θ, by definition.
In order to align different features of our set of snapshots, we look for a geometrical
transformation map T : ΩM ˆ R ÞÑ Ω, such that the following properties hold true:

‚ T r¨s P C1pΩM , C1pR,Ωqq;
‚ @µ P P and @wpµq P ΩM , DT´1rwpµqs : Ω ÞÑ R such that

T´1rwpµqspT rwpµqspx̂qq “ x̂ @x̂ P R,

T rwpµqspT´1rwpµqspxqq “ x, for all x P Ω;

‚ T´1r¨s P C1pΩM , C1pΩ;Rqq.
The properties are imposed to setup an ALE formulation [38, 36]. Some possibilities
for the geometrical transformation T have been presented in the literature over the
past years: among the others we mention here translation maps, dilatation maps,
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Fig. 2. Example of a control point grids in 2D with M1 “ 3 and M2 “ 4 on the reference
domain (left) and on the physical domain (right). Note that the coordinates of the reference control
points are the tensor product of unidirectional control points

polynomials and Gordon-Hall maps, see [38, 8, 36]. We will use some transformations
based on Piecewise Cubic Hermite Interpolation Polynomials (PCHIPs) carefully de-
scribed in Section 3. In order to use the transformation map T , one needs to find the
calibration map w : P ÞÑ ΩM , such that:

‚ wp¨q P C1pP; ΩM q;
‚ ρ̂pµqpx̂q :“ ρpµqpT rwpµqspx̂qq«ρpx̂q, for all x̂ P R, t P r0, tf s and for all
µ P P, where ρp¨q is a reference solution of choice.

We are now ready to present a general calibration technique: the ultimate goal is to
transform the solution manifold Mρ so that the POD, applied to the transformed
manifold, is more efficient. In order to achieve this goal, we need to perform the
following steps. First of all we introduce the reference density ρ, namely a solution
of problem (1.2) for some µ P P. Once ρ has been chosen, we select M control points
w P RM . We consider the w to be tensor product of points in the interval rai, bis
for every dimension i “ 1, . . . , d, for example in 2D: wα“pα1,α2q “ pw1

α1,α2
,w2

α1,α2
q,

see Fig. 2. Now, for any µ P P and wpµq P ΩM , we can define a geometrical
transformation map T rwpµqs : R ÞÑ Ω such that

T rwpµqspwαq “ wαpµq @α.

Once T rwpµqs has been defined, we can introduce the calibrated snapshot

ρ̂pµqp¨q :“ ρpµqpT rwpµqsp¨qq.

We want to stress that, numerically, we rely on two meshes, one on the physical
and one on the reference domain. In our simulations, these two domains will coincide;
this does not mean that each transformation map leads to a one-to-one correspondence
between the degrees of freedom on the two domains. Hence, we will perform an
interpolation of ρ to evaluate ρ̂ at its degree of freedom. In the numerical simulations,
this procedure will bring an error of the first order of accuracy (as we will use FV
approximations).

The map T rwpµqs is identified by the control points wpµq, which are sought in
order to minimize the following residual function:

Rpρpµq,θpwpµqq, ρq “||ρ̂pµq ´ ρ||2L2pRq `
δ

2
∥Bµwpµq∥2ℓ2pPq

`

α

2
max
xPΩ

`

max
␣

∥∇T rwpµqspx̂q∥ ,
∥∥∇T´1rwpµqspxq

∥∥(˘ ,(2.1)

where α and δ are two penalty parameters user defined, and Bµwpµq will be defined
more in detail in the algorithmic section. We are now ready to present the calibration
technique in two different cases: the self-similar setting, and the quasi self-similar one.
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2.1. Calibration in the self–similar setting. To keep the presentation as
general as possible, we consider here the parametric case, hence µ “ pµ, tq and P “

Pphys ˆ r0, tf s. We select a training set of physical parameters tµ1, . . . , µNtrain
u “

Ptrain
phys Ă Pphys and a training set of times tt1, . . . , tNµu for each µ P Ptrain

phys . We

then denote Ptrain :“ tµ “ pµ, tq : µ P Ptrain
phys and t P rt1, . . . , tNµ

su Ă P. For each

µ P Ptrain, we compute the full order model solution ρpµq. We then choose as reference
solution ρ “ ρpµ̄q: in our numerical tests we will choose µ̄ “ pµNtrain , tf q. In addition
to this, we also fix the M reference control points w P RM as specified above.

For all µ in the training set, we solve the following constrained minimization
problem:

(2.2) θoptpµq :“ min
θPRQ

Rpρpµq,θ; ρq,

subject to the following constraints:
‚ all the control points are within our physical domain: wαpµq P Ω for all α
and for all training parameters µ P Ptrain;

‚ det Jrwpµqs ą 0, where Jrwpµqs is the Jacobian of the map T rwpµqs. This
constraint must be checked on a quite fine grid of the physical domain Ω, we
have used the mesh grid;

‚ for i “ 1, . . . , d: if αj “ βj for all j ‰ i and αi ă βi, then wi
α ă wi

β (see
Fig. 2), i.e., we never switch the order of the control points on each grid line.

We approximate Bµ in (2.1) with the discrete derivative Dµwpµq defined as:

Dµw
i
αpµq “

#

0 if wi
αpµq is not a free coordinate of wpµq;

θqpµq´θopt
q pµneighpµqq

µ´µneighpµq
with q s.t. wi

αpµq “ θqpµq.

In the previous equation, the neighboring parameter µneigh is defined as follows:

µneighpµ,Sq “ argmin
νPS

||µ ´ ν||ℓ2pRp`1q,

where S Ă Ptrain will contain the parameters for which we have already computed
the optimal θ. If the minimum is not unique, we take one of the minimizers. The
definition of the discrete spatial gradient ∇T in (2.1) will be specified in Section 3 for
the specific transformation map we use.

Problem (2.2) is solved with the Sequential Least SQuares Programming (SLSQP)
method that is available within the scipy.optimize.minimize library. We solve
Problem (2.2) for the physical parameter µ P Ptrain

phys for which the solution has more
developed structures (the last in our tests): we start from the final timestep tNµ

and
we proceed backwards in time. We then move onto solving Problem (2.2) for the
neighboring parameters. In both physical and temporal parameters, the ratio is the
following: we proceed form the solutions where the structures that we want calibrate
are more developed and we proceed with nearest parameters until we solve the problem
for all the training set Ptrain

phys . The initial guess θ
p0qpµpℓ,jqq for µpℓ,jq “ pµℓ, tjq P Ptrain

is the optimal output of the minimization for the closest parameter already performed,
in our tests it will be defined as:

(2.3) θp0qpµpℓ,jqq “

#

θoptpµpℓ,j`1qq if j “ 1, . . . , Nµℓ
´ 1,

θoptpµpℓ`1,jqq if j “ Nµℓ
.

Algorithm 2.1 shows the details of the procedure.
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Algorithm 2.1 Calibration for self–similar solution manifold

Input: the reference solution ρ, the control points w P RM and the train-
ing solution manifold on the physical domain tρpµℓ, tjq for ℓ “ 1, . . . , Ntrain, j “

1, . . . , Nµℓ
u.

for ℓ “ Ntrain, . . . , 1 do
for j “ Nµℓ

, . . . , 1 do
Set the initial guess θp0qpµpℓ,jqq as in (2.3).
Solve Problem (2.2).

end for
end for
Output: the optimal control points woptpµpℓ,jqq.

Fig. 3. The density ρpt “ 0q for three different values of the parameter µ “

r0.8943, 0.1075, 1.0906, 0.0572s (blue), µ “ r1.0286, 0.1031, 0.7358, 0.0706s (orange), and µ “

r1.2253, 0.1157, 1.1172, 0.1094s (green)

2.2. Calibration in the quasi–self–similar setting. To motivate the need of
a different algorithm for quasi–self–similar solutions, we focus now on the paramet-
ric version of the 1D Sod shock tube problem (1.2). In this example, the physical
parameter µ “ pµ0, . . . , µ3q P Pphys Ă R4 represents the IC for the Euler problem:

“

ρ u p
‰T

pt “ 0;µq “

$

’

&

’

%

”

µ0 0 µ1
ıT

if x ă 0.5,
”

µ2 0 µ3
ıT

if x ą 0.5.

In Fig. 3, we show some analytical solutions for the parametric 1D Sod shock tube, for
different values of µ. Looking at Fig. 3 it is clear there is no reasonable choice for the
reference solution ρ that would lead to reasonable minimization problems, similar to
the one presented in Algorithm 2.1. Indeed, we would minimize the L2 error between
two solutions (ρ and ρ̂pµq) that may have very different heights at the boundaries
just changing the geometrical transformation. When different boundaries behaviors
are present, the calibration procedure needs to be reformulated in a different way.

Instead of fixing ρ, we minimize the projection error onto a suitable reduced space
VPOD in the following way:

min
θpµqPRQ

∥ρ̂pµq ´ ΠVPOD
ρ̂pµq∥L2pRq `

δ

2
∥Bµwpµq∥2ℓ2pPq`

α

2
max
xPΩ

`

max
␣

∥∇T rwpµqspx̂q∥ ,
∥∥∇T´1rwpµqspxq

∥∥(˘ ,(2.4)
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with θ constrained as in the previous section and ΠVPOD
the orthogonal projection

onto a linear space VPOD obtained through a preliminary procedure that we will
describe later on.

This minimization allows to overcome the issue of quasi–self–similar solutions
thanks to the projection onto a reduced space. To do so, we need to find a priori
a suitable reduced space VPOD that comprises the minimal information of the solu-
tion manifold: for this reason, from the training set Ptrain we select few parameters
µ̃1, . . . , µ̃Nfew

, with Nfew !
řNtrain

i“1 Nµi
.

We then introduce the matrix of the free coordinates
ÝÑ
θ P RNfewˆQ, where:

ÝÑ
θ ri, :s “ θpµ̃iq, i “ 1, . . . , Nfew.

The free coordinates can be selected through another optimization process carried out
in the same spirit of (2.4) on the whole matrix

ÝÑ
θ , minimizing the projection error

over all the parameters µ̃1, . . . , µ̃Nfew
, while updating the space VPOD obtained by

compressing the solutions on the reference domain for these parameters. Therefore,
we solve the following constrained minimization problem:
(2.5)

min
ÝÑ
θ PRNfewˆQ

Nfew
ÿ

i“1

∥ρ̂pµ̃iq ´ ΠVPOD
ρ̂pµ̃iq∥L2pRq with VPOD :“ PODptρ̂pµ̃iqu

Nfew
i“1 , NPOD

few q.

This optimization process is of larger dimension with respect to the previous ones
and it requires, for each residual evaluation, the computation of a POD over the
Nfew calibrated snapshots ρ̂pµ̃iq, with a user defined number of modes NPOD

few , which
must be chosen trying to keep into account all the possible independent components
of the problem between different travelling features. In the Sod test case, we have
chosen NPOD

few “ 3 to keep into account the different values that there might be
between the rarefaction and the contact discontinuity and between the contact and
the shock. NPOD

few should be kept as low as possible not to overload the minimization
process: in the Sod test case, we did few tests with increasing NPOD

few and 3 was the
first value where the minimization process was giving successful results. Again, we
solve problem (2.5) with SLSQP using the same constraints defined in the previous
section. This extra optimization step can be skipped when other techniques to detect
interesting features can be used [11]. One possibility is the use of classical shock
detection procedures to find the steepest points of the solutions and calibrating them
[23]. We summarize the steps of the whole procedure in Algorithm (2.2).

3. The geometrical transformation map. We now present the geometrical
transformation map T rwoptpµqs : R ÞÑ Ω used to define the calibrated snapshots. We
start with the simpler case, namely the 1D setting, and later we consider the 2D case.

3.1. The 1D setting. Let woptpµq be the control points whose free coordinates
are the solution to Problem (2.2): to interpolate the values tpwαpµq,wopt

α pµqquα, we
use monotone cubic C1 splines. These are the so-called PCHIPs (Piecewise Cubic Her-
mite Interpolating Polynomials) interpolators, available in the scipy Python library
under the interpolate classes and the built-in function is called PchipInterpolator.
By employing monotone cubic splines, we obtain a transformation function that pre-
serves the monotonicity of the calibration map wp¨q, guaranteeing its bijectivity and
C1 smoothness if the calibration points are in the “right order”, as prescribed in Sec-
tion 2. In Fig. 4, we can see an example of a PCHIP transformation applied to one
of the snapshot calibrated on the detected features. On the right of the figure, the
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Algorithm 2.2 Calibration for quasi–self–similar solution manifold

Input: the training solution manifold on the physical domain tρpµℓ, tjq for ℓ “

1, . . . , Ntrain, j “ 1, . . . , Nµℓ
u and the number of modes NPOD

few .
Select few parameters µ̃1, . . . , µ̃Nfew

.
Find optimal

ÝÑ
θ P RNfewˆQ by (2.5) for the few parameters µ̃1, . . . , µ̃Nfew

.
for ℓ “ Ntrain, . . . , 1 do
for j “ Nµℓ

, . . . , 1 do
Set the initial guess θp0qpµpℓ,jqq as in (2.3).
Solve Problem (2.2).

end for
end for
Output: the optimal control points woptpµpℓ,jqq.
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PCHIP

Fig. 4. Example of PCHIP calibration: solution on physical domain (left) with calibration
control points (left), solution on reference domain with reference control points (center) and PCHIP
transformation with all control points (right)

transformation is depicted and we can observe that it interpolates the points, it is
C1 and it is very close to the identity on the boundaries, because we introduce two
extra interpolation points outside the boundaries of the domain. This helps to keep
the regularity of the transformation in the ALE formulation [36].

In this work, we do not focus on the ALE formulation on R, nevertheless the
PCHIPs allow to easily compute all the necessary ingredients. Indeed, they are poly-
nomials and their derivatives and the inverse of their derivative is easy to compute.
Moreover, the inverse of the transformation exists and it is unique in each point,
hence, with a simple Newton method, we can easily recast the inverse function.

3.2. The 2D setting. In the 2D setting we use tensor product of one dimen-
sional PCHIPs, in order to exploit their properties for Cartesian geometries. We refer
again to Fig. 2 to better understand the transformation map. We need to compute
T rwoptpµqs : R ÞÑ Ω, such that

T rwoptpµqspw1
α1,α2

,w2
α1,α2

q “ pw1,opt
α1,α2

pµq,w2,opt
α1,α2

pµqq for αi “ 1, . . . ,Mi, i “ 1, 2.

Let x̂ P R be a point with coordinates x̂ “ px̂, ŷq. We define the map:

T rwoptpµqspx̂, ŷq :“ pT xrwoptpµqspx̂, ŷq, T yrwoptpµqspx̂, ŷqq, with

T xrwoptpµqspx̂, ŷq :“
M2
ÿ

ℓ“1

γy
ℓ pŷqP x

ℓ px̂q, T yrwoptpµqspx̂, ŷq :“
M1
ÿ

k“1

γx
k px̂qP y

k pŷq.
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Fig. 5. Calibration points (M1 “ 5,M2 “ 4) on the physical domain Ω “ r0, 4s ˆ r0, 1s so that
they respect the monotonicity in each line (left), but whose transformed horizontal and vertical lines
cross multiple times (right)

In the previous equations, we made use of the following quantities:
1. P x

ℓ is a PCHIP interpolating the points tw1
α1,ℓ,w

1,opt
α1,ℓ

pµqu
M1
α1“1, where the

control points w1
α1,ℓ for α1 “ 1, . . . ,M1 are on horizontal lines ŷ “ ȳℓ in

the reference domain, see Fig. 2, namely for all α1 “ 1, . . . ,M1 we have
P x
ℓ pw1

α1,ℓq “ w1,opt
α1,ℓ

pµq;

2. P y
k is a PCHIP interpolating the points tw2

k,α2
,w2,opt

k,α2
pµqu

M2
α2“1, where the

control points w2
k,α2

for α1 “ 1, . . . ,M1 are on vertical lines x̂ “ x̄k in
the reference domain, see Fig. 2, namely for all α2 “ 1, . . . ,M2 we have
P y
k pw2

k,α2
pµqq “ w2,opt

k,α2
pµq;

3. γy
ℓ p¨q is a PCHIP interpolating the points tw2

α1,α2
, δα2,ℓu

M2
α2“1, being δα2,ℓ the

Kronecker delta. By doing so, we obtain that T xrwoptpµqs is a convex com-
bination of the tP x

ℓ p¨qu
M2

ℓ“1 such that T xrwoptpµqspx̂, ŷ “ w2
α1,α2

q “ P x
α2

px̂q;

4. γx
k p¨q is a PCHIP interpolating the points tw1

α1,α2
, δα1,ku

M1
α1“1, as before, lead-

ing to the property T yrwoptpµqspx̂ “ w1
α1,α2

, ŷq “ P y
α1

pŷq.
Notice that, ultimately, it holds that

T rwoptpµqspw1
α1,α2

,w2
α1,α2

q “ pP x
α2

pw1
α1,α2

q, P y
α1

pw2
α1,α2

qq “ wopt
α1,α2

pµq.

Also in the 2D case, the Jacobian of the transformation, which is needed in the
ALE formulation, is easily accessible, since all the terms are polynomials. Similarly
to the 1D case, we can compute the Jacobian of the inverse of the transformation,
using the inverse of the Jacobian of the transformation, provided that we can invert
the map T .

Remark 3.1 (Invertibilty of T ). The computation of the inverse of T is fundamen-
tal in many aspect of the algorithm: to display the function on the physical domain,
to compute quantities and errors on the physical domain and to compute the inverse
of the Jacobian for the ALE formulation.

Unfortunately, the so defined map T cannot be proven to be invertible, as it might
happen that some of the vertical and horizontal lines cross each other multiple times
in the physical domain, see Fig. 5. To avoid this, we impose, in the optimization
procedure for the calibration, to have positive determinant of the Jacobian of the
transformation on the meshpoints of the reference domain, see the constraints in
Section 2.1. This typically guarantees invertibility. We recall that, being PCHIPs
polynomials, the computation of the Jacobian can be performed explicitly in each
point. To compute the inverse of the transformation, we perform the following steps.
We first apply the transformation map T to the elements of the Cartesian meshgrid
of R: these will be mapped to quadrilateral elements in Ω. Now, given a point x P Ω,
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Fig. 6. Example of the architecture of an ANN

we can easily find to which of these quadrilaterals it belongs and with a Projective
transformation (see the python module transform of the package skimage) we pull
it back onto R. Then, we use the found point as initial guess to find the solution of
T rwoptpµqspx̂q “ x through a Newton type nonlinear solver (scipy.root).

4. Model Order Reduction with calibration. We are now ready to perform
the model order reduction step. In what follows the procedure is similar for the non
parametric and the parametric setting: we will therefore present it for the latter case,
for the sake of generality.

4.1. Learning the calibration map. Once the calibration procedure presented
in Section 2 has been carried out, the map w : P ÞÑ Θ is known only through the
sample values woptpµq, for µ P Ptrain. To learn the calibration map wp¨q for any
parameter µ, we employ an Artificial Neural Network (ANN) composed by several
layers: an input layer µ P Yp0q “ P where we pass the parameters of the problem of
interest, L hidden layers Ypjq, j “ 1, . . . , L, and an output layer YpL`1q, see Fig. 6.
As output layer, we would like to obtain θ P RQ, from which we can extract the
calibration points w. Keeping in mind the monotonicity constraints applied to the
control points in the constrained minimization problems (2.2) and (2.4), we try to
enforce this constraint in the ANN. It is not easy to strongly enforce such constraints,
but we can force the output to be positive, using as final activation function a Softplus.
Hence, we take as output layer of our ANN not directly θ, but the vector v P RQ of
the differences of the free coordinates with the previous ones (in 2D it is referred to
the same line). Doing so, the positivity of v is equivalent to the monotonicity in each
line of points. In one dimension, it is defined as vi “ wi ´ wi´1 for i “ 2, . . . ,M1 ´ 1,
while in two dimensions this operation is done in each horizontal or vertical line.

Each layer Ypjq, j “ 1, . . . , L is connected to the next and to the previous ones
through affine maps δpjq : Ypjq ÞÑ Ypj`1q and at every node a nonlinear activation
function ζpjq : R ÞÑ R is applied component–wise. We used the hyperbolic tangent in
all the ANN except in the output layer where the Softplus function is used for the
positivity of the outputs. On a training set, the learning process changes the weights
δpkq minimizing the error between the output and the optimal calibration points.

To build and train the ANN, we used a Python based library EZyRB [10] that uses
Adam method [20] to perform the minimization. More details on the architecture of
the ANN for the different test cases will be provided in the numerical section.

4.2. POD-NN. In Section 2.1 and 2.2, we presented the calibration algorithm
in the self-similar and in the quasi self-similar setting. Thanks to the calibration of
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the snapshots, we obtain the calibrated manifold M̂ρ “ tρ̂pµqp¨q, µ P Ptrainu, where
ρ̂pµqp¨q is the calibrated snapshot defined in Section 2. We now proceed with the
compression of M̂ρ by means of the Proper Orthogonal Decomposition (POD): we
refer to [15] for more details. The dimension of the reduced basis can be chosen either
setting a maximum number of basis Nmax

POD or choosing the most relevant modes such
that the discarded energy is smaller than a certain tolerance τPOD. Once the POD
has been carried out, we obtain a linear space V ρ

N spanned by the N orthonormal

reduced basis functions tΦ̂iu
N
i“1 on the reference domain R. V ρ

N should now represent

with a good accuracy any element of the calibrated solution manifold M̂ρ.

4.3. Online solution by means of ANN. In this work, we mainly focus on
the calibration procedure and the offline phase. Hence, we will use a non–intrusive
approach for the reconstruction of the online solutions. Let µ P P be a parameter of
choice: the goal is to construct a linear approximation ρN pµq of the snapshot ρpµq. It
should be clear by now that, since we are dealing with advection dominated problems,
this is not a simple task within the standard MOR setting. However, in Sections 2
and 3, we presented a calibration technique that allows us to obtain a linear space V ρ

N

that approximates with good accuracy the calibrated manifold M̂ρ: we are therefore
able to construct a linear approximation of the calibrated solution of interest ρ̂pµq in
the reference domain R. This means that we can approximate ρ̂pµq with

ρ̂pµq « ρ̂N pµq :“
N
ÿ

i“1

ρ̂i
N

pµqΦ̂i,(4.1)

where ρ̂i
N

pµq “ pρ̂pµq, Φ̂iqL2pRq for i “ 1, . . . , N,(4.2)

being p¨, ¨qL2pRq the L2 scalar product on the reference domain. In order to find the
vector ρ̂

N
pµq one can adopt two alternative ways: an intrusive approach, by means

of a Galerkin projection of the high order algebraic system onto the reduced space, or
a non-intrusive approach by means of an ANN. If the standard Galerkin projection
setting is adopted, the online system and the reconstruction of the online solution is
carried out within an ALE formalism [32, 38, 36]: the original problem of interest,
formulated over Ω, has to be re-written into a problem formulated over the reference
domain R. In this approach, a hyper-reduction procedure [4, 41] will be necessary to
tackle the nonlinearities of the problem and of the transformation map. This approach
is currently under investigation, and it will be part of a future extensions.

An alternative to the intrusive approach is represented by the use of ANN, in the
spirit of Section 4.1. We consider the map ΠN : P ÞÑ RN

ΠN pµq :“ ρ̂
N

pµq “ rρ̂1
N

pµq, . . . , ρ̂N
N

pµqsT .

We make use of an ANN to learn the L2 projection map ΠN : to train the map,
we employ the set of input samples µ for µ P Ptrain, and the set of output samples
tρ̂

N
pµq for µ P Ptrainu. In this algorithm, we do not use the optimal calibrated points

obtained with the optimization process, but we use the ones predicted by the ANN of
Section 4.1. Doing so, any systematic error in the online calibration should be already
taken into account while performing the L2 projection and automatically corrected
by this approach. Moreover, it is also possible to use different training sets for the
calibration optimization procedure and the model order reduction ones. More details
on the architecture of the ANN employed will be provided in the numerical section.
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Table 1
Test details for the 1D Sod shock tube problem, non parametric (Nonparam) and parametric

(Param) setting

Quantity Nonparam Param Quantity Nonparam Param

ρL 1 r0.7, 1.3s ρR 0.1 r0.1, 0.15s

uL 0 0 uR 0 0
pL 1 r0.7, 1.3s pR 0.125 r0.05, 0.15s

tf 0.2s 0.2s Nh 1500 1500
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Fig. 7. FOM simulation of Sod 1D problem non parameteric at times 0.04 (green), 0.1 (orange)
and 0.16 (blue), on the original domain (top) and calibrated on the reference domain (bottom)

5. Numerical results. We now present some numerical results to validate the
proposed methodology. We will consider four different time dependent test cases:
the Sod shock tube problem in 1D, in the non parametric and in the parametric
setting, already introduced in Section 2.1 and 2.2, respectively. To further test the
performance of our methodology, we subsequently consider a 2D problem, namely
the double Mach reflection (DMR) problem, again in the non parametric and in the
parametric setting.

5.1. Non-parametric Sod shock tube problem in 1D. We consider Prob-
lem (1.2) introduced in Section 1.1, where the physical domain is Ω “ R “ r0, 1s. To
obtain the high order solutions, we employ an explicit Finite Volume discretization
with WENO reconstruction of order 5, with time discretization given by the opti-
mal SSPRK54, with CFL coefficient 0.8 and Rusanov numerical flux. The number of
spatial degrees of freedom is 1500 and this leads to computational costs of around 2
minutes using a Fortran code [27] on a Intel(R) Xeon(R) CPU E3-1245 v5 @ 3.50GHz.
In both cases, we use Dirichlet BC as the waves do not exit the domain before the
final time. The details of all the relevant quantities are presented in Table 1.

Fig. 7 shows some snapshots for the density ρ, the moment m and the energy E
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Table 2
Calibration of the 1D Sod shock tube problem, non parametric and parametric setting

Quantity Nonparam Param Quantity Nonparam Param

δ 10´6 10´6 α 0. 0.
ρ ρpt “ 0.16q - M1 6 6

max. iter. 100 100 minim. alg. SLSPQ SLSPQ

Ntrain 1 16 Nµ 25 25
Nfew - 10 NPOD

few - 3

at three different times of the simulation: it is clear that the structures of all three
the components of the solution present discontinuities that travel in the domain at
the same locations.

We carry out the calibration technique proposed in Algorithm 2.1: we choose
as reference solution ρ the density ρpt “ 0.16q. We then choose M “ 4 control
points w1 “ 0.2, w2 “ 0.4, w3 “ 0.6, w4 “ 0.8 equispaced in the reference domain
R “ r0, 1s. The calibrated solutions (using the ANN to forecast the calibration
points) are shown in Fig. 7: the main features of the solutions, namely the shock,
the contact discontinuity and the rarefaction wave are well aligned with the reference
solution. The details of the quantities required to carry out the calibration step are
listed in Table 2. We point out that the calibration step and the training of the
ANN have been carried out on the training set Ptrain Ă r0.01, 0.16s Ă r0, 0.2s sampled
with 25 equispaced parameters. The reason for excluding the first timesteps from the
training is that the minimization is tricky during the first timesteps: indeed we have
a transition phase, during which all the features are in the same point, leading to non
invertible maps. An alternative way to overcome this difficulty could be to restore to
local reduced basis spaces [2], or to use a FOM approach for the first timesteps. The
final times are excluded to test the extrapolatory performances of the ROM.

Fig. 8 (left) shows the eigenvalue decay of the POD for both calibrated (ALE,
in blue) and original (Eulerian, in red) approaches. We can see that, differently
from the Eulerian approach, for the calibrated approach the first eigenvalue is much
more relevant than all the others and the Kolmogorov n–width decay is much faster.
Fig. 9 shows the behavior of the first modes obtained by compressing with a POD
the non-calibrated manifolds, for the three conservative variables ρ, m and E. We
remark that also here we consider the FOM solutions for t P Ptrain, thus excluding
the initial and the final times from the compression. The modes are highly oscillatory,
because they struggle to correctly represent the positions of the three discontinuities
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Fig. 9. Sod 1D non parametric: The first modes obtained by compressing the original manifolds
(Eulerian on the top) and the calibrated manifolds (ALE on the bottom) for ρ (left), m (center) and
E (right), with POD with τPOD “ 10´4 and Nmax

POD “ 7
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Fig. 10. Sod 1D non parametric: Online approximation of the density ρ at times 0.04, 0.12
and 0.2 (left to right). Top row: Eulerian ROM simulations with N “ 7 modes on Ω. Central row:
ALE ROM simulations on Ω with N “ 3 modes. Bottom row: ALE ROM simulations on R with
N “ 3 modes
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Table 3
Architecture and details of the calibration-NN and the POD-NN in both non parametric and

parametric setting

Non parametric case Parametric case
Parameter Calibration-NN POD-NN Calibration-NN POD-NN

L 4 4 4 4
neurons per layer 16 16 16 16

max. epochs 20000 10000 20000 10000
loss fun. tol. 10´6 10´5 10´6 10´5

ζ̃ Tanh/Softplus Tanh Tanh/Softplus Tanh

τPOD - 10´4 10´4 10´4

Nmax
POD - 7 3 7

in the domain. Fig. 9 also shows the POD modes obtained by running a POD on
the calibrated manifolds: after the calibration the oscillations in the modes are much
milder and focused on the discontinuity locations. Fig. 10 shows some POD-NN results
with N “ 7, without calibration, for the density ρ at different times t (including
the extrapolatory regime at t “ 0.2). The comparison is made between the FOM
solution ρ, its L2 projection onto the reduced space generated by the first N “ 7
modes of the non-calibrated manifold (Eulerian modes) and the online reconstruction
obtained using a linear combination of said modes, with coefficients that are predicted
by an ANN. We can see that the Eulerian approach fails to correctly reproduce the
calibrated FOM solutions: in particular, the standard MOR struggles to capture the
correct position of the discontinuities, and it shows some oscillations in the online
approximation that are most likely due the highly oscillating nature of the Eulerian
modes themselves. Fig. 10 also shows some POD-NN simulations obtained after the
calibration procedure (computational cost of prediction of both calibration points
and ROM coefficients below 0.001s); here we use N “ 3 modes as the POD algorithm
stops earlier for the imposed tolerance. We can see that we obtain a very good
approximation of the calibrated snapshots in the reference configuration R, i.e., ρ̂,
and in the physical domain Ω, i.e. ρ, with the main features correctly reproduced by
the online solution. We stress the fact that t “ 0.2 is outside the training interval
Ptrain: in this case, the positions of the shock, the contact and the rarefaction wave
have been slightly misplaced by the online model, hence, the approximation is not as
great as in the interpolatory regime. All the details on the architecture of the ANN
used to learn the calibration map and to predict the online solution are summarized
in Table 3.

5.2. Parametric Sod shock tube problem in 1D. We now consider the
parametric version of the Sod problem, already introduced in Section 2.2. We recall
that we consider µ “ pρL, ρR, pL, pRq P Pphys Ă R4. All the details for the numerical
simulations are provided in Table 1. Also in this case, the FOM solutions have been
obtained employing the same FV discretization. In the parametric setting, we generate
the training space Ptrain

phys usingNtrain “ 16 randomly selected parameters µ from Pphys.
Again, we consider the training time interval r0.01, 0.16s discretized with around 45
times for each physical parameter.

Fig. 11 shows the first modes for the three components ρ, m and E, without
calibration (Eulerian approach) and with calibration (ALE approach), respectively.
Also in the parametric case, we can notice that the Eulerian modes are highly oscil-
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Fig. 11. Sod 1D parametric: The first modes obtained by compressing the original manifolds
(Eulerian on the top) and the calibrated manifolds (ALE on the bottom) for ρ (left), m (center) and
E (right), with POD with τPOD “ 10´4 and Nmax

POD “ 7
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Fig. 12. Sod 1D parametric: Online approximation of the density ρ at times 0.04, 0.12 and
0.2 (left to right), for ρL “ 1.047937, ρR “ 0.122810, pL “ 1.203980, pR “ 0.144468. Top row:
Eulerian ROM simulations on Ω with N “ 7 modes. Central row: ALE ROM simulations on Ω
with N “ 4 modes. Bottom row: ALE ROM simulations on R with N “ 4 modes
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Fig. 13. Sod 1D parametric: Online approximation of the density ρ at times 0.04, 0.12 and 0.2
(left to right), for ρL “ 1.08827, ρR “ 0.149654, pL “ 1.193154, pR “ 0.078459. Top row: Eulerian
ROM simulations on Ω with N “ 7 modes. Central row: ALE ROM simulations on Ω with N “ 4
modes. Bottom row: ALE ROM simulations on R with N “ 4 modes

lating, similarly to the non-parametric test case: the calibration helps to significantly
mitigate this phenomenon. To further validate this, we show in Fig. 8 (right) a com-
parison between the rate of decay of the eigenvalues obtained with a POD on the
non-calibrated (red) and calibrated (blue) manifolds. The calibration results in an
improvement in the rate of decay and we clearly observe that, in comparison to the
non parametric case, the decay is slower and we need more basis functions to repre-
sent our solution manifold. All the details for the numerical implementation of the
calibration procedure are summarized in Table 2.

Fig. 12 and Fig. 13 represent the FOM, the L2 projection on the reduced space
and the POD–NN online approximation for ρ, for two parameters in the test set. We
plot both the Eulerian ROM and the ALE one, for the latter both in the physical Ω
and in the reference domain R. The online approximations are obtained with N “ 4
modes. As we can see, in both cases the Eulerian ROM is struggling to correctly
capture the positions of the discontinuities, and it provides an approximated solution
that exhibits some non-negligible oscillations, most likely due to the oscillating nature
of the Eulerian modes themselves. The results provided with the calibration are much
more accurate, since the MOR is now able to correctly represent the positions of the
discontinuities, and it does not present any oscillations in the approximations. There
are minor flaws in the extrapolatory regime and in the early times, still keeping the
quality of the reduced solution very high.

All the details on the architecture of the ANN used to learn the calibration map
and to predict the online solution are summarized in Table 3.
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Table 4
Calibration of the 2D DMR problem, non parametric and parametric setting.

Quantity Nonparam Param Quantity Nonparam Param

ρ ρpt “ 0.2q - α 10´4 10´4

M1 7 7 δ 10´2 10´1

M2 6 6 minim. alg. SLSPQ SLSPQ

Ntrain 1 16 max. iter. 100 100
Nµ 180 23
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Fig. 14. DMR: Eigenvalue decay of the PODs (normalized to have λ1 “ 1), non parametric
on the left, parametric on the right

5.3. Non-parametric DMR problem in 2D. We now consider a 2D test case,
namely the Double Mach Reflection (DMR) problem [40]. Let Ω “ r0, 4s ˆ r0, 1s: we
consider the Euler equations (1.2), in the time interval r0, 0.25s, with the following IC

#

pρL, uL, vL, pLq “ p8, 8.25 cospβq,´8.25 sinpβq, 116.5q x P ΩLpβ, t “ 0q

pρR, uR, vR, pRq “ p1.4, 0, 0, 1q x P ΩRpβ, t “ 0q
(5.1)

ΩLpβ, tq “

"

x P Ω : x ă
1

6
` tanpβqy `

10

cospβq
t

*

, ΩRpβ, tq “ ΩzΩLpβ, tq,(5.2)

with β “ π
6 . The BCs are assigned through ghost cells as

(5.3) pρ, u, v, pq “

$

’

’

’

&

’

’

’

%

pρL, uL, vL, pLq, if x “ 0 or py “ 1 and x P ΩLpβ, tqq,

pρR, uR, vR, pRq, if y “ 1 and x P ΩRpβ, tq,

pρin, uin,´vin, pinq, if y “ 0 (wall BC),

pρin, uin, vin, pinq, if x “ 4 (outflow),

where ¨in denotes the value inside the domain at the corresponding boundary cell.
Fig. 15 (left column) represents the FOM snapshots for the density ρ at three

different times of the numerical simulation; here, the same FV scheme has been em-
ployed at the FOM level on a mesh of 2400ˆ600 cells (computational time of 5 days),
then downsampled to a mesh of 240 ˆ 60 cells to perform the offline phase (includ-
ing calibration) in reasonable computational times. We retain 500 time samples in
r0, 0.25s of which we include 45 in the training set all in r0.02, 0.2s.

Fig. 14 (left) shows the rate of decay of the eigenvalues returned by the POD on
Mρ (red): also for this test case we have a solution manifold with a slowly decaying
Kolmogorov n–width, due to the fact that the shock moves inside Ω. We therefore
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Fig. 15. FOM solution for ρ for DMR non parametric at times 0.05 (top), 0.15 (center) and
0.25 (bottom) in the physical domain Ω (left) and, after calibration, in the reference configuration
R (right). We mark on the plots the control points and the Cartesian grid that links them in the
reference domain and its image through T on the physical one
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Fig. 16. DMR non parametric: Error in time of reduced methods with different number N of
modes

perform a calibration procedure, using Algorithm 2.1 and the 2D geometrical trans-
formation map T introduced in Section 3.2: all the details for the calibration step
are summarized in Table 4. Fig. 15 (right column) shows the outcome of the calibra-
tion for the density ρ, at different times: here the snapshots are represented in the
reference configuration R (computational time for forecasting the calibration points
around 0.05s). With the calibration procedure, we obtain an improvement in the rate
of decay of the eigenvalues, as it is shown in Figure 14 (blue line). To conclude, in
Fig. 16 we show the behavior in time of the approximation error, between the FOM
solution and the online solution (computational time to evaluate the NN for the ROM
coefficients 0.001s), with or without calibration, according to the number N of modes
used. Both errors have been computed in the physical domain Ω and are defined as:

||ρptq ´ ρN ptq||L2pΩq

||ρptq||L2pΩq

and
||ρptq ´ ρ̂N ptq ˝ T´1rwoptptqs||L2pΩq

||ρptq||L2pΩq

.(5.4)

As we see in Fig. 16, the error of the online approximation (with calibration) does not
go below a certain lower bound, even increasing the number of bases. We recall that,
in the calibrated setting, we are interpolating the solutions to perform the transfor-
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ALE N “ 2 Eulerian N “ 30

Fig. 17. DMR non parametric: ROM solutions for ρ in Ω at times 0.05 (top), 0.15 (center)
and 0.25 (bottom). Left column: ALE ROM solution with N “ 2. Right column: Eulerian ROM
solution with N “ 30

mations: for this reason, we believe that, after a certain number N of modes, the
interpolation error dominates the global error, and this leads to the plateau that one
can observe in the figure. We notice that with around 30 basis for the POD in the
Eulerian framework we achieve errors that are comparable with the ALE solutions.

Nevertheless, the qualitatively comparison of the Eulerian and ALE approach
at the ROM level with N “ 2 for the ALE approach and N “ 30 for the Eulerian
approach depicted in Fig. 17 is still in favor of the ALE approach. Indeed, the Eulerian
ROM shows an oscillatory behavior that deteriorates the shape of the solution, the
shock position and the flat areas, which are not anymore flat. On the contrary, the
ALE ROM solutions are very similar to the FOM ones and they preserve all the
original features even with a much smaller reduced basis. So, even if the L2 errors of
the two approaches are comparable, the quality of the two solutions is very different.

5.4. Parametric DMR problem. In this section, we consider the parametric
version of the 2D DMR problem: the physical parameter is the angle β introduced
in Section 5.3; the physical parameter interval is Pphys “ r0.1, 0.675s, and the time
interval is r0, 0.2s. Also in this case, the FOM snapshots have been obtained with the
same FV scheme, on a mesh 600 ˆ 150 (computational time of 2 hours each) then
downsampled to 200 ˆ 50 for reduction of computational time of the offline phase.

Fig. 18 shows some snapshots, for two different values of β and at different times,
before and after the calibration: all the details for the calibration procedure are sum-
marized in Table 4. We also depicted the control points grid on the reference domain
and its transformation onto the physical one, showing how the tracking of the inter-
esting point is done and how much distortion we can get with such transformations.
As we can see from Fig. 14, also in the parametric case the calibration procedure
improves significantly the rate of the decay of the eigenvalues returned by the POD
and hence, ultimately, the Kolmogorov n-width of the problem under consideration.
In Fig. 19, we plot the behavior of the relative error on the physical domain, as ex-
plained in Section 5.3 in (5.4), varying time and for different number of modes used
in the reduced spaces. On the left, we plot the error between the FOM solution and
the L2 projection onto the reduced space; on the right, we have the error obtained
using the POD-NN to predict the online solution. We see that both the Eulerian and
the ALE projection errors improve as we increment the number of POD modes, with
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Parameter β “ 0.225

Parameter β “ 0.675

Fig. 18. DMR parametric FOM solution for ρ at times t “ 0.096, t “ 0.148 and t “ 0.2 (top
to bottom) in the physical domain Ω (left) and, after calibration, in the reference configuration R
(right). We mark on the plots the control points and the Cartesian grid that links them. Parameter
values β “ 0.225 (top) and β “ 0.675 (bottom)

the Eulerian being always much larger. In the POD-NN error, on the other side, the
decay of the error is slower and it seems to stagnate at some bottleneck values, in
particular for the ALE case. That is why we aim at extending this work in the future
with a hyper-reduced Galerkin projection approach, to reintroduce some mathemati-
cal rigorousness hoping to decrease the online error. Finally, in Fig. 20 we represent
the online solutions for β “ 0.225 and β “ 0.675, both with the Eulerian and the
ALE approach with N “ 6. Similarly to what happens in the non parametric test
case, the Eulerian approach struggles to reproduce the FOM solution, providing an
approximation that sometimes even loses the main features (the shape of the solu-
tion, the shocks, the flat areas). On the contrary, with the ALE approach, the online
approximation preserves all these features. The two parameters shown validate the
ability of this ROM approach to work in strongly nonlinear parametric context, where
the parameters changes the solution’s feature geometry, the values of the solution and
vaguely the structure of the features. On the other hand, we remark that this ap-
proach works only for quasi-self-similar solutions, where we can recognize a similar
structure along the parameter domain.

6. Conclusions. We presented a novel, optimization-based calibration tech-
nique suited for hyperbolic conservation laws with (quasi) self-similar solutions that



CALIBRATION ALE MOR FOR HYPERBOLIC PROBLEMS 23

0 5 ¨ 10´2 0.1 0.15 0.2

10´1

100

Time

Projection Error

0 5 ¨ 10´2 0.1 0.15 0.2

Time

POD-NN Error

Eul N “ 2

Eul N “ 6

Eul N “ 12

Eul N “ 20

Eul N “ 40

ALE N “ 2

ALE N “ 6

ALE N “ 12

ALE N “ 20

ALE N “ 40

Fig. 19. DMR parametric: Error in time of reduced methods with different number N of modes.
Parameter in test set β “ 0.675.
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Fig. 20. POD-NN solutions with N “ 6 of ρ for DMR parametric at times t “ 0.096, t “ 0.148
and t “ 0.2 (top to bottom) in the physical domain Ω. Left column: with the calibration of the
manifold. Right column: without calibration. Parameter values β “ 0.225 (top) and β “ 0.675
(bottom)
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present multiple travelling structures, such as discontinuities. We then combined the
calibration technique with an ANN based Model Order Reduction, in order to obtain
an approximation setting that is able to provide satisfying results both in the non
parametric and in the parametric framework, without the use of sensors or detectors
of discontinuous features. To test the proposed methodology, we considered two prob-
lems of interest: the 1D Sod shock tube problem (non parametric and parametric),
and the 2D DMR problem (non parametric and parametric). In all four tests, we have
shown the benefits of the calibration by comparing the rate of decay of the eigenval-
ues returned by the PODs, showing the errors obtained with the two approaches by a
POD-NN ROM and their qualitative solutions. Classical ROMs produce oscillations,
smear the shocks and cannot preserve flat areas, while the presented calibrated version
does, even in the context of multiple intersecting shocks and waves. The replacement
of the Neural Networks with a purely ALE approach for the online system is a work
in progress and a future extension of this present work. The proposed approximation
setting is based on the use of piecewise cubic Hermite interpolating polynomials (or on
some tensorial product of them), and works well with rectangular domains and Carte-
sian meshes: the extension of this approach to more complex geometries and other
kinds of meshes (i.e. triangular ones) is envisioned as a future direction of this work.
We also remark that, so far, we only worked with FV approximations of the full order
solution. We expect to generalize the whole methodology to other discretizations.
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[27] J. Núñez-de la Rosa, High-order finite volume solver for the magnetohydrodynamics equa-
tions. https://github.com/jbnunezd/fv-solver-mhd, November 2020.

[28] M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parameterized evolution
equations via the method of freezing, Comptes Rendus Mathematique, 351 (2013), pp. 901–
906, https://doi.org/10.1016/j.crma.2013.10.028.

[29] B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases
and adaptive sampling, SIAM Journal on Scientific Computing, 42 (2020), pp. A2803–
A2836, https://doi.org/10.1137/19M1257275.

[30] F. Pichi, B. Moya, and J. S. Hesthaven, A graph convolutional autoencoder approach to
model order reduction for parametrized PDEs, Journal of Computational Physics, 501
(2024), p. 112762, https://doi.org/10.1016/j.jcp.2024.112762.

https://doi.org/10.1007/978-3-319-78325-3_10
https://doi.org/10.1007/978-3-319-78325-3_10
https://doi.org/10.1093/imanum/dru066
https://mathlab.github.io/EZyRB/index.html
https://mathlab.github.io/EZyRB/index.html
https://doi.org/10.1016/j.jcp.2022.111068
https://doi.org/10.1007/s10915-021-01462-7
https://doi.org/10.1016/j.aml.2019.05.013
https://doi.org/10.1051/m2an:2008001
https://doi.org/10.1103/PhysRevE.89.022923
https://doi.org/10.1016/j.jcp.2022.111671
https://doi.org/10.1016/j.camwa.2019.08.003
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1006/jmaa.2000.6862
https://doi.org/10.1016/j.jcp.2022.111739
https://doi.org/10.1016/j.cma.2022.115810
https://doi.org/10.3934/acse.2023002
https://doi.org/10.3934/acse.2023002
https://github.com/jbnunezd/fv-solver-mhd
https://doi.org/10.1016/j.crma.2013.10.028
https://doi.org/10.1137/19M1257275
https://doi.org/10.1016/j.jcp.2024.112762


26 M. NONINO, D. TORLO

[31] J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, The shifted proper orthogonal
decomposition: A mode decomposition for multiple transport phenomena, SIAM Journal on
Scientific Computing, 40 (2018), pp. A1322–A1344, https://doi.org/10.1137/17M1140571.

[32] T. Richter, Fluid-structure Interactions: Models, Analysis and Finite Elements, Lecture
Notes in Computational Science and Engineering, Springer International Publishing, 2017.

[33] D. Rim and K. T. Mandli, Displacement interpolation using monotone rearrangement,
SIAM/ASA Journal on Uncertainty Quantification, 6 (2018), pp. 1503–1531, https://doi.
org/10.1137/18M1168315.

[34] D. Rim, S. Moe, and R. LeVeque, Transport reversal for model reduction of hyperbolic par-
tial differential equations, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018),
pp. 118–150, https://doi.org/10.1137/17M1113679.

[35] F. Romor, D. Torlo, and G. Rozza, Friedrichs’ systems discretized with the Discontinuous
Galerkin method: domain decomposable model order reduction and Graph Neural Networks
approximating vanishing viscosity solutions, arXiv preprint arXiv:2308.03378, (2023).

[36] T. Taddei, A registration method for model order reduction: Data compression and geometry
reduction, SIAM Journal on Scientific Computing, 42 (2020), pp. A997–A1027, https://
doi.org/10.1137/19M1271270.

[37] T. Taddei, Compositional maps for registration in complex geometries, arXiv preprint
arXiv:2308.15307, (2023).

[38] D. Torlo, Model reduction for advection dominated hyperbolic problems in an ALE framework:
Offline and online phases, arXiv preprint arXiv:2003.13735, (2020).

[39] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Intro-
duction, Springer Berlin Heidelberg, 2013.

[40] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with
strong shocks, Journal of Computational Physics, 54 (1984), pp. 115–173, https://doi.org/
https://doi.org/10.1016/0021-9991(84)90142-6.

[41] M. Yano, Discontinuous Galerkin reduced basis empirical quadrature procedure for model re-
duction of parametrized nonlinear conservation laws, Advances in Computational Mathe-
matics, 45 (2019), pp. 2287–2320, https://doi.org/10.1007/s10444-019-09710-z.

https://doi.org/10.1137/17M1140571
https://doi.org/10.1137/18M1168315
https://doi.org/10.1137/18M1168315
https://doi.org/10.1137/17M1113679
https://doi.org/10.1137/19M1271270
https://doi.org/10.1137/19M1271270
https://doi.org/https://doi.org/10.1016/0021-9991(84)90142-6
https://doi.org/https://doi.org/10.1016/0021-9991(84)90142-6
https://doi.org/10.1007/s10444-019-09710-z

	Introduction
	Motivation

	Calibration of the snapshots
	Calibration in the self–similar setting
	Calibration in the quasi–self–similar setting

	The geometrical transformation map
	The 1D setting
	The 2D setting

	Model Order Reduction with calibration
	Learning the calibration map
	POD-NN
	Online solution by means of ANN

	Numerical results
	Non-parametric Sod shock tube problem in 1D
	Parametric Sod shock tube problem in 1D
	Non-parametric DMR problem in 2D
	Parametric DMR problem

	Conclusions
	References

