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The aim of this work is to present a model reduction technique in the framework of optimal control problems 
for partial differential equations. We combine two approaches used for reducing the computational cost of the 
mathematical numerical models: domain–decomposition (DD) methods and reduced–order modelling (ROM). In 
particular, we consider an optimisation–based domain–decomposition algorithm for the parameter–dependent 
stationary incompressible Navier–Stokes equations. Firstly, the problem is described on the subdomains coupled 
at the interface and solved through an optimal control problem, which leads to the complete separation of the 
subdomain problems in the DD method. On top of that, a reduced model for the obtained optimal–control 
problem is built; the procedure is based on the Proper Orthogonal Decomposition technique and a further 
Galerkin projection. The presented methodology is tested on two fluid dynamics benchmarks: the stationary 
backward–facing step and lid-driven cavity flow. The numerical tests show a significant reduction of the 
computational costs in terms of both the problem dimensions and the number of optimisation iterations in 
the domain–decomposition algorithm.
1. Introduction

In the last decades, there has been a growing interest in approxi-
mation techniques for partial differential equations (PDEs) that exploit 
high–performance computing within different fields of applications: in-
dustrial applications, naval engineering, aeronautics engineering, med-
ical engineering, etc. Very often these problems have prohibitively high 
computational costs, and there is always the need of much more ef-
fective algorithms in order to alleviate the complexities of numerical 
models.

Two of the most investigated and most important topics for ren-
dering low computational costs are the reduced–order modelling for 
parameter–dependent PDEs [1] and domain–decomposition algorithms 
[2]. In the former case, equations of interest usually depend on a given 
set of parameters; these parameters can describe either the physical 
properties of the sought quantities or the geometrical configuration of 
the physical domain over which the problem is posed. Model–order 
reduction is a technique based on the effective decoupling of the com-
putationally expensive offline and usually computationally cheap online 
phase which provides a solution for any parameter value: for details we 
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refer to [1]. Model order reduction has been successfully employed in 
different fields such as fluid dynamics [3–14] and structural mechan-
ics [15–20]. Among the aforementioned applications a significant type 
of problems often emerges, namely saddle-point problems [21,22], for 
which special care has to be taken in order to construct stable pairs 
of the reduced spaces; in particular, in fluid dynamics problems this 
is achieved by introducing so-called velocity supremisers, see, for in-
stance, [23,22,7,24].

Another very efficient way for reducing the computational complex-
ity of numerical modes is Domain Decomposition (DD) method. Any 
domain decomposition method is based on the assumption that a given 
physical domain of interest is partitioned into subdomains; the original 
problem is then recast upon each subdomain yielding a family of sub-
problems of reduced size that are coupled to one another through the 
values and fluxes of the unknown solution at the subdomain interfaces 
[25,2]. Very often the interface coupling is relaxed at the expense of 
providing an iterative process among subdomains, allowing a split of 
each of the subdomain solvers and making it computationally feasible. 
Domain decomposition methods can be extremely advantageous in the 
case of very complex geometries as well as in the case of multi-physics 
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problems. The latter is even more attractive if we consider that there 
are often available state-of-the-art codes for a subcomponent model of 
a multi-physics problem which can be effectively exploited by decou-
pling algorithms; see, for instance, [26–29].

In this paper, we bring our attention to domain–decomposition 
methods using an optimisation approach to ensure the coupling of the 
interface conditions between subdomains as it is presented, for example, 
in [30,31]. In particular, we exploit both aforementioned techniques: 
optimisation–based domain decomposition algorithm in combination 
with projection–based reduced–order models. This paper is the first 
step towards the development of an efficient reduced–order model 
for an optimisation–based domain–decomposition algorithm for Fluid–
Structure Interaction (FSI) problems [15]. It is even more attractive in 
the view of the articles [32,33] where the authors are suggesting that 
this approach leads to a stable segregated model for FSI problems in 
the case of added-mass effect [34]; we also mention here some already 
successful ROM results in developing stable semi-implicit partitioned 
approaches, e.g., [35–37].

Very recently, authors of the paper [38] have introduced a novel 
partitioned approach for ROMs, where they couple either two different 
reduced–order models on each subdomain or a reduced–order model on 
one subdomain and a full–order (Finite Element) model on the other for 
the case of nonstationary diffusion–advection problems. In this context, 
the construction followed in this paper could be also applicable to the 
coupling presented in [38], as long as there is a way of casting functions 
defined on the subdomain interface onto the approximation spaces used 
on the corresponding subdomains; this will be subject of future work.

As mentioned before, the use of optimisation–based domain–
decomposition methods for PDEs goes as back as the end of the 1990s, 
e.g., [39]. It had been successfully studied in the case of Navier–Stokes 
equations as well, see [30]. As for the novelty of this work, to the best of 
the authors’ knowledge, this is the first attempt of combining the afore-
mentioned technique with projection–based Reduced Order Models in 
order to provide a computationally efficient algorithm for parametrised 
PDEs. Other works deal with model order reduction and domain de-
composition but basing their work on other algorithms, e.g. on Schwarz 
domain overlapping methods [40,41].

A possible extension of current work could be the application of the 
technique described in this paper to optimal–control problems; in this 
case, as, for example, in [39], we have to deal with multi–objective 
optimisation problems - one for the optimal control and another one for 
the domain–decomposition part.

This work is outlined as follows. In Section 2 we introduce the mono-
lithic and the optimisation–based domain-decomposition formulation 
of the incompressible Navier–Stokes equations in both strong and weak 
forms. Furthermore, we derive the optimality condition for the resulting 
optimal control problem and compute the expression for the gradient of 
the objective functional. Section 3 lists a gradient–based optimisation 
algorithm for the problem derived in the previous section. In section 4
we describe the Finite Element discretisation of the problem of interest 
and provide a finite–dimensional high–fidelity optimisation problem. 
Section 5 deals with the reduced–order model which is based on a 
reduced basis generation by Proper Orthogonal Decomposition method-
ology and the Galerkin projection of the high–fidelity problem onto the 
lower-dimensional reduced spaces. In Section 6 we show some numer-
ical results for two toy problems: the backward–facing step and the 
lid–driven cavity flows. Conclusions will follow in Section 7.

2. Problem formulation

In this section, starting with a monolithic formulation of the in-
compressible Navier-Stokes equations we introduce a two–domain 
optimisation-based domain-decomposition formulation in both strong 
and weak forms. Then, the optimality conditions of the resulting op-
timal control problem are derived followed by the expression of the 
gradient of the objective functional obtained by sensitivity analysis.
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Fig. 1. Physical domain.

Fig. 2. Domain Decomposition of the fluid domain.

2.1. Monolithic formulation

Let Ω be a physical domain of interest: we assume Ω to be an open 
subset of ℝ2 and Γ to be the boundary of Ω. Let 𝑓 ∶ Ω → ℝ2 be the 
forcing term, 𝜈 the kinematic viscosity, 𝑢𝐷 a given Dirichlet datum. The 
problem reads as follows: find the velocity field 𝑢 ∶ Ω → ℝ2 and the 
pressure 𝑝 ∶ Ω →ℝ s.t.

−𝜈Δ𝑢+ (𝑢 ⋅∇)𝑢+∇𝑝 = 𝑓 in Ω, (1a)

−div𝑢 = 0 in Ω, (1b)

𝑢 = 𝑢𝐷 on Γ𝐷, (1c)

𝜈
𝜕𝑢

𝜕𝑛
− 𝑝𝑛 = 0 on Γ𝑁, (1d)

where Γ𝐷 and Γ𝑁 are disjoint subsets of Γ (as it is shown in Fig. 1) and 
𝑛 is an outward unit normal vector to Γ𝑁 .

2.2. Domain decomposition (DD) formulation

For the sake of simplicity of exposition, we restricted ourselves to 
the two–domain decomposition method, but the multi–domain splitting 
case is a straightforward extension of the two–domain case and should 
also bring more computational efficiency.

Let Ω𝑖, 𝑖 = 1, 2 be open subsets of Ω, such that Ω=Ω1 ∪Ω2, Ω1 ∩Ω2 =
∅. Denote Γ𝑖 ∶= 𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2 and Γ0 ∶= Ω1 ∩ Ω2. In the same way we 
define the corresponding boundary subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2; see 
Fig. 2.

Then the DD formulation reads as follows: for 𝑖 = 1, 2, given 𝑓𝑖 ∶
Ω𝑖 →ℝ2 and 𝑢𝑖,𝐷 ∶ Γ𝑖,𝐷 →ℝ2, find 𝑢𝑖 ∶ Ω𝑖 →ℝ2, 𝑝𝑖 ∶ Ω𝑖 →ℝ s.t.

−𝜈Δ𝑢𝑖 +
(
𝑢𝑖 ⋅∇

)
𝑢𝑖 +∇𝑝𝑖 = 𝑓𝑖 in Ω𝑖, (2a)

−div𝑢𝑖 = 0 in Ω𝑖, (2b)

𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷, (2c)

𝜈
𝜕𝑢𝑖

𝜕𝑛𝑖
− 𝑝𝑖𝑛𝑖 = 0 on Γ𝑖,𝑁 , (2d)

𝜈
𝜕𝑢𝑖

𝜕𝑛𝑖
− 𝑝𝑖𝑛𝑖 = (−1)𝑖+1𝑔 on Γ0, (2e)

for some 𝑔 ∶ Γ0 → ℝ2 such that the functions defined in the following 
way
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𝑢 ∶=

{
𝑢1, in Ω1 ∪ Γ0,
𝑢2, in Ω2 ∪ Γ0,

𝑝 ∶=

{
𝑝1, in Ω1 ∪ Γ0,
𝑝2, in Ω2 ∪ Γ0,

satisfy the monolithic equations (1).
Even though in the numerical simulations we will focus on the cases 

where 𝑓𝑖 = 𝑓 |Ω𝑖 , 𝑢𝑖,𝐷 = 𝑢𝐷|Γ𝑖,𝐷 for 𝑖 = 1, 2, the whole theoretical ex-
position in this paper works just as well for more general functions 
𝑓1, 𝑓2, 𝑢1,𝐷 and 𝑢2,𝐷 .

For any 𝑔 the solution to the problem (2) is not the same as the 
solution to the problem (1), that is 𝑢1 ≠ 𝑢|Ω1

, 𝑝1 ≠ 𝑝|Ω1
, 𝑢2 ≠ 𝑢|Ω2

and 𝑝2 ≠ 𝑝|Ω2
. On the other hand, there exists a choice for 𝑔, 𝑔 =(

𝜈
𝜕𝑢1
𝜕𝑛1

− 𝑝1𝑛1
) |Γ0 = − 

(
𝜈
𝜕𝑢2
𝜕𝑛2

− 𝑝2𝑛2
) |Γ0 , such that the solutions to (2)

coincide with the solution to (1) on the corresponding subdomains. 
Therefore, we must find such a 𝑔, so that 𝑢1 is as close as possible to 
𝑢2 at the interface Γ0. One way to accomplish this is to minimise the 
functional

 (𝑢1, 𝑢2) =∶
1
2 ∫
Γ0

||𝑢1 − 𝑢2||2 𝑑Γ. (3)

Instead of (3) we can also consider the penalised or regularised func-
tional

𝛾 (𝑢1, 𝑢2;𝑔) =∶ 1
2 ∫
Γ0

||𝑢1 − 𝑢2||2 𝑑Γ + 𝛾

2 ∫
Γ0

|𝑔|2 𝑑Γ, (4)

where 𝛾 is a constant that can be chosen to change the relative impor-
tance of the terms in (4). Thus we face an optimisation problem under 
PDE constraints: minimise the functional (3) (or (4)) over a suitable 
function 𝑔, subject to (2).

2.3. Variational formulation of the PDE constraints

For 𝑖 = 1, 2 define the following spaces and the norms with which 
each of them is endowed:

• 𝑉𝑖 ∶=
{
𝑢 ∈𝐻1(Ω𝑖;ℝ2)

}
, || ⋅ ||𝑉𝑖 = || ⋅ ||𝐻1(Ω𝑖),

• 𝑉𝑖,0 ∶=
{
𝑢 ∈𝐻1(Ω𝑖;ℝ2) ∶ 𝑢|Γ𝑖,𝐷 = 0

}
, || ⋅ ||𝑉𝑖,0 = || ⋅ ||𝐻1

0 (Ω𝑖)
,

• 𝑄𝑖 ∶=
{
𝑝 ∈𝐿2(Ω𝑖;ℝ)

}
, || ⋅ ||𝑄𝑖 = || ⋅ ||𝐿2(Ω𝑖).

Then, we define the following bilinear and trilinear forms: for i=1,2

• 𝑎𝑖 ∶ 𝑉𝑖 × 𝑉𝑖,0 →ℝ, 𝑎𝑖(𝑢𝑖, 𝑣𝑖) = 𝜈(∇𝑢𝑖, ∇𝑣𝑖)Ω𝑖 ,
• 𝑏𝑖 ∶ 𝑉𝑖 ×𝑄𝑖 →ℝ, 𝑏𝑖(𝑣𝑖, 𝑞𝑖) = −(div𝑣𝑖, 𝑞𝑖)Ω𝑖 ,
• 𝑐𝑖 ∶ 𝑉𝑖 × 𝑉𝑖 × 𝑉𝑖,0 →ℝ, 𝑐𝑖(𝑢𝑖, 𝑤𝑖, 𝑣𝑖) =

(
(𝑢𝑖 ⋅∇)𝑤𝑖, 𝑣𝑖

)
Ω𝑖

,

where (⋅, ⋅)𝜔 indicates the 𝐿2(𝜔) inner product.
Consequently, the variational counterpart of (2) reads as follows: for 

𝑖 = 1, 2, find 𝑢𝑖 ∈ 𝑉𝑖 and 𝑝𝑖 ∈𝑄𝑖 s.t.

𝑎𝑖(𝑢𝑖, 𝑣𝑖) + 𝑐𝑖(𝑢𝑖, 𝑢𝑖, 𝑣𝑖) + 𝑏𝑖(𝑣𝑖, 𝑝𝑖) = (𝑓𝑖, 𝑣𝑖)Ω𝑖
+
(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0, (5a)

𝑏𝑖(𝑢𝑖, 𝑞𝑖) = 0 ∀𝑞𝑖 ∈𝑄𝑖, (5b)

𝑢𝑖 = 𝑢𝑖,𝐷 on Γ𝑖,𝐷. (5c)

Remark. In general, the fluxes through an interface Γ0 for the weak 
formulation of Navier–Stokes equation lives in the space 𝐻− 1

2 (Γ0) so 
that, in theory, the definition (4) of functional 𝛾 is not justified as 
it includes the 𝐿2(Γ0)–norm of the function 𝑔. Although, as it will be 
evident in Section 3, the family of optimisation algorithms which are 
used to tackle the optimal–control problem in hand, in fact, define the 
respective approximation of 𝑔 that belongs to the space 𝐻

1
2 (Γ0).
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2.4. Optimality system

One of the ways to address the constrained optimisation problem is 
to reformulate the initial problem in terms of a Lagrangian functional 
by introducing the so–called adjoint variables. In this way, the optimal 
solution to the original problem is sought among the stationary points 
of the Lagrangian, see, for instance, [42,43].

We define the Lagrangian functional as follows:

(𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝜆1, 𝜆2;𝑔) ∶= 𝛾 (𝑢1, 𝑢2;𝑔) −
2∑
𝑖=1

[
𝑎𝑖(𝑢𝑖, 𝜉𝑖) (6)

+𝑐𝑖(𝑢𝑖, 𝑢𝑖, 𝜉𝑖) +𝑏𝑖(𝜉𝑖, 𝑝𝑖) + 𝑏𝑖(𝑢𝑖, 𝜆𝑖)
]
+

2∑
𝑖=1

(𝑓𝑖, 𝜉𝑖)Ω𝑖 +
2∑
𝑖=1

((−1)𝑖+1𝑔, 𝜉𝑖)Γ0 .

Notice that technically we should have also included Lagrange multipli-
ers corresponding to the non–homogeneous Dirichlet boundary condi-
tions (5c) in the definition of the functional , but since the functional 
𝛾 does not explicitly depend on 𝑢1,𝐷 and 𝑢2,𝐷 the corresponding Dirich-
let boundary conditions for the adjoint equation that we are going to 
derive below will be homogeneous on these parts of the boundaries.

We now apply the necessary conditions for finding stationary points 
of . Setting to zero the first variations w.r.t. 𝜉𝑖 and 𝜆𝑖, 𝑖 = 1, 2 yields 
the state equations (5a)-(5b). Setting to zero the first variations w.r.t. 
𝑢1, 𝑝1, 𝑢2 and 𝑝2 yields the adjoint equations:

𝑎𝑖(𝜂𝑖, 𝜉𝑖) + 𝑐𝑖
(
𝜂𝑖, 𝑢𝑖, 𝜉𝑖

)
+ 𝑐𝑖
(
𝑢𝑖, 𝜂𝑖, 𝜉𝑖

)
+ 𝑏𝑖(𝜂𝑖, 𝜆𝑖)

= ((−1)𝑖+1𝜂𝑖, 𝑢1 − 𝑢2)Γ0 ,
∀𝜂𝑖 ∈ 𝑉𝑖,0, (7a)

𝑏𝑖(𝜉𝑖, 𝜇𝑖) = 0, ∀𝜇𝑖 ∈𝑄𝑖. (7b)

Finally, setting to zero the first variations w.r.t. 𝑔 yields the optimal-
ity condition:

𝛾(ℎ, 𝑔)Γ0 + (ℎ, 𝜉1 − 𝜉2)Γ0 = 0, ∀ℎ ∈𝐿2(Γ0). (8)

2.5. Sensitivity derivatives

In order to obtain the expression for the gradient of the optimisa-
tion problem in hand, we will resort to the sensitivity approach, see, 
for instance, [42,43]. The approach consists of finding equations for di-
rection derivatives of the state variable with respect to control, called 
sensitivities.

The first derivative 𝑑𝛾
𝑑𝑔

of 𝛾 is defined through its action on varia-

tion 𝑔̃ as follows:⟨
𝑑𝛾
𝑑𝑔

, 𝑔̃

⟩
= (𝑢1 − 𝑢2, 𝑢̃1 − 𝑢̃2)Γ0 + 𝛾(𝑔, 𝑔̃)Γ0 , (9)

where 𝑢̃1 ∈ 𝑉1,0, 𝑢̃2 ∈ 𝑉2,0 are the solutions to:

𝑎𝑖(𝑢̃𝑖, 𝑣𝑖) + 𝑐𝑖(𝑢̃𝑖, 𝑢𝑖, 𝑣𝑖) + 𝑐𝑖(𝑢𝑖, 𝑢̃𝑖, 𝑣𝑖)

+𝑏𝑖(𝑣𝑖, 𝑝̃𝑖) = ((−1)𝑖+1𝑔̃, 𝑣𝑖)Γ0
∀𝑣𝑖 ∈ 𝑉𝑖,0, (10a)

𝑏𝑖(𝑢̃𝑖, 𝑞𝑖) = 0 ∀𝑞𝑖 ∈𝑄𝑖. (10b)

We can make use of the adjoint equations (7) in order to find the 
representation of the gradient of the functional 𝛾 . Let 𝜉1 and 𝜉2 be the 
solutions to (7), 𝑢̃1 and 𝑢̃2 be the solutions to (10). By setting 𝜂𝑖 = 𝑢̃𝑖 in 
(7a), 𝜇𝑖 = 𝑝̃𝑖 in (7b), 𝑣𝑖 = 𝜉𝑖 in (10a) and 𝑞𝑖 = 𝜆𝑖 in (10b) we obtain:

(𝑢1 − 𝑢2, 𝑢̃1 − 𝑢̃2)Γ0 = (𝑔̃, 𝜉1 − 𝜉2)Γ0 ,

so that it yields the explicit formula for the gradient of 𝛾 :
𝑑𝛾
𝑑𝑔

(𝑢1, 𝑢2;𝑔) = 𝛾𝑔 + (𝜉1 − 𝜉2)|Γ0 , (11)

where 𝜉1 and 𝜉2 are determined from 𝑔 through (7). Notice that the 
gradient expression (11) is consistent with the optimality condition (8)
derived in the previous section.
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3. Gradient–based algorithm for PDE–constraint optimisation 
problem

In view of being able to provide a closed–form formula for the gra-
dient for the objective functional 𝛾 , the natural way to proceed is to 
resort to a gradient–based iterative optimisation algorithm.

In order to keep the exposition simple, we consider the following 
simple gradient method with a constant step size 𝛼 > 0: given a starting 
guess 𝑔(0), let

𝑔(𝑛+1) = 𝑔(𝑛) − 𝛼
𝑑𝛾
𝑑𝑔

(
𝑢
(𝑛)
1 , 𝑢

(𝑛)
2 ;𝑔(𝑛)

)
. (12)

Combining this with (11) we obtain:

𝑔(𝑛+1) = 𝑔(𝑛) − 𝛼
(
𝛾𝑔(𝑛) + (𝜉(𝑛)1 − 𝜉(𝑛)2 )|Γ0) , (13)

or

𝑔(𝑛+1) = (1 − 𝛼𝛾)𝑔(𝑛) − 𝛼(𝜉(𝑛)1 − 𝜉(𝑛)2 )|Γ0 , (14)

where 𝜉(𝑛)1 and 𝜉(𝑛)2 are determined from (7) with 𝑔 replaced by 𝑔(𝑛).
In summary, we have the following algorithm:

Algorithm 1.

1. Choose 𝑔(0), 𝛼 > 0.
2. For n=0,1,2,... until convergence

(a) Determine 𝑢(𝑛)1 ∈ 𝑉1, 𝑢
(𝑛)
2 ∈ 𝑉2 by solving (5a)–(5b) with 𝑔 = 𝑔(𝑛).

(b) Determine 𝜉(𝑛)1 ∈ 𝑉1,0, 𝜉
(𝑛)
2 ∈ 𝑉2,0 by solving (7) with 𝑢1 = 𝑢

(𝑛)
1 , 

𝑢2 = 𝑢
(𝑛)
2 .

(c) Update 𝑔(𝑛+1) by setting

𝑔(𝑛+1) ∶= (1 − 𝛼𝛾)𝑔(𝑛) − 𝛼
(
𝜉
(𝑛)
1 − 𝜉(𝑛)2

) |Γ0 .
In practice, the typical methods used to solve problems like the 

one considered in this paper are Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) and Newton Conjugate Gradient (CG) algorithms which tend 
to show much faster convergence and higher efficiency with respect to 
the steepest-decent algorithm.

4. Finite element discretisation

In this section, we present the Finite Element spatial discretisation 
for the optimal control problem previously introduced. In order to be 
able to apply FE discretisation, the domains Ω𝑖, 𝑖 = 1, 2 and the interface 
Γ0 are assumed to be polygonal. We consider two well-defined trian-
gulations 1 and 2 over the domains Ω1 and Ω2 respectively, and an 
extra lower-dimensional triangulation 0 of the interface Γ0; addition-
ally, we assume that 1, 2 and 0 share the same degrees on freedom 
relative to the interface Γ0. We can then define usual Lagrangian FE 
spaces 𝑉𝑖,ℎ ⊂ 𝑉𝑖, 𝑉𝑖,0,ℎ ⊂ 𝑉𝑖,0, 𝑄𝑖,ℎ ⊂ 𝑄𝑖, 𝑖 = 1, 2 and 𝑋ℎ ⊂ 𝐿2(Γ0) endowed 
with 𝐿2(Γ0)-norm; the spaces 𝑉𝑖,ℎ, 𝑉𝑖,0,ℎ and 𝑄𝑖,ℎ for 𝑖 = 1, 2 are endowed 
the same norms as their continuous counterparts. Since the problems 
at hand have a saddle-point structure, in order to guarantee the well-
posedness of the discretised problem, we require the FE spaces to satisfy 
the following inf-sup conditions: there exist positive constants 𝑐1, 𝑐2, 𝑐3
and 𝑐4 s.t.

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ∖{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,ℎ∖{0}

𝑏𝑖(𝑣𝑖,ℎ, 𝑞𝑖,ℎ)||𝑣𝑖,ℎ||𝑉𝑖,ℎ ||𝑞𝑖,ℎ||𝑄𝑖,ℎ ≥ 𝑐𝑖, 𝑖 = 1,2, (15)

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ∖{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,0,ℎ∖{0}

𝑏𝑖(𝑣𝑖,ℎ, 𝑞𝑖,ℎ)||𝑣𝑖,ℎ||𝑉𝑖,0,ℎ ||𝑞𝑖,ℎ||𝑄𝑖,ℎ ≥ 𝑐𝑖+2, 𝑖 = 1,2. (16)

A very common choice in this framework is to use the so-called Taylor–
Hood finite element spaces, namely the Lagrange polynomial approxi-
mation of the second-order for velocity and of the first-order for pres-
sure. We point out that the order of the polynomial space 𝑋ℎ will not 
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lead to big computational efforts as it is defined on the 1-dimensional 
curve Γ0.

Using the Galerkin projection we can derive the following discre-
tised optimisation problem: minimise over 𝑔ℎ ∈𝑋ℎ the functional:

𝛾,ℎ(𝑢1,ℎ, 𝑢2,ℎ;𝑔ℎ) ∶= 1
2 ∫
Γ0

||𝑢1,ℎ − 𝑢2,ℎ||2 𝑑Γ + 𝛾

2 ∫
Γ0

||𝑔ℎ||2 𝑑Γ (17)

under the constraints that 𝑢𝑖,ℎ ∈ 𝑉𝑖,ℎ, 𝑝𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfy the following 
variational equations for 𝑖 = 1, 2:

𝑎𝑖(𝑢𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖(𝑢𝑖,ℎ, 𝑢𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑏𝑖(𝑣𝑖,ℎ, 𝑝𝑖,ℎ)

= (𝑓𝑖, 𝑣𝑖,ℎ)Ω𝑖 + ((−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ)Γ0
∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (18a)

𝑏𝑖(𝑢𝑖,ℎ, 𝑞𝑖,ℎ) = 0 ∀𝑞𝑖,ℎ ∈𝑄𝑖,ℎ, (18b)

𝑢𝑖,ℎ = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷, (18c)

where 𝑢𝑖,𝐷,ℎ is the Galerkin projection of 𝑢𝑖,𝐷 onto the trace–space 
𝑉𝑖,ℎ|Γ𝑖,𝐷 .

Notice that the structure of the equations (18) and of the functional 
(17) is the same as the one of the continuous case so that it enables us 
to provide the following expression of the gradient of the discretised 
functional (17):

𝑑𝛾,ℎ
𝑑𝑔ℎ

(𝑢1,ℎ, 𝑢2,ℎ;𝑔ℎ) = 𝛾𝑔ℎ + (𝜉1,ℎ − 𝜉2,ℎ)|Γ0 , (19)

where 𝜉1,ℎ and 𝜉2,ℎ are the solutions to the discretised adjoint problem: 
for 𝑖 = 1, 2 find 𝜉𝑖,ℎ ∈ 𝑉𝑖,0,ℎ and 𝜆𝑖,ℎ ∈𝑄𝑖,ℎ that satisfy

𝑎𝑖(𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑐𝑖
(
𝜂𝑖,ℎ, 𝑢𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑐𝑖
(
𝑢𝑖,ℎ, 𝜂𝑖,ℎ, 𝜉𝑖,ℎ

)
+ 𝑏𝑖(𝜂𝑖,ℎ, 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,ℎ, 𝑢1,ℎ − 𝑢2,ℎ)Γ0 ,

∀𝜂𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (20a)

𝑏𝑖(𝜉𝑖,ℎ, 𝜇𝑖,ℎ) = 0, ∀𝜇𝑖,ℎ ∈𝑄𝑖,ℎ. (20b)

We would also like to stress that at the algebraic level the discre-
tised minimisation problem can be recast in the setting of the finite–
dimensional space ℝ𝑝, where 𝑝 is the number of Finite Element degrees 
of freedom which belong to the interface Γ0 .

5. Reduced-order model

As it was highlighted in section 1, Reduced–Order methods are 
efficient tools for significant reduction of the parameter–dependent 
PDEs. This section deals with the reduced–order model for the prob-
lem obtained in the previous section, where the state equations, namely 
Navier–Stokes equations, are assumed to be dependent on a set of phys-
ical parameters. First, we introduce two practical ingredients we will 
be using in the course of the reduced–basis generation, namely a lifting 
function and the pressure supremiser enrichment. Then, we describe the 
offline phase based on the Proper Orthogonal Decomposition technique, 
which is followed by the online phase based on a Galerkin projection 
onto the reduced spaces.

5.1. Lifting function and velocity supremiser enrichment

In the following, we are going to discuss a snapshot compression 
technique for the generation of reduced basis functions. In order to 
do so we need to introduce two important ingredients in this context, 
namely the lifting function technique and the supremiser enrichment of 
the velocity space.

The use of lifting functions is quite common in the reduced basis 
method (RBM) framework; see, for example, [1,23]. It is motivated by 
the fact that in the chosen model we are supposed to tackle the non-
homogeneous Dirichlet boundary condition on the parts of the bound-
aries Γ𝑖,𝐷, 𝑖 = 1, 2. From the implementation point of view, this does not 
present any problem when dealing with the high-fidelity model since 
there are several well-known techniques for non-homogeneous essential 
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conditions, in particular at the algebraic level. However, these bound-
ary conditions create some problems when dealing with the reduced 
basis methods. Indeed, we seek to generate a linear vector space which 
is obtained by the compression of the set of snapshots, and this clearly 
cannot be achieved by using snapshots which satisfy different Dirich-
let conditions – the resulting space would not be linear. This problem is 
solved by introducing a lifting function 𝑙𝑖,ℎ ∈ 𝑉𝑖,ℎ, 𝑖 = 1, 2 during the of-
fline stage, such that 𝑙𝑖,ℎ = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷 . We define two new variables 
𝑢𝑖,0,ℎ ∈ 𝑉𝑖,0,ℎ, 𝑖 = 1, 2 by setting 𝑢𝑖,0,ℎ ∶= 𝑢𝑖,ℎ − 𝑙𝑖,ℎ. Clearly, the variables 
𝑢𝑖,0,ℎ, 𝑖 = 1, 2 satisfy the homogeneous condition 𝑢𝑖,0,ℎ = 0 on Γ𝑖,𝐷 and 
so they can be used to generate the reduced basis linear space. We re-
mark that the lifting function is needed only in the domain where the 
Dirichlet boundary is non–empty, i.e. where Γ𝑖,𝐷 ≠ ∅ for 𝑖 = 1, 2. It is im-
portant to point out that the choice of lifting functions is not unique; in 
our work, we chose to use the solution of the Stokes problem in one of 
the domains Ω, Ω1 or Ω2 (depending on the particular model we are in-
vestigating) with the velocity equal to 𝑢𝐷 on the corresponding parts of 
the boundaries and the homogeneous Neumann conditions analogous 
to the original problem setting.

The other ingredient we will use in the following exposition is the 
so-called velocity supremiser. This is necessary to obtain a stable ap-
proximation of the saddle-point problem at the reduced level discussed 
in the following subsections. The well–posedness of the problem is again 
assured by satisfying the inf-sup conditions like (16). The supremiser 
variables 𝑠𝑖,ℎ, 𝑖 = 1, 2 are defined as the solution to the following prob-
lem: find 𝑠𝑖,ℎ ∈ 𝑉𝑖,0,ℎ such that(
∇𝑣𝑖,ℎ,∇𝑠𝑖,ℎ

)
= 𝑏𝑖,ℎ

(
𝑣𝑖,ℎ, 𝑝𝑖,ℎ

)
∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (21)

where 𝑝𝑖,ℎ, 𝑖 = 1, 2 are the finite-element pressure solutions of the 
Navier-Stokes problem and the left-hand side is the scalar product 
which defines a norm on the space 𝑉𝑖,0,ℎ. For more details, we refer 
to [23,22]. Another way to apply the supremiser is to apply it di-
rectly to the reduced basis of the velocity spaces, but this might lead to 
parameter–dependent reduced spaces [23]. Other simplifications may 
work in a similar fashion, we might compare them in future works.

5.2. Reduced basis generation

Once we obtain the homogenised snapshots 𝑢𝑖,0,ℎ and the pressure 
supremisers 𝑠𝑖,ℎ for 𝑖 = 1, 2, we are ready to construct a set of reduced ba-
sis functions. A very common choice when dealing with Navier-Stokes 
equations is to use the Proper Orthogonal Decomposition (POD) tech-
nique, which is based on the Singular Value Decomposition of the 
snapshot matrices; see, for instance, [1]. In order to implement this 
technique we will need two main ingredients: the matrices of the inner 
products and the snapshot matrices. First, we define the basis functions 
for the FE element spaces used in the weak formulation (17), (18) and 
(20) as follows:

𝑖,0,ℎ =
{
𝜙
𝑢𝑖
1 , ..., 𝜙

𝑢𝑖

 𝑢𝑖
ℎ

}
− the FE basis of the space 𝑉𝑖,0,ℎ, 𝑖 = 1,2,

𝑖,ℎ =
{
𝜙
𝑝𝑖
1 , ..., 𝜙

𝑝𝑖

 𝑝𝑖
ℎ

}
− the FE basis of the space 𝑄𝑖,ℎ, 𝑖 = 1,2,

Ξ𝑖,0,ℎ ∶=𝑖,0,ℎ,  𝜉𝑖
ℎ

∶= 𝑢𝑖
ℎ
, 𝑖 = 1,2,

𝑖,ℎ =
{
𝜙
𝑔

1 , ..., 𝜙
𝑔

 𝑔

ℎ

}
− the FE basis of the space 𝑋ℎ,

where  ∗
ℎ
, ∗∈
{
𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔

}
denotes the dimension of the correspond-

ing FE space.
We proceed by building the snapshot matrices. In doing so we sam-

ple a parameter space and draw a discrete set of 𝑀 parameter values; 
there are various sampling techniques, among which we point out the 
uniform sampling. Then, the snapshots are taken as a high–fidelity, i.e. 
Finite Element, solutions at each parameter value in the sampling set.
176
We proceed by building the snapshot matrices 𝑢𝑖 ∈ ℝ 𝑠
ℎ
×4𝑀 , 𝑠𝑖 ∈

ℝ 𝑠
ℎ
×4𝑀 , 𝑝𝑖 ∈ ℝ 𝑠

ℎ
×4𝑀 , 𝜉𝑖 ∈ ℝ 𝑎

ℎ
×2𝑀 for 𝑖 = 1, 2 and 𝑔 ∈ ℝ 𝑔

ℎ
×𝑀 de-

fined as follows:

𝑢1 = [𝑢11,0,ℎ, ..., 𝑢
𝑀
1,0,ℎ,0, ...,0,0, ...,0,0, ...,0],

𝑠1 = [𝑠11,ℎ, ..., 𝑠
𝑀
1,ℎ,0, ...,0,0, ...,0,0, ...,0],

𝑝1 = [0, ...,0, 𝑝11,ℎ, ..., 𝑝
𝑀
1,ℎ,0, ...,0,0, ...,0],

𝑢2 = [0, ...,0,0, ...,0, 𝑢12,0,ℎ, ..., 𝑢
𝑀
2,0,ℎ,0, ...,0],

𝑠2 = [0, ...,0,0, ...,0, 𝑠12,ℎ, ..., 𝑠
𝑀
2,ℎ,0, ...,0],

𝑝2 = [0, ...,0,0, ...,0,0, ...,0, 𝑝12,ℎ, ..., 𝑝
𝑀
2,ℎ],

𝜉1 = [𝜉11,ℎ, ..., 𝜉
𝑀
1,ℎ,0, ...,0], 𝜉2 = [0, ...,0, 𝜉12,ℎ, ..., 𝜉

𝑀
2,ℎ],

𝑔 = [𝑔1
ℎ
, ..., 𝑔𝑀

ℎ
],

where  𝑠
ℎ
= 𝑢1

ℎ
+ 𝑝1

ℎ
+ 𝑢2

ℎ
+ 𝑝2

ℎ
,  𝑎

ℎ
= 𝜉1

ℎ
+ 𝜉2

ℎ
and 𝑀 is the 

number of snapshots.
Notice that since all the snapshots of the variables 𝜉1,ℎ and 𝜉2,ℎ are 

divergence-free on the domain of definition, the reduced spaces con-
structed for those variables will already contain this information, so 
that it allows us not to store the snapshots of the variables 𝜆1,ℎ and 
𝜆2,ℎ, which are playing the role of the Lagrange multipliers relative to 
the divergence free-conditions, as they do not contain any important 
information.

The next step is to define the inner-product matrices 𝑋𝑢𝑖 , 𝑋𝑝𝑖 , 𝑋𝜉𝑖
for 𝑖 = 1, 2 and 𝑋𝑔 . These matrices have the block diagonal structure as 
follows:

𝑋𝑢1
= diag

(
𝑥𝑢1
,0𝑝1 ,0𝑢2 ,0𝑝2

)
,

𝑋𝑝1
= diag

(
0𝑢1 , 𝑥𝑝1 ,0𝑢2 ,0𝑝2

)
,

𝑋𝑢2
= diag

(
0𝑢1 ,0𝑝1 , 𝑥𝑢2 ,0𝑝2

)
,

𝑋𝑝2
= diag

(
0𝑢1 ,0𝑝1 ,0𝑢2 , 𝑥𝑝2

)
,

𝑋𝜉1
= diag

(
𝑥𝑢1
,0𝜉2
)
,

𝑋𝜉2
= diag

(
0𝜉1 , 𝑥𝑢2

)
,

𝑋𝑔 = 𝑥𝑔.

Above, we used the following notations: 0∗ ∈ ℝ ∗
ℎ
× ∗

ℎ is a zero 
square matrix of dimension 𝑁∗

ℎ
× ∗

ℎ
, where ∗∈

{
𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔

}
and

(𝑥𝑢𝑖 )𝑗𝑘 =
(
∇𝜙𝑢𝑖

𝑘
,∇𝜙𝑢𝑖

𝑗

)
Ω𝑖
, for 𝑗, 𝑘 = 1, ..., 𝑢𝑖

ℎ
, 𝑖 = 1,2,

(𝑥𝑝𝑖 )𝑗𝑘 =
(
𝜙
𝑝𝑖
𝑘
,𝜙

𝑝𝑖
𝑗

)
Ω𝑖
, for 𝑗, 𝑘 = 1, ..., 𝑝𝑖

ℎ
, 𝑖 = 1,2,

(𝑥𝑔)𝑗𝑘 =
(
𝜙
𝑔

𝑘
,𝜙

𝑔

𝑗

)
Γ0
, for 𝑗, 𝑘 = 1, ..., 𝑔

ℎ
.

We are now ready to introduce the correlation matrices 𝑢𝑖 , 𝑠𝑖 , 𝑝𝑖 , 𝜉𝑖 for 𝑖 = 1, 2 and 𝑔 , all of dimension 𝑀 ×𝑀 , as:

∗ ∶= 𝑇∗ 𝑋∗𝑆∗

for every ∗∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝜉1, 𝜉2, 𝑔} and

𝑠𝑖 ∶= 𝑇
𝑠𝑖
𝑋𝑢𝑖

𝑆𝑠𝑖
, 𝑖 = 1,2.

Once we have built the correlation matrices, we are able to carry 
out a POD compression on the sets of snapshots. This can be achieved 
by solving the following eigenvalue problems:

∗∗ =∗Λ∗ (22)
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where ∗∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝜉1, 𝜉2, 𝑔}, ∗ is the eigenvectors matrix and 
Λ∗ is the diagonal eigenvalues matrix with eigenvalues ordered by de-
creasing order of their magnitude. The 𝑘-th reduced basis function for 
the component ∗ is then obtained by applying the matrix ∗ to 𝑣∗

𝑘
– the 

𝑘-th column vector of the matrix ∗ :

Φ∗
𝑘
∶= 1√

𝜆∗
𝑘

∗𝑣
∗
𝑘
,

where 𝜆∗
𝑘

is the 𝑘-th eigenvalue from (22). Therefore, we are able to 
form the set of reduced basis as

𝑠 ∶=
⋃

∗∈{𝑢1 ,𝑠1 ,𝑝1 ,𝑢2 ,𝑠2 ,𝑝2}

{
Ψ∗
1 , ...,Ψ

∗
𝑁∗

}
,

𝑎 ∶=
⋃

∗∈{𝜉1 ,𝜉2}

{
Ψ∗
1 , ...,Ψ

∗
𝑁∗

}
,

𝑔 ∶=
{
Φ𝑔1 , ...,Φ

𝑔

𝑁𝑔

}
,

where the integer numbers 𝑁∗ indicate the number of the basis func-
tions used for each component and

Ψ𝑢1
𝑘

=

⎛⎜⎜⎜⎜⎝
Φ𝑢1
𝑘

0
0
0

⎞⎟⎟⎟⎟⎠
, Ψ𝑠1

𝑘
=

⎛⎜⎜⎜⎜⎝
Φ𝑠1
𝑘

0
0
0

⎞⎟⎟⎟⎟⎠
, Ψ𝑝1

𝑘
=

⎛⎜⎜⎜⎜⎝
0

Φ𝑝1
𝑘

0
0

⎞⎟⎟⎟⎟⎠
, Ψ𝑢2

𝑘
=

⎛⎜⎜⎜⎜⎝
0
0

Φ𝑢2
𝑘

0

⎞⎟⎟⎟⎟⎠
,

Ψ𝑠2
𝑘
=

⎛⎜⎜⎜⎜⎝
0
0

Φ𝑠2
𝑘

0

⎞⎟⎟⎟⎟⎠
, Ψ𝑝2

𝑘
=

⎛⎜⎜⎜⎜⎝
0
0
0

Φ𝑝2
𝑘

⎞⎟⎟⎟⎟⎠
, Ψ𝜉1

𝑘
=

(
Φ𝜉1
𝑘

0

)
, Ψ𝜉2

𝑘
=

(
0

Φ𝜉2
𝑘

)
.

We note that the first and the third blocks include both the 𝑢1, 𝑠1 and 
the 𝑢2, 𝑠2 basis functions - it is here that we use the pressure supremiser 
enrichment of the velocities spaces discussed at the beginning of this 
section. We provide the following renumbering of the functions for fur-
ther simplicity:

Φ𝑢𝑖
𝑁𝑢𝑖

+𝑘 ∶= Φ𝑠𝑖
𝑘
, Ψ𝑢𝑖

𝑁𝑢𝑖
+𝑘 ∶= Ψ𝑠𝑖

𝑘
, for 𝑘 = 1, ...,𝑁𝑠𝑖

, 𝑖 = 1,2,

and we redefine 𝑁𝑢𝑖
∶=𝑁𝑢𝑖

+𝑁𝑠𝑖
, 𝑖 = 1, 2.

Finally, we introduce three separate reduced basis spaces - for the 
state, the adjoint and the control variables, respectively:

𝑉 𝑠
𝑁
= span𝑠, dim𝑉 𝑠

𝑁
=𝑁𝑢1

+𝑁𝑝1
+𝑁𝑢2

+𝑁𝑝2
,

𝑉 𝑎
𝑁
= span𝑎, dim𝑉 𝑠

𝑁
=𝑁𝜉1

+𝑁𝜉2
,

𝑉
𝑔

𝑁
= span𝑔 , dim𝑉 𝑠

𝑁
=𝑁𝑔.

5.3. Online phase

Once we have introduced the reduced basis spaces we can define the 
reduced function expansions

𝑈𝑁 = (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) ∈ 𝑉 𝑠
𝑁
,Ξ𝑁 = (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉 𝑎

𝑁
, 𝑔𝑁 ∈ 𝑉 𝑔

𝑁

as

𝑢𝑖,0,𝑁 ∶=
𝑁𝑢𝑖∑
𝑘=1

𝑢
𝑖,0,𝑘Φ

𝑢𝑖
𝑘
, 𝑖 = 1,2, 𝜉𝑖,𝑁 ∶=

𝑁𝜉𝑖∑
𝑘=1

𝜉
𝑖,𝑘
Φ𝜉𝑖
𝑘
, 𝑖 = 1,2,

𝑝𝑖,𝑁 ∶=
𝑁𝑝𝑖∑
𝑘=1

𝑝
𝑖,𝑘
Φ𝑝𝑖
𝑘
, 𝑖 = 1,2, 𝑔𝑁 ∶=

𝑁𝑔∑
𝑘=1

𝑔
𝑘
Φ𝑔
𝑘
.

In the previous equations, the underscore indicates the coefficients 
of the basis expansion of the reduced solution. Then the online reduced 
problem reads as follows: minimise over 𝑔𝑁 ∈ 𝑉 𝑔

𝑁
the functional

𝛾,𝑁 (𝑢1,𝑁 , 𝑢2,𝑁 ;𝑔𝑁 ) ∶= 1
2 ∫
Γ

||𝑢1,𝑁 − 𝑢2,𝑁 ||2 𝑑Γ + 𝛾

2 ∫
Γ

||𝑔𝑁 ||2 𝑑Γ (23)
0 0
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Fig. 3. Physical domain for the backward-facing step problem.

where 𝑢1,𝑁 = 𝑢1,0,𝑁 + 𝑙1,𝑁 , 𝑢2,𝑁 = 𝑢2,0,𝑁 + 𝑙2,𝑁 for (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 ,
𝑝2,𝑁 ) ∈ 𝑉 𝑠

𝑁
satisfy the following reduced equations ∀𝑣𝑁 = (𝑣1,𝑁 , 𝑞1,𝑁 ,

𝑣2,𝑁 , 𝑞2,𝑁 ) ∈ 𝑉 𝑠
𝑁

:

𝑎𝑖(𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖(𝑢𝑖,0,𝑁 , 𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖(𝑢𝑖,0,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 )

+ 𝑐𝑖(𝑙𝑖,𝑁 , 𝑢𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑏𝑖(𝑣𝑖,𝑁 , 𝑝𝑖,𝑁 )

= (𝑓𝑖, 𝑣𝑖,𝑁 )Ω𝑖 + ((−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁 )Γ0 (24a)

−𝑎𝑖(𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ) − 𝑐𝑖(𝑙𝑖,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 )

𝑏𝑖(𝑢𝑖,0,𝑁 , 𝑞𝑖,𝑁 ) = −𝑏𝑖(𝑙𝑖,𝑁 , 𝑞𝑖,𝑁 ), (24b)

where 𝑙𝑖,𝑁 is the Galerkin projection of the lifting function 𝑙𝑖,ℎ to the 
finite dimensional vector space spanned by the 𝑖-th velocity basis func-
tions and 𝑖 = 1, 2.

Similarly to the offline phase, we notice that the structure of the 
equations (24) and the functional (23) are the same as the ones of the 
continuous case, so this enables us to provide the following expression 
of the gradient of the reduced functional (23):

𝑑𝛾,𝑁
𝑑𝑔𝑁

(𝑢1,𝑁 , 𝑢2,𝑁 ;𝑔𝑁 ) = 𝛾𝑔𝑁 + (𝜉1,𝑁 − 𝜉2,𝑁 )|Γ0 , (25)

where (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉 𝑎
𝑁

are the solutions to the reduced adjoint problem: 
find (𝜉1,𝑁 , 𝜉2,𝑁 ) ∈ 𝑉 𝑎

𝑁
such that it satisfies, for each pair of test functions 

(𝜂1,𝑁 , 𝜂2,𝑁 ) ∈ 𝑉 𝑎
𝑁

and 𝑖 = 1, 2,

𝑎𝑖(𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑐𝑖
(
𝜂𝑖,𝑁 , 𝑢𝑖,𝑁 , 𝜉𝑖,𝑁

)
+ 𝑐𝑖
(
𝑢𝑖,𝑁 , 𝜂𝑖,𝑁 , 𝜉𝑖,𝑁

)
= ((−1)𝑖+1𝜂𝑖,𝑁 , 𝑢1,𝑁 − 𝑢2,𝑁 )Γ0 .

(26)

Notice that the reduced adjoint equations no longer contain any terms 
corresponding to the bilinear forms 𝑏𝑖(⋅, ⋅), 𝑖 = 1, 2. Indeed, as was pre-
viously mentioned, all the functions belonging to the reduced space 
𝑉 𝑎
𝑁

are already divergence-free by construction, so the aforementioned 
terms are automatically satisfied.

We would also like to stress that from the numerical implementation 
point of view the reduced minimisation problem can be recast in the 
setting of the finite-dimensional space ℝ𝑝, where 𝑝 is the number of 
reduced basis function used for the control variable 𝑔𝑁 in the online 
phase, that is 𝑝 =𝑁𝑔 .

6. Numerical results

We now present some numerical results obtained by applying the 
two-domain decomposition optimisation algorithm to the backward–
facing step and the lid-driven cavity flow benchmarks.

All the numerical simulations for the offline phase were obtained 
using the software multiphenics [44], whereas the online phase simula-
tions were carried out using RBniCS [45].

6.1. Backward-facing step test case

We start with introducing the backward–facing step flow test case. 
Fig. 3 represents the physical domain of interest. The upper part of 
the channel has a length of 18 cm, the lower part 14 cm; the height 
of the left chamber is 3 cm, and the height of the right one is 5 cm. 
The splitting into two domains is performed by dissecting the domain 
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Fig. 4. Domain decomposition for the backward-facing step problem domain.

Table 1

Computational details of the offline stage.

Physical parameters 2 ∶ 𝜈, 𝑈̄
Range 𝜈 [0.5, 2]
Range 𝑈̄ [0.5, 6.5]
Resulting 𝑅𝑒 number [0.75, 40]

FE velocity order 2
FE pressure order 1
Total number of FE dofs 27,890
Number of FE dofs at the interface 130

Optimisation algorithm L-BFGS-B
𝐼𝑡𝑚𝑎𝑥 40
𝑇 𝑜𝑙𝑜𝑝𝑡 10−5

𝑀 900
𝑁𝑚𝑎𝑥 50

by a vertical segment at the distance 263 cm from the beginning of the 
channel as shown in Fig. 4.

We impose homogeneous Dirichlet boundary conditions on the top 
and the bottom walls of the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity, and 
homogeneous Neumann conditions on the outlet Γ𝑜𝑢𝑡, meaning that we 
assume free outflow on this portion of the boundary.

We impose a parabolic profile 𝑢𝑖𝑛 on the inlet boundary Γ𝑖𝑛, where

𝑢𝑖𝑛(𝑥, 𝑦) =
(
𝑤(𝑦)
0

)
(27)

with 𝑤(𝑦) = 𝑈̄ × 4
9 (𝑦 − 2)(5 − 𝑦), 𝑦 ∈ [2, 5]; values of 𝑈̄ are reported in 

Table 1. Two physical parameters are considered: the viscosity 𝜈 and 
the maximal magnitude 𝑈̄ of the inlet velocity profile 𝑢𝑖𝑛. Both param-
eters concur to the definition of the only physically relevant parameter, 
the Reynolds number 𝑅𝑒 = 𝐿 𝑈̄

𝜈
, where 𝐿 is the characteristic length. 

Hence, we indicate for all tests also the corresponding 𝑅𝑒. Details of 
the offline stage and the finite-element discretisation are summarised 
in Table 1. High-fidelity solutions are obtained by carrying out the min-
Fig. 5. Results of the offline stage: POD singular eigenvalue dec
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imisation in the space of dimension equal to the number of degrees 
of freedom at the interface, which is 130 in our test case. The best 
performance has been achieved by using the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS-B) optimisation algorithm, and two 
stopping criteria were applied: either the maximal number of iteration 
𝐼𝑡𝑚𝑎𝑥 is reached or the gradient norm of the target functional is less 
than the given tolerance 𝑇 𝑜𝑙𝑜𝑝𝑡.

Snapshots are sampled from a training set of 𝑀 parameters uni-
formly distributed in the 2-dimensional parameter space, and the first 
𝑁𝑚𝑎𝑥 POD modes have been retained. Fig. 5a shows the POD singular 
values for all the state, the adjoint and the control variables. As it can 
be seen, the POD singular values corresponding to the adjoint velocities 
𝜉1 and 𝜉2 feature a slower decay compared to the one for the other vari-
ables. In Fig. 5b, we can see the behaviour of the energy 𝐸𝑛 retained 
by the first 𝑁 modes for different components of the solution. Here, 
the retained energy for the component ∗∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝜉1, 𝜉2, 𝑔} is 
defined as

𝐸∗
𝑛
∶=
∑𝑛

𝑘=1 |𝜆∗𝑘|∑𝑁∗
𝑘=1 |𝜆∗𝑘| .

The retained energy gives us an idea on the number of modes we 
would need to choose to preserve all the necessary physical information 
in the reduced model. In particular, we can see that a higher number of 
modes is needed to correctly represent the adjoint variables 𝜉1 and 𝜉2.

Figs. 6–9 represent the first four POD modes for each of the vari-
ables 𝑢1, 𝑢2, 𝑠1, 𝑠2, 𝑝1, 𝑝2, 𝜉1 and 𝜉2. We stress that the POD modes were 
obtained separately for each component and the resulting figures are 
obtained by gluing the subdomain function just for the sake of visuali-
sation.

Fig. 6 shows the first modes for the fluid velocities 𝑢1 and 𝑢2: in 
particular, notice that the modes corresponding to 𝑢1 (on the left section 
of the domain) are zero at the inlet boundary due to the use of lifting 
function.

In Fig. 7, we can see the first four modes for 𝑠1 and 𝑠2: here, the 
corresponding functions are mostly localised inside the domains Ω1 and 
Ω2 thanks to the homogeneous conditions at the boundaries and the 
non-zero forcing term coming from the pressure.

Fig. 8 represents the first modes for the pressures 𝑝1 and 𝑝2: we 
point out the signs of the oscillation behaviour, which suggests that 
the supremiser enrichment might be needed to assure stability of the 
reduced–order solution. Finally, Fig. 9 shows the first four modes for 
the adjoint variables 𝜉1 and 𝜉2: note that they are concentrated only 
around the interface Γ0 because the only nonzero contribution in the 
ay (a) and retained energy (b) of the first 𝑁𝑚𝑎𝑥 POD modes.
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Fig. 6. The first POD modes for the velocities 𝑢1 and 𝑢2 (subdomain functions are glued together for visualisation purposes).

Fig. 7. The first POD modes for the pressure supremisers 𝑠1 and 𝑠2 (subdomain functions are glued together for visualisation purposes).

Fig. 8. The first POD modes for the pressures 𝑝1 and 𝑝2 (subdomain functions are glued together for visualisation purposes).

Fig. 9. The first POD modes for the adjoint velocities 𝜉 and 𝜉 (subdomain functions are glued together for visualisation purposes).
1 2
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Fig. 10. High–fidelity solution for the velocities 𝑢1 and 𝑢2. Values of the parameters 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3.

Fig. 11. High–fidelity solution for the pressures 𝑝1 and 𝑝2 . Values of the parameters 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3.

Fig. 12. High–fidelity solution for the velocities 𝑢1 and 𝑢2 . Values of the parameters 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Fig. 13. High–fidelity solution for the pressures 𝑝1 and 𝑝2 . Values of the parameters 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19.
adjoint equations is coming from the source terms, which are defined 
solely on the interface Γ0.

Figs. 10–13 represent the high–fidelity solutions for two different 
values of the parameters (𝑈̄ , 𝜈) = (1, 1), resulting in 𝑅𝑒 = 3, and (𝑈̄ , 𝜈) =
180
(4.5, 0.7) with 𝑅𝑒 ≈ 19. The solutions were obtained by carrying out 40 
optimisation iterations via L–BFGS–B algorithm. Figs. 10 and 12 show 
the intermediate solutions at iteration 0, 5, 10 and 40 for the fluid 
velocities 𝑢1 and 𝑢2, whereas Figs. 11 and 13 show the corresponding 
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Fig. 14. Reduced order solution for the velocities 𝑢1 and 𝑢2 . Values of the parameters 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3. Number of POD modes: 10 - for each state variable, 
each supremiser and the control, 30 – for both adjoint velocities.
Table 2

Functional values and the gradient norm for 
the FOM optimisation solution at the parame-
ter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3.

Iteration Functional Value Gradient norm

0 4.8 ⋅ 10−1 4.1 ⋅ 10−1

5 6.0 ⋅ 10−2 2.2 ⋅ 10−1

10 5.0 ⋅ 10−3 3.3 ⋅ 10−2

40 1.7 ⋅ 10−4 2.4 ⋅ 10−3

Table 3

Absolute and relative errors of the FOM optimisation solution with respect to 
the monolithic solution at the parameter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3.

Iteration Abs. error 𝑢ℎ Rel. error 𝑢ℎ Abs. error 𝑝ℎ Rel. error 𝑝ℎ

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0302 2.9935 0.0088 1.0000 10.6515 7.0679 0.5056 1.0000
5 0.1020 0.6279 0.0297 0.2098 2.4520 1.5317 0.1164 0.2167
10 0.0384 0.1355 0.0112 0.0453 0.5807 0.3793 0.0276 0.0537
40 0.0184 0.0583 0.0053 0.0195 0.2670 0.1827 0.0127 0.0259

Table 4

Functional values and the gradient norm for the 
FOM optimisation solution at parameter values 
𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Iteration Functional Value Gradient norm

0 7.902 2.213
5 1.956 1.210
10 0.403 2.132
40 0.007 0.069

Table 5

Absolute and relative errors of the FOM optimisation solution with respect to 
the monolithic solution at the parameter values 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Iteration Abs. error 𝑢ℎ Rel. error 𝑢ℎ Abs. error 𝑝ℎ Rel. error 𝑝ℎ

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.2520 11.9830 0.0181 1.0000 31.6121 21.1630 0.5859 1.0000
5 0.6639 5.0075 0.0478 0.4179 20.7060 10.2359 0.3838 0.4837
10 0.2704 1.3722 0.0195 0.1145 6.7317 2.8262 0.1248 0.1335
40 0.0865 0.2566 0.0062 0.0214 1.4498 0.6443 0.0269 0.0304

pressures 𝑝1 and 𝑝2. The final solution is taken to be the 40th iteration 
optimisation solution in which we can observe a continuity between 
subdomain solutions at the interface Γ0. Moreover, it can be noticed 
that the solution for parameters (𝑈̄ , 𝜈) = (1, 1) looks continuous already 
at iteration 10, which suggests that the convergence of the optimisation 
algorithm might depend on the Reynolds number.
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We present additional details in Tables 2–5. In particular, in Tables 2
and 4, we list the values for the functional 𝛾 and the 𝐿2(Γ0)-norm of 
the gradient 𝑑𝛾

𝑑𝑔
at the different iteration of the optimisation procedure, 

while Table 3 contains the absolute and relative errors with respect to 
the monolithic (entire–domain) solutions 𝑢ℎ, 𝑝ℎ, i.e.,

Abs. error 𝑢ℎ ∶= ||𝑢𝑖,ℎ − 𝑢ℎ||𝐿2(Ω𝑖) on domain Ω𝑖,

Rel. error 𝑢ℎ ∶=
||𝑢𝑖,ℎ − 𝑢ℎ||𝐿2(Ω𝑖)||𝑢ℎ||𝐿2(Ω𝑖)

on domain Ω𝑖,

Abs. error 𝑝ℎ ∶= ||𝑝𝑖,ℎ − 𝑝ℎ||𝐿2(Ω𝑖) on domain Ω𝑖,

Rel. error 𝑝ℎ ∶=
||𝑝𝑖,ℎ − 𝑝ℎ||𝐿2(Ω𝑖)||𝑝ℎ||𝐿2(Ω𝑖)

on domain Ω𝑖,

for 𝑖 = 1, 2.
Figs. 14–17 represent the reduced–order solutions for two different 

values of the parameters (𝑈̄ , 𝜈) = (1, 1) and 𝑅𝑒 = 3 and (𝑈̄ , 𝜈) = (4, 0.75)
and 𝑅𝑒 ≈ 19. In each of the cases, we choose the following number of the 
reduced basis functions: 𝑁𝑢1

=𝑁𝑠1
=𝑁𝑝1

=𝑁𝑢2
=𝑁𝑠2

=𝑁𝑝2
=𝑁𝑔 = 10

and 𝑁𝜉1
= 𝑁𝜉2

= 30. As was previously anticipated, we use a higher 
number for the adjoint variables 𝜉1 and 𝜉2 since they show much 
slower decay of the singular values (see Fig. 5a). The solutions were 
obtained by carrying out 10 optimisation iterations of L–BFGS–B algo-
rithm. Figs. 14 and 16 show the intermediate solutions at iteration 0, 5 
and 10 for the fluid velocities 𝑢1 and 𝑢2, whereas Figs. 15 and 17 show 
the corresponding pressures 𝑝1 and 𝑝2. The final solution, at the 10th it-
eration, shows continuity between subdomain solutions at the interface 
Γ0.

We present additional details in Tables 6–9. In particular, in Tables 6
and 8, we list the values for the functional 𝛾 and the 𝐿2(Γ0)-norm of 
the gradient 𝑑𝛾

𝑑𝑔
at the different iteration of the optimisation procedure, 

while Table 7 and Table 9 contain the absolute and relative errors with 
respect to the monolithic (entire–domain) solutions 𝑢ℎ, 𝑝ℎ, i.e.

Abs. error 𝑢𝑁 ∶= ||𝑢𝑖,𝑁 − 𝑢ℎ||𝐿2(Ω𝑖) on domain Ω𝑖,

Rel. error 𝑢𝑁 ∶=
||𝑢𝑖,𝑁 − 𝑢ℎ||𝐿2(Ω𝑖)||𝑢ℎ||𝐿2(Ω𝑖)

on domain Ω𝑖,

Abs. error 𝑝𝑁 ∶= ||𝑝𝑖,𝑁 − 𝑝ℎ||𝐿2(Ω𝑖) on domain Ω𝑖,

Rel. error 𝑝𝑁 ∶=
||𝑝𝑖,𝑁 − 𝑝ℎ||𝐿2(Ω𝑖)||𝑝ℎ||𝐿2(Ω𝑖)

on domain Ω𝑖,

for 𝑖 = 1, 2.
Analysing the results, we are able to see that the reduced basis 

method gives us a solution as accurate as the high–fidelity one. The 
reduced–order approximation of the optimisation problem at hand al-
lowed us to reduce the dimension of the high-fidelity optimisation 
functional by more than 10 times and enabled us to use 4 times fewer it-
erations in the optimisation algorithm (each optimisation step requires 
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Fig. 15. Reduced order solution for the pressures 𝑝1 and 𝑝2 . Values of the parameters 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3. Number of POD modes: 10 - for each state variable, 
each supremiser and the control, 39 – for both adjoint velocities.

Fig. 16. Reduced order solution for the velocities 𝑢1 and 𝑢2 . Values of the parameters 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19. Number of POD modes: 10 - for each state variable, 
each supremiser and the control, 39 – for both adjoint velocities.

Fig. 17. Reduced order solution for the pressures 𝑝1 and 𝑝2. Values of the parameters 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19. Number of POD modes: 10 - for each state variable, 
each supremiser and the control, 39 – for both adjoint velocities.
Table 6

Functional values and the gradient norm for the 
ROM optimisation solution at parameter values 
𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3.

Iteration Functional Value Gradient norm

0 4.8 ⋅ 10−1 0.391
5 5.4 ⋅ 10−3 0.047
10 3.6 ⋅ 10−4 0.015

at least one solve of the state and the adjoint equations). We also note 
that the fact that we chose a bigger number of the reduced basis func-
tions for the adjoint variables 𝜉1 and 𝜉2 is not supposed to affect the 
computational costs much since the adjoint problem is linear and does 
not require multiple Newton iteration to be solved so that the biggest 
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Table 7

Absolute and relative errors of the ROM optimisation solution with respect to 
the monolithic solution at the parameter values 𝑈̄ = 1, 𝜈 = 1 and 𝑅𝑒 = 3.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0284 2.9935 0.0083 1.0000 10.9522 7.0679 0.5198 1.0000
5 0.0746 0.1956 0.0217 0.0653 0.8548 0.5672 0.0406 0.0803
10 0.0135 0.0357 0.0039 0.0119 0.1714 0.1186 0.0081 0.0168

computational effort still lies in the nonlinear Navier–Stokes equations 
and the optimisation process.

Additionally, in Table 10 we provide a comparison between full–
order and reduced–order models in terms of the relative errors between 
ROM solutions with respect to the corresponding FOM solutions. Com-
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Table 8

Functional values and the gradient norm for the 
ROM optimisation solution at parameter values 
𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Iteration Functional Value Gradient norm

0 7.869 2.120
5 0.107 0.401
10 0.060 0.555

Table 9

Absolute and relative errors of the ROM optimisation solution with respect to 
the monolithic solution at the parameter values 𝑈̄ = 4, 𝜈 = 0.75 and 𝑅𝑒 ≈ 19.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.1782 11.9830 0.0128 1.0000 32.5149 21.1630 0.6026 1.0000
5 0.2826 0.8724 0.0204 0.0728 4.1633 1.9392 0.0772 0.0916
10 0.1910 0.3826 0.0138 0.0319 0.6725 0.7453 0.0125 0.0352

Table 10

Relative errors between FOM and ROM solutions (in terms of 
𝐻1–norm for the velocity fields and 𝐿2–norm for the pressure 
fields).

Parameter value Velocity relative error Pressure relative error

𝑈̄ 𝜈 Ω1 Ω2 Ω1 Ω2

1 1 0.024 0.032 0.005 0.012
4 0.75 0.019 0.059 0.021 0.046

paring the convergence results for different models – monolithic vs. 
DD–FOM, monolithic vs. DD–ROM, and DD–FOM vs. DD–ROM – it 
can be seen that the DD–ROM method gives a more accurate solution 
with respect to DD-FOM. We believe that this is due to the optimisa-
tion process: the DD-ROM is much less sensitive to the initial guess in 
the optimisation procedure and much fewer iterations are needed for 
the optimisation algorithm to converge. Nevertheless, errors between 
DD–FOM and DD–ROM are comparable to the ones with respect to the 
monolithic solution.

Remark (High Reynolds and uniqueness of the solution). As it is evident 
from Table 1, the Reynolds number reported for this test case is quite 
small. This is due to the fact that the optimisation solver diverges for 
higher Reynolds numbers. The authors suspect that this issue is mostly 
due to the bifurcation effect (known as the “Coanda effect” or “wall 
hugging effect” of these types of simulations). One of the reasons to sup-
port this argument is that the range of Reynolds numbers for which the 
optimisation solver converges changes (though not very significantly) 
when the interface is moved closer to the beginning or the end of the 
channel. This problem is very complicated in itself and is addressed, for 
instance, in [46–54]. In particular, in [51], it is shown that for a similar 
test already for 𝑅𝑒 ≈ 78 there is non–uniqueness of the solution.

6.2. Lid-driven cavity flow test case

In this section, we provide the numerical simulation for the lid-
driven cavity flow test case. Fig. 18a represents the physical domain 
of interest - the unit square. The split into two domains is performed by 
dissecting the domain by a median horizontal line as shown in Fig. 18b.

We impose homogeneous Dirichlet boundary conditions on the part 
of the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity and the nonzero horizontal 
constant velocity on the lid boundary Γ𝑙𝑖𝑑 : 𝑢𝑙𝑖𝑑 =

(
𝑈̄ ,0
)
; the values of 𝑈̄

are reported in Table 11.
Two physical parameters are considered: viscosity 𝜈 and the magni-

tude 𝑈̄ of the lid velocity profile 𝑢𝑖𝑛. Details of the offline stage and the 
finite-element discretisation are summarised in Table 11. High-fidelity 
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Fig. 18. Lid-driven cavity flow geometry.

Table 11

Computational details of the offline stage.

Physical parameters 2 ∶ 𝜈, 𝑈̄
Range 𝜈 [0.05, 2]
Range 𝑈̄ [0.5, 10]
Resulting 𝑅𝑒 number [0.25, 200]

FE velocity order 2
FE pressure order 1
Total number of FE dofs 14,867
Number of FE dofs at the interface 138

Optimisation algorithm L-BFGS-B
𝐼𝑡𝑚𝑎𝑥 100
𝑇 𝑜𝑙𝑜𝑝𝑡 10−6

𝑀 300
𝑁𝑚𝑎𝑥 100

solutions are obtained by carrying out the minimisation in the space of 
dimension equal to the number of degrees of freedom at the interface, 
which is 138 in our test case. The best performance has been achieved 
by using the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS-B) optimisation algorithm, and two stopping criteria are applied: 
either the maximal number of iteration 𝐼𝑡𝑚𝑎𝑥 is reached or the gradient 
norm of the target functional is less than the given tolerance 𝑇 𝑜𝑙𝑜𝑝𝑡.

Snapshots are sampled from a training set of 𝑀 parameters uni-
formly distributed in the 2-dimensional parameter space, and the first 
𝑁𝑚𝑎𝑥 POD modes have been retained. Fig. 19a shows POD singular val-
ues for all the state, the adjoint and the control variables. As it can be 
seen, the POD singular values corresponding to the adjoint velocities 𝜉1
and 𝜉2 feature a slower decay compared to the one for the other vari-
ables. In Fig. 19b, we can see the behaviour of the energy 𝐸𝑛 retained 
by the first 𝑁 modes for different components of the solution. Note that, 
as it was in the previous numerical case, a higher number of modes is 
needed to correctly represent the adjoint variables 𝜉1 and 𝜉2.

Figs. 20–23 represent first three POD modes for the variables 
𝑢1, 𝑢2, 𝑠1, 𝑠2, 𝑝1, 𝑝2 and 𝜉1, 𝜉2. We stress that the POD modes were ob-
tained separately for each component and the resulting figures are 
obtained by gluing the subdomain functions just for the sake of visu-
alisation.

Fig. 20 shows the first modes for the fluid velocities 𝑢1 and 𝑢2. In 
particular, we notice that the modes corresponding to 𝑢2 (on the up-
per section of the domain) are zero at the lid boundary due to the use 
of lifting function. Fig. 23 shows the first three modes for the adjoint 
variables 𝜉1 and 𝜉2: note that they are concentrated only around the 
interface Γ0 because the only nonzero contribution in the adjoint equa-
tions is coming from the source terms, which are defined solely on the 
interface Γ0.

Figs. 24 and 25 represent the high–fidelity solutions for two different 
values of the parameters (𝑈̄ , 𝜈) = (5, 0.05), with 𝑅𝑒 = 100, and (𝑈̄ , 𝜈) =
(1, 0.1), with 𝑅𝑒 = 10. The solutions were obtained by carrying out 25 
optimisation iterations via L–BFGS–B algorithm. Figs. 24 and 25 show 
the intermediate solutions at iteration 0, 5 and 25 for the fluid velocities 
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Fig. 19. Results of the offline stage: POD singular eigenvalue decay (a) and retained energy (b) of the first 𝑁𝑚𝑎𝑥 POD modes.

Fig. 20. The first POD modes for the velocities 𝑢1 and 𝑢2 (subdomain functions are glued together for visualisation purposes).

Fig. 21. The first POD modes for the supremiser variables 𝑠1 and 𝑠2 (subdomain functions are glued together for visualisation purposes).

Fig. 22. The first POD modes for the pressures 𝑝1 and 𝑝2 (subdomain functions are glued together for visualisation purposes).
184
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Fig. 23. The first POD modes for the adjoint velocities 𝜉1 and 𝜉2 (subdomain functions are glued together for visualisation purposes).

Fig. 24. High–fidelity solution for the velocities 𝑢1 and 𝑢2 . Values of the parameters 𝑈̄ = 5 and 𝜈 = 0.05.

Fig. 25. High–fidelity FOM solution for the velocities 𝑢1 and 𝑢2 . Values of the parameters 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10.
Table 12

Functional values and the gradient norm for the 
FOM optimisation solution at parameter values 
𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100.

Iteration Functional Value Gradient norm

0 4.4 ⋅ 10−1 3.398
5 3.0 ⋅ 10−2 1.001
10 3.5 ⋅ 10−3 0.171
25 8.7 ⋅ 10−5 0.016

𝑢1 and 𝑢2. The final solution is taken to be the 25-iteration optimisation 
solution as we can observe a continuity between subdomain solutions 
at the interface Γ0. We present additional details in Tables 12–15. In 
particular, in Tables 12 and 14, we list the values for the functional 
𝛾 and the 𝐿2(Γ0)-norm of the gradient 𝑑𝛾

𝑑𝑔
at the different iteration 

of the optimisation procedure, while Table 13 and Table 15 contain 
the absolute and relative errors with respect to the monolithic (entire–
domain) solutions 𝑢ℎ, 𝑝ℎ.

Figs. 26–27 represent the reduced–order solutions for two different 
values of the parameters (𝑈̄ , 𝜈) = (5, 0.05) and (𝑈̄ , 𝜈) = (1, 0.1). For both 
cases, we choose the following number of the reduced basis functions: 
𝑁𝑢 =𝑁𝑠 =𝑁𝑝 =𝑁𝑢 =𝑁𝑠 =𝑁𝑝 =𝑁𝑔 = 10, whereas for the adjoint 
1 1 1 2 2 2
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Table 13

Relative errors of the FOM optimisation solution with respect to the monolithic 
solution at the parameter value 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.3411 0.1949 1.0000 0.1653 0.2689 0.3149 1.0000 0.2330
5 0.0623 0.0613 0.1826 0.0520 0.0531 0.0575 0.3633 0.0426
10 0.0114 0.0136 0.0334 0.0116 0.0184 0.0206 0.1256 0.0153
25 0.0051 0.0062 0.0151 0.0053 0.0143 0.0147 0.0980 0.0109

Table 14

Functional values and the gradient norm for 
the FOM optimisation solution at the parame-
ter values 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10.

Iteration Functional Value Gradient norm

0 2.5 ⋅ 10−2 4.1 ⋅ 10−1

5 7.4 ⋅ 10−5 1.4 ⋅ 10−2

10 3.3 ⋅ 10−6 9.1 ⋅ 10−4

25 7.0 ⋅ 10−7 3.9 ⋅ 10−4

velocities we choose 𝑁𝜉 =𝑁𝜉 = 15. As it was mentioned before we use 

1 2
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Fig. 26. Reduced-order solution for the velocities 𝑢1 and 𝑢2. Values of the parameters 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100. Number of POD modes: 10 - for each state 
variable, each supremiser and the control, 15 – for both adjoint velocities.

Fig. 27. Reduced-order solution for the velocities 𝑢1 and 𝑢2 . Values of the parameters 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10. Number of POD modes: 10 - for each state 
variable, each supremiser and the control, 15 – for both adjoint velocities.
Table 15

Relative errors of the optimisation FOM solution with respect to the monolithic 
solution at the parameter value 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0668 0.0589 1.0000 0.2416 0.0349 0.0411 1.0000 0.0956
5 0.0032 0.0028 0.0483 0.0114 0.0036 0.0036 0.1100 0.0084
10 0.0006 0.0006 0.0095 0.0027 0.0024 0.0023 0.0733 0.0054
25 0.0005 0.0005 0.0069 0.0019 0.0021 0.0021 0.0663 0.0048

Table 16

Functional values and the gradient norm for the 
ROM optimisation solution at parameter values 
𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100.

Iteration Functional Value Gradient norm

0 4.8 ⋅ 10−1 3.153
3 2.4 ⋅ 10−2 1.634
10 7.2 ⋅ 10−5 0.023

a higher number for the adjoint variables 𝜉1 and 𝜉2 since they show 
much slower decay of the singular values (see Fig. 19a). Fig. 26 shows 
the intermediate solutions at iteration 0, 3 and 15 for the fluid velocities 
𝑢1 and 𝑢2 corresponding to the parameter value (𝑈̄ , 𝜈) = (5, 0.05), and 
Fig. 27 shows the velocities 𝑢1 and 𝑢2 for the parameter value (𝑈̄ , 𝜈) =
(1, 0.1). The final solutions are taken to be the 10-iteration optimisation 
solution.

We present additional details in Tables 16–19. In particular, in Ta-
bles 16 and 18 we list the values for the functional 𝛾 and the 𝐿2(Γ0)-
norm of the gradient 𝑑𝛾

𝑑𝑔
at the different iteration of the optimisation 

procedure, while Table 17 and Table 19 contain the 𝐿2-relative errors 
with respect to the monolithic (the entire–domain) solutions 𝑢ℎ, 𝑝ℎ.

Analyzing the results, we are able to see that the reduced basis 
method gives us a solution as accurate as the high–fidelity model. 
186
Table 17

Relative errors of the ROM optimisation solution with respect to the monolithic 
solution at the parameter values 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.3411 0.1796 1.0000 0.1523 0.2431 0.2519 1.0000 0.1864
3 0.0512 0.0552 0.1501 0.0468 0.0531 0.0646 0.3634 0.0478
10 0.0050 0.0056 0.0147 0.0047 0.0139 0.0139 0.0956 0.0103

Table 18

Functional values and the gradient norm for 
the ROM optimisation solution at the parame-
ter values 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10.

Iteration Functional Value Gradient norm

0 2.6 ⋅ 10−2 2.6 ⋅ 10−1

3 1.5 ⋅ 10−5 1.0 ⋅ 10−2

10 7.1 ⋅ 10−7 1.2 ⋅ 10−3

Table 19

Absolute and relative errors of the ROM optimisation solution with respect to 
the monolithic solution at the parameter values 𝑈̄ = 1, 𝜈 = 0.1 and with 𝑅𝑒 = 10.

Iteration Abs. error 𝑢𝑁 Rel. error 𝑢𝑁 Abs. error 𝑝𝑁 Rel. error 𝑝𝑁

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

0 0.0668 0.0591 1.0000 0.2424 0.0349 0.0403 1.0000 0.0936
3 0.0010 0.0019 0.0155 0.0076 0.0024 0.0020 0.0752 0.0047
10 0.0004 0.0004 0.0066 0.0017 0.0020 0.0019 0.0621 0.0045

The reduced–order approximation of the optimisation problem at hand 
allowed us to reduce the dimension of the high-fidelity optimisation 
functional by more than 10-20 times and enabled us to use half optimi-
sation algorithm iterations (each optimisation step requires at least one 
solve of the state and the adjoint equations).
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Fig. 28. Reduced–order solution for the velocity 𝑢1 . Values of the parameters 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100.

Fig. 29. Reduced–order solution for the velocity 𝑢2 . Values of the parameters 𝑈̄ = 5, 𝜈 = 0.05 and with 𝑅𝑒 = 100.
Table 20

Relative errors between FOM and ROM solutions (in terms of 
𝐻1–norm for the velocity fields and 𝐿2–norm for the pressure 
fields).

Parameter value Velocity relative error Pressure relative error

𝑈̄ 𝜈 Ω1 Ω2 Ω1 Ω2

1 0.1 0.020 0.003 0.014 0.0007
5 0.05 0.040 0.005 0.013 0.002

In order to provide more visually representable results (the scale 
of the solution on the subdomains Ω1 and Ω2 has a few orders of the 
difference in the magnitude), we provide the graphs of the velocities 
𝑢1 and 𝑢2 separately in Figs. 28 and 29. Additionally, in Table 20 we 
provide a comparison between full–order and reduced–order models in 
terms of the relative errors between ROM solutions with respect to the 
corresponding FOM solutions. The considerations drawn in the previous 
section are valid also for this test case.

Remark. In both numerical cases presented above, it might seem that 
due to the fact that the non–homogeneous Dirichlet boundary condition 
is present only on the boundary of one of the subdomains only a few 
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corrections are needed on this subdomain. On the other hand, this is 
true only for the velocity field, as it can be seen in the tables listing 
the errors (for instance in Table 3). Indeed, the errors for the pressure 
on those subdomains are higher than on the other one. Regarding the 
cavity flow, our original idea was to split the domain vertically, but in 
that case, the convergence even at full–order level was much slower, 
hence, we opted for the horizontal split.

Remark (High Reynolds simulations). Also for this test case, the range of 
Reynolds number for which the DD solver converges is stricter than the 
one where the monolithic solver provides a solution. The reason is that 
the optimisation algorithms are very sensitive to the initial guess, and 
the authors suspect that some further stabilisation techniques should be 
used.

7. Conclusions

In this work, we proposed a reduced–order model for the optimisa-
tion–based domain decomposition formulation of the parameter-
dependent stationary incompressible Navier–Stokes equations.

The original problem cast into the optimisation–based domain–
decomposition framework leads to the optimal control problem aimed 
at minimising the coupling error at the interface; the problem, then, 
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has been tackled using an iterative gradient–based optimisation algo-
rithm, which allowed us to obtain a complete separation of the solvers 
on different subdomains.

On the reduced–order level, we have managed to build a model for 
which the generation of the reduced basis spaces is carried out sep-
arately in each subdomain and for each component of the problem 
solution. Furthermore, as the numerical results show, the reduction of 
the optimal–control problem can be observed not only in the dimen-
sions of the different components of the problem, i.e., of the functional, 
the state and the adjoint equations but also in the number of the itera-
tions of the optimisation algorithm.

As it has been mentioned in the paper, the aforementioned tech-
niques could be promising in the context of more complex time–
dependent problems and, more importantly, multi–physics problems, 
where either pre-existing solvers can be used on each subcomponent or 
we do not have direct access to the codes. In particular, in future, we are 
planning to extend the methodology presented in this paper to problems 
with several sub-domains, to nonstationary fluid–dynamics problems 
and, eventually, to Fluid–Structure interaction problems. Moreover, this 
approach can be applied also to more complicated problems, where dif-
ferent types of numerical models are used in different subdomains.
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[53] A. Quaini, R. Glowinski, S. Čanić, Symmetry breaking and preliminary results about 
a Hopf bifurcation for incompressible viscous flow in an expansion channel, Int. J. 
Comput. Fluid Dyn. 30 (1) (2016) 7–19.

[54] T. Panitz, D. Wasan, Flow attachment to solid surfaces: the Coanda effect, AIChE J. 
18 (1) (1972) 51–57.
189

https://doi.org/10.1137/S0036142998332864
https://doi.org/10.1137/S0036142998332864
https://doi.org/10.1137/S0036142998332864
https://doi.org/10.1016/S0898-1221(00)00152-8
https://doi.org/10.1016/j.cma.2013.10.006
https://doi.org/10.1137/140958220
https://doi.org/10.1137/140958220
https://doi.org/10.1137/140958220
https://doi.org/10.1016/j.cma.2004.12.005
https://doi.org/10.1137/090749694
https://doi.org/10.1137/090749694
https://doi.org/10.1137/090749694
https://doi.org/10.3390/fluids6060229
https://doi.org/10.3390/fluids6060229
https://doi.org/10.1007/s10915-022-02049-6
https://doi.org/10.48550/ARXIV.2206.04736
https://doi.org/10.1016/S0898-1221(99)00127-3
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib1086C8F8B82ED405F8433C2E9CA4E710s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib1086C8F8B82ED405F8433C2E9CA4E710s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib1086C8F8B82ED405F8433C2E9CA4E710s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib4C4B56A7D1D5D85C5EB3BD0C4169FFA8s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib4C4B56A7D1D5D85C5EB3BD0C4169FFA8s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib4C4B56A7D1D5D85C5EB3BD0C4169FFA8s1
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718720
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718720
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE3BAD5B403848046F656CC45141B7CDAs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE3BAD5B403848046F656CC45141B7CDAs1
http://mathlab.sissa.it/multiphenics
http://mathlab.sissa.it/multiphenics
http://mathlab.sissa.it/rbnics
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibF43B2D1BA5DE0112E8DDF9F1E496C487s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibF43B2D1BA5DE0112E8DDF9F1E496C487s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib2A12F2F65187F591EB0D25445C3532E3s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib2A12F2F65187F591EB0D25445C3532E3s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib5BDA866FD18E2F7D358C00F895BC50FAs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib5BDA866FD18E2F7D358C00F895BC50FAs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibF432356412ACA0E9217C805704049047s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibF432356412ACA0E9217C805704049047s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibF432356412ACA0E9217C805704049047s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib90BA16284A67887D959AA8539971F70Es1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bib90BA16284A67887D959AA8539971F70Es1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE4F4F1B82F761C96957211B1EB8ADF5Fs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE4F4F1B82F761C96957211B1EB8ADF5Fs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE4F4F1B82F761C96957211B1EB8ADF5Fs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE4F4F1B82F761C96957211B1EB8ADF5Fs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibDFD8AF13DCE7226E4D8DDF1270D01120s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibDFD8AF13DCE7226E4D8DDF1270D01120s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibDFD8AF13DCE7226E4D8DDF1270D01120s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE3FB7EF65716FEE933F6CC66251565E0s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE3FB7EF65716FEE933F6CC66251565E0s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibE3FB7EF65716FEE933F6CC66251565E0s1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibB11ABCDA58738E5B2FBE25D421403CEFs1
http://refhub.elsevier.com/S0898-1221(23)00424-8/bibB11ABCDA58738E5B2FBE25D421403CEFs1

	An optimisation--based domain--decomposition reduced order model for the incompressible Navier-Stokes equations
	1 Introduction
	2 Problem formulation
	2.1 Monolithic formulation
	2.2 Domain decomposition (DD) formulation
	2.3 Variational formulation of the PDE constraints
	2.4 Optimality system
	2.5 Sensitivity derivatives

	3 Gradient--based algorithm for PDE--constraint optimisation problem
	4 Finite element discretisation
	5 Reduced-order model
	5.1 Lifting function and velocity supremiser enrichment
	5.2 Reduced basis generation
	5.3 Online phase

	6 Numerical results
	6.1 Backward-facing step test case
	6.2 Lid-driven cavity flow test case

	7 Conclusions
	Funding
	CRediT authorship contribution statement
	Data availability
	References


