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Abstract

In this work, we address parametric non–stationary fluid dynamics problems within
a model order reduction setting based on domain decomposition. Starting from the
domain decomposition approach, we derive an optimal control problem, for which
we present the convergence analysis. The snapshots for the high–fidelity model are
obtained with the Finite Element discretisation, and the model order reduction is
then proposed both in terms of time and physical parameters, with a standard POD–
Galerkin projection. We test the proposed methodology on two fluid dynamics
benchmarks: the non–stationary backward–facing step and lid–driven cavity flow.
Finally, also in view of future works, we compare the intrusive POD–Galerkin
approach with a non–intrusive approach based on Neural Networks.
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1. Introduction

With the increase in the potential of high–performance computing in the last
years, there is an immense necessity for numerical methods and approximation
techniques that can perform real–time simulations of Partial Differential Equation
(PDEs). The applications vary from naval, aeronautical and biomedical engi-
neering, to name a few. There exist many techniques in order to achieve such a
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goal, among which reduced–order modelling [1] and domain–decomposition (DD)
methods [2].

The DD methodology is a very efficient tool in the framework of PDEs. Any
DD algorithm is constructed by an effective splitting of the domain of interest
into different subdomains (overlapping or not), and the original problem is then
restricted to each of these subdomains with some coupling conditions on the
intersections of the subdomains. The coupling conditions may be very different,
they depend on the physical meaning of the problem at hand, and they must render
a certain degree of continuity among these subdomains (see, for example, [3, 2]).
These methods are extremely important for multi–physics problems when efficient
subcomponent numerical codes are already available, or when we do not have
direct access to the numerical algorithms for some parts of the systems; see, for
instance, [4, 5, 6, 7, 8, 9].

Model–order reduction methods are another set of methods mentioned be-
fore, which are extremely useful when dealing with real–time simulations or
multi–query tasks. These methods are successfully employed in the settings
of non–stationary and/or parameter–dependent PDEs. Reduced–order models
(ROMs) are extremely effective thanks to the splitting of the computational effort
into two stages: the offline stage, which contains the most expensive part of the
computations, and the online stage, which allows performing fast computational
queries using structures that are pre–computed in the offline stage; for more de-
tails, we refer to [1]. ROMs have been successfully applied in different fields
such as fluid dynamics [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], struc-
tural mechanics [22, 23, 24, 25, 26, 27] and fluid–structure interaction problems
[28, 22, 29, 30]. Lately, there have also been great advances in reduced–order
modelling for optimal–control problems, [31, 32, 33].

This paper is a direct extension of the work that has been carried out in
the case of the stationary parameter–dependent fluid dynamics problems [34].
Here we exploit both aforementioned techniques, namely domain–decomposition
methods using an optimisation approach to ensure the coupling of the interface
conditions between subdomains, as it is presented, for example, in [35, 36], and
we build a ROM on top of that using both intrusive [1, 17] and non–intrusive
[37, 38, 39, 40, 41] approaches.

This work is structured as follows. In Section 2, we introduce the monolithic
fluid dynamics problem and its time–discretisation scheme with the further deriva-
tion of the optimisation–based domain–decomposition formulation at each time
step in both strong and weak forms. In Section 3, we derive a priori estimates for
the solutions to Navier–Stokes equations which are then used to prove the existence
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and uniqueness of the minimiser to the optimal–control problem derived in the
previous section. Furthermore, in Section 4 we derive the optimality condition for
the resulting optimal control problem and the expression for the gradient of the
objective functional with the following listing of the gradient–based optimisation
algorithm. Section 5 contains the Finite Element discretisation of the problem of
interest and the corresponding finite–dimensional high–fidelity optimisation prob-
lem. Section 6 deals with two ROM techniques: an intrusive Galerkin projection
and a neural network (NN) algorithm, both based on a Proper Orthogonal De-
composition (POD) methodology. In Section 7, we show some numerical results
for two toy problems: the backward–facing step and the lid–driven cavity flows.
Conclusions will follow in Section 8.

2. Problem formulation

In this section, starting with a monolithic formulation of the time–dependent
incompressible Navier–Stokes equations, we first introduce a time discretisation
on the continuous level employing the implicit Euler time–stepping scheme. Then,
we will describe a two–domain optimisation-based domain–decomposition formu-
lation at each time step, and its variational formulation in the end. Here and in the
next few sections, the analysis is valid for any value of the physical parameter, so
for the sake of simplicity, we postpone mentioning the parameter dependence of
the problem until Section 6.

2.1. Monolithic formulation
Let Ω be a physical domain of interest: we assume Ω to be an open subset

of R2 and Γ to be the boundary of Ω. We also consider a finite time interval
[0, 𝑇] with 𝑇 > 0. Let 𝑓 : Ω × [0, 𝑇] → R2 be the forcing term, a the kinematic
viscosity, 𝑢𝐷 a given Dirichlet datum and 𝑢0 a given initial condition. The problem
reads as follows: find the velocity field 𝑢 : Ω × [0, 𝑇] → R2 and the pressure
𝑝 : Ω × [0, 𝑇] → R s.t.

𝜕𝑢

𝜕𝑡
− aΔ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 in Ω × (0, 𝑇], (1a)

−div𝑢 = 0 in Ω × (0, 𝑇], (1b)
𝑢 = 𝑢𝐷 on Γ𝐷 × [0, 𝑇], (1c)

a
𝜕𝑢

𝜕n
− 𝑝n = 0 on Γ𝑁 × [0, 𝑇], (1d)

𝑢(𝑡 = 0) = 𝑢0 in Ω, (1e)
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Figure 1: Domain and boundaries

where Γ𝐷 and Γ𝑁 are disjoint subsets of Γ (as it is shown in Figure 1a) and n is an
outward unit normal vector to Γ𝑁 .

2.2. Time discretisation
We will start with time discretisation of problem (1). Let Δ𝑡 > 0, we assume

the following time interval partition: 0 = 𝑡0 < 𝑡1 < .... < 𝑡𝑀 = 𝑇 , where 𝑡𝑛 = 𝑛Δ𝑡
for 𝑛 = 0, ..., 𝑀 . We employ the implicit Euler scheme for the incompressible
Navier–Stokes equation which reads as follows: for 𝑛 ≥ 1 find 𝑢𝑛 : Ω → R2,
𝑝𝑛 : Ω → R s.t.

𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
− aΔ𝑢𝑛 + (𝑢𝑛 · ∇) 𝑢𝑛 + ∇𝑝𝑛 = 𝑓 𝑛 in Ω, (2a)

−div𝑢𝑛 = 0 in Ω, (2b)
𝑢𝑛 = 𝑢𝑛𝐷 on Γ𝐷 , (2c)

a
𝜕𝑢𝑛

𝜕n
− 𝑝𝑛n = 0 on Γ𝑁 , (2d)

and for 𝑛 = 0
𝑢0 = 𝑢0 in Ω. (2e)

Here we adopted the following notations: 𝑓 𝑛 (·) = 𝑓 (·, 𝑡𝑛) and 𝑢𝑛
𝐷
(·) = 𝑢𝐷 (·, 𝑡𝑛).

2.3. Domain Decomposition (DD) formulation
Let Ω𝑖, 𝑖 = 1, 2, be open subsets of Ω, such that Ω = Ω1 ∪Ω2, Ω1 ∩ Ω2 = ∅.

Denote Γ𝑖 := 𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2, and Γ0 := Ω1 ∩ Ω2. In the same way, we define
the corresponding boundary subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2, see Figure 1b.
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The DD formulation reads as follows: for 𝑛 ≥ 1 and 𝑖 = 1, 2, given 𝑓𝑖 : Ω𝑖 ×
[0, 𝑇] → R2 and 𝑢𝑖,𝐷 : Γ𝑖,𝐷 × [0, 𝑇] → R2, find 𝑢𝑛

𝑖
: Ω𝑖 → R2 and 𝑝𝑛

𝑖
: Ω𝑖 → R

s.t.

𝑢𝑛
𝑖
− 𝑢𝑛−1

𝑖

Δ𝑡
− aΔ𝑢𝑛𝑖 +

(
𝑢𝑛𝑖 · ∇

)
𝑢𝑛𝑖 + ∇𝑝𝑛𝑖 = 𝑓 𝑛𝑖 in Ω𝑖, (3a)

−div𝑢𝑛𝑖 = 0 in Ω𝑖, (3b)
𝑢𝑛𝑖 = 𝑢

𝑛
𝑖,𝐷 on Γ𝑖,𝐷 , (3c)

a
𝜕𝑢𝑛

𝑖

𝜕n
− 𝑝𝑛𝑖 n = 0 on Γ𝑖,𝑁 , (3d)

a
𝜕𝑢𝑛

𝑖

𝜕n𝑖
− 𝑝𝑛𝑖 n𝑖 = (−1)𝑖+1𝑔 on Γ0, (3e)

for some 𝑔 : Γ0 → R2, where by n𝑖 we denote an outward unit normal vector with
respect to the domain Ω𝑖 and

𝑢0
𝑖 = 𝑢0 in Ω𝑖, (3f)

for 𝑛 = 0.
For a given 𝑔, the solution to problem (3) might not be the same as the

solution to problem (2), that is 𝑢𝑛1 ≠ 𝑢𝑛 |Ω1 , 𝑝𝑛1 ≠ 𝑝𝑛 |Ω1 , 𝑢𝑛2 ≠ 𝑢𝑛 |Ω2 and 𝑝𝑛2 ≠

𝑝𝑛 |Ω2 . On the other hand, there exists a choice for 𝑔, 𝑔 =

(
a
𝜕𝑢𝑛1
𝜕n1

− 𝑝𝑛1n1

)
|Γ0 =

−
(
a
𝜕𝑢𝑛2
𝜕n2

− 𝑝𝑛2n2

)
|Γ0 , such that the solution to (3) coincides with the solution to (2)

on the corresponding subdomains. Therefore, we must find such a 𝑔, so that 𝑢𝑛1
is as close as possible to 𝑢𝑛2 at the interface Γ0. One way to accomplish this is to
minimise the functional

J (𝑢𝑛1, 𝑢
𝑛
2) :=

1
2

∫
Γ0

��𝑢𝑛1 − 𝑢𝑛2��2 𝑑Γ. (4)

Instead of (4), we can also consider the penalised or regularised functional

J𝛾 (𝑢𝑛1, 𝑢
𝑛
2; 𝑔) :=

1
2

∫
Γ0

��𝑢𝑛1 − 𝑢𝑛2��2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔 |2 𝑑Γ, (5)

where 𝛾 is a constant that can be chosen to change the relative importance of
the terms in (5). Thus, we face an optimisation problem under PDE constraints:
minimise the functional (4) (or (5)) over a suitable function 𝑔, subject to (3).
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2.4. Variational Formulation of the PDE constraints
For 𝑖 = 1, 2 define the following spaces:

• 𝑉𝑖 :=
{
𝑢 ∈ 𝐻1(Ω𝑖;R2)

}
,

• 𝑉𝑖,0 :=
{
𝑢 ∈ 𝐻1(Ω𝑖;R2) : 𝑢 |Γ𝑖,𝐷 = 0

}
,

• 𝑄𝑖 :=
{
𝑝 ∈ 𝐿2(Ω𝑖;R)

}
.

The spaces𝑉𝑖 are endowed with the 𝐻1(Ω𝑖)–norm for 𝑖 = 1, 2, the spaces𝑉𝑖,0 with
the 𝐻1

0 (Ω𝑖)–norm and the spaces 𝑄𝑖 with the 𝐿2(Ω𝑖)–norm for 𝑖 = 1, 2.
Then, we define the following bilinear and trilinear forms: for i=1,2

• 𝑚𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑚𝑖 (𝑢𝑖, 𝑣𝑖) := (𝑢𝑖, 𝑣𝑖)Ω𝑖
,

• 𝑎𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑎𝑖 (𝑢𝑖, 𝑣𝑖) := a(∇𝑢𝑖,∇𝑣𝑖)Ω𝑖
,

• 𝑏𝑖 : 𝑉𝑖 ×𝑄𝑖 → R, 𝑏𝑖 (𝑣𝑖, 𝑞𝑖) := −(div𝑣𝑖, 𝑞𝑖)Ω𝑖
,

• 𝑐𝑖 : 𝑉𝑖 ×𝑉𝑖 ×𝑉𝑖,0 → R, 𝑐𝑖 (𝑢𝑖, 𝑤𝑖, 𝑣𝑖) := ((𝑢𝑖 · ∇)𝑤𝑖, 𝑣𝑖)Ω𝑖
,

where (·, ·)𝜔 indicates the 𝐿2(𝜔) inner product.
Consequently, the variational counterpart of (3) reads as follows: for 𝑛 ≥ 1

and 𝑖 = 1, 2, find 𝑢𝑖 ∈ 𝑉𝑖 and 𝑝𝑖 ∈ 𝑄𝑖 s.t.

1
Δ𝑡
𝑚𝑖

(
𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖 , 𝑣𝑖

)
+𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖, 𝑝𝑛𝑖 )

= ( 𝑓 𝑛𝑖 , 𝑣𝑖)Ω𝑖
+
(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,
(6a)

𝑏𝑖 (𝑢𝑛𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖, (6b)
𝑢𝑛𝑖 = 𝑢

𝑛
𝑖,𝐷 on Γ𝑖,𝐷 . (6c)

3. Analysis of the optimal control problem

In this section, we would like to give an overview of the existence of local
minima of the optimal–control problem described above. It will rely on the a
priori estimates for the solutions to the Navier–Stokes equations. Due to the
presence of the Neumann boundary condition, the analysis of the state problem is
not possible, so we will modify the problem in the framework where the problem
is well posed and give some indication about the original problem later in the
section.
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3.1. A modified Navier–Stokes problem
First, without loss of generality, we assume that the Dirichlet data 𝑢𝑖,𝐷 is homo-

geneous. Otherwise, we can use various techniques, e.g., lifting functions as will
be discussed later on, to obtain a problem with homogeneous Dirichlet boundary
conditions on Γ𝑖,𝐷 . As mentioned in the preface to this section, it is hard to prove the
well–posedness of the solution to the Navier–Stokes equation in the form (6). The
main problem arises from the nonlinear term 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) =

(
(𝑢𝑛
𝑖
· ∇)𝑢𝑛

𝑖
, 𝑣𝑖

)
Ω𝑛
𝑖

.
Indeed, by integration by parts and the incompressibility conditions (6b), we can
see

𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) =

∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑢𝑛𝑖 · 𝑣𝑖𝑑Ω =

∫
𝜕Ω𝑖

(𝑢𝑛𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n)𝑑Γ

−
∫
Ω𝑖

(𝑢𝑛𝑖 · 𝑣𝑖) div 𝑢𝑛𝑖 𝑑Ω −
∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑣𝑖 · 𝑢𝑛𝑖 𝑑Ω

=

∫
𝜕Ω𝑖

(𝑢𝑛𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n)𝑑Γ −
∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑣𝑖 · 𝑢𝑛𝑖 𝑑Ω

=

∫
Γ𝑖,𝑁∪Γ0

(𝑢𝑛𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n)𝑑Γ − 𝑐𝑖 (𝑢𝑛𝑖 , 𝑣𝑖, 𝑢𝑛𝑖 ),

which leads to the following expression

𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) =
1
2

∫
Γ𝑖,𝑁∪Γ0

|𝑢𝑛𝑖 |2(𝑢𝑛𝑖 · n)𝑑Γ. (7)

As we can see, the problem here is due to the fact that this boundary term has an
unknown sign, which complicates further analysis. On the other hand, it gives us
an idea of how to redefine the problem at hand in order to obtain well–posedness
(see, e.g. [42]). We rewrite the Neumann–type outlet conditions and the coupling
stress conditions between subdomains in the following way:

a
𝜕𝑢𝑛

𝑖

𝜕n
− 𝑝𝑛𝑖 n − 1

2
(𝑢𝑛𝑖 · n)𝑢𝑛𝑖 = 0 on Γ𝑖,𝑁 , (8)

a
𝜕𝑢𝑛

𝑖

𝜕n𝑖
− 𝑝𝑛𝑖 n𝑖 −

1
2
(𝑢𝑛𝑖 · n𝑖)𝑢𝑛𝑖 = (−1)𝑖+1𝑔 on Γ0. (9)

This, in turn, leads to a new variational formulation of the state equations (3):
for 𝑛 ≥ 1 and 𝑖 = 1, 2, find 𝑢𝑛

𝑖
∈ 𝑉𝑖,0 and 𝑝𝑛

𝑖
∈ 𝑄𝑖 s.t.
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1
Δ𝑡
𝑚𝑖

(
𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖 , 𝑣𝑖

)
+𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖, 𝑝𝑛𝑖 )

= ( 𝑓 𝑛𝑖 , 𝑣𝑖)Ω𝑖
+
(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,
(10a)

𝑏𝑖 (𝑢𝑛𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖, (10b)

where the trilinear form 𝑐(·, ·, ·) is defined as

𝑐𝑖 (𝑢𝑖, 𝑤𝑖, 𝑣𝑖) =
1
2
((𝑢𝑖 · ∇)𝑤𝑖, 𝑣𝑖)Ω𝑖

− 1
2
((𝑢𝑖 · ∇)𝑣𝑖, 𝑤𝑖)Ω𝑖

(11)

and it has the following remarkable property

𝑐𝑖 (𝑢𝑖, 𝑣𝑖, 𝑣𝑖) = 0 ∀𝑢𝑖, 𝑣𝑖 ∈ 𝑉𝑖,0. (12)

3.2. A priori estimates
We now first introduce the various well–known properties of the different terms

entering the weak formulation (10), i.e.

• the forms 𝑚𝑖 (·.·), 𝑎𝑖 (·, ·) and 𝑐𝑖 (·, ·, ·) are continuous: there exist positive
constants 𝐶𝑚, 𝐶𝑎 and 𝐶𝑐 such that

|𝑚𝑖 (𝑢𝑖, 𝑣𝑖) | ≤ 𝐶𝑚 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖, 𝑣𝑖 ∈ 𝑉𝑖,0, (13)
|𝑎𝑖 (𝑢𝑖, 𝑣𝑖) | ≤ 𝐶𝑎 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖, 𝑣𝑖 ∈ 𝑉𝑖,0, (14)
|𝑐𝑖 (𝑢𝑖, 𝑤𝑖, 𝑣𝑖) | ≤ 𝐶𝑐 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑤𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖, 𝑤𝑖, 𝑣𝑖 ∈ 𝑉𝑖,0, (15)

• the bilinear form 𝑎𝑖 (·, ·) is coercive: there exists a positive constant 𝛼 > 0
such that

𝑎𝑖 (𝑣𝑖, 𝑣𝑖) ≥ 𝛼 | |𝑣𝑖 | |2𝑉𝑖,0 ∀𝑣𝑖 ∈ 𝑉𝑖,0, (16)

• the bilinear form 𝑏𝑖 (·, ·) satisfies inf–sup condition: there exists a positive
constant 𝛽 > 0 such that

sup
𝑣𝑖∈𝑉𝑖,0\{0}

𝑏𝑖 (𝑣𝑖, 𝑞𝑖)
| |𝑣𝑖 | |𝑉𝑖,0

≥ 𝛽 | |𝑞𝑖 | |𝑄𝑖
∀𝑞𝑖 ∈ 𝑄𝑖, (17)
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• the bilinear form 𝑚𝑖 (·, ·) is non–negative definite, i.e.

𝑚𝑖 (𝑣𝑖, 𝑣𝑖) = | |𝑣𝑖 | |2𝐿2 (Ω𝑖) ≥ 0 ∀𝑣𝑖 ∈ 𝑉𝑖,0. (18)

By using the properties (13) (16), (12), (18), the trace theorem and equations
(10), we are able to write the following estimate for the solution 𝑢𝑛

𝑖
and 𝑝𝑛

𝑖

to (10)

| |𝑢𝑛𝑖 | |2𝑉𝑖,0 ≤ 1
𝛼
𝑎𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) ≤

1
𝛼
𝑎𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) +

1
𝛼Δ𝑡

𝑚𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 )

=
1
𝛼

(
1
Δ𝑡
𝑚𝑖 (𝑢𝑛−1

𝑖 , 𝑢𝑛𝑖 ) − 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) − 𝑏𝑖 (𝑢𝑛𝑖 , 𝑝𝑛𝑖 )

+ ( 𝑓 𝑛𝑖 , 𝑢𝑛𝑖 )Ω𝑖
+ (−1)𝑖+1(𝑔, 𝑢𝑛𝑖 )Γ0

)
≤ 1

𝛼

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1

𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖) + ||𝑔 | |𝐿2 (Γ0)

)
| |𝑢𝑛𝑖 | |𝑉𝑖,0 ,

which leads to the following estimate:

| |𝑢𝑛𝑖 | |𝑉𝑖,0 ≤ 1
𝛼

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1

𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖) + ||𝑔 | |𝐿2 (Γ0)

)
. (19)

Similarly, by using (17), (13), (14), (15) and equations (10), we obtain

| |𝑝𝑛𝑖 | |𝑄𝑖
≤ 1

𝛽
sup

𝑣𝑖∈𝑉𝑖,0\{0}

𝑏𝑖 (𝑣𝑖, 𝑝𝑛𝑖 )
| |𝑣𝑖 | |𝑉𝑖,0

≤ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

1
Δ𝑡
|𝑚𝑖 (𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖
, 𝑣𝑖) |

| |𝑣𝑖 | |𝑉𝑖,0

+ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

|𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) | + |𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) | + |( 𝑓 𝑛
𝑖
, 𝑣𝑖)Ω𝑖

|
| |𝑣𝑖 | |𝑉𝑖,0

+ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

| (𝑔, 𝑣𝑖)Γ0 |
| |𝑣𝑖 | |𝑉𝑖,0

≤ 1
𝛽

(
𝐶𝑚

Δ𝑡
+ 𝐶𝑎 + 𝐶𝑐 | |𝑢𝑛𝑖 | |𝑉𝑖,0

)
| |𝑢𝑛𝑖 | |𝑉𝑖,0

+ 1
𝛽

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1

𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖) + ||𝑔 | |𝐿2 (Γ0)

)
,

which together with the estimate (19) leads to

| |𝑝𝑛𝑖 | |𝑄𝑖
≤ 1

𝛽

[(
1 + 1

𝛼

(
𝐶𝑚

Δ𝑡
+ 𝐶𝑎

)) (
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1

𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖) (20)

+ ||𝑔 | |𝐿2 (Γ0)

)
+ 𝐶𝑐
𝛼2

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1

𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖) + ||𝑔 | |𝐿2 (Γ0)

)2
]
.
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3.3. Existence of optimal solutions
In this subsection, we prove the existence of optimal solutions for the regu-

larised functional (5). The proof follows the methodology presented by Gunzburger
et al. [43]. Firstly, we define the admissibility set as follows:

U𝑎𝑑 =
{
(𝑢𝑛1, 𝑝

𝑛
1, 𝑢

𝑛
2, 𝑝

𝑛
2, 𝑔) ∈ 𝑉1,0 ×𝑄1 ×𝑉2,0 ×𝑄2 × 𝐿2(Γ0) such that

equations (10) are satisfied and J𝛾 (𝑢𝑛1, 𝑢
𝑛
2; 𝑔) < ∞

}
.

The admissibility set is clearly non–empty, since, as it was pointed out above,
the restrictions to subdomains of the monolithic solution and its corresponding
flux on the interface belong to the set.

Let
{(
𝑢
𝑛,( 𝑗)
1 , 𝑝

𝑛,( 𝑗)
1 , 𝑢

𝑛,( 𝑗)
2 , 𝑝

𝑛,( 𝑗)
2 , 𝑔( 𝑗)

)}
be a minimizing sequence in U𝑎𝑑 , i.e.,

lim
𝑗→∞

J𝛾
(
𝑢
𝑛,( 𝑗)
1 , 𝑢

𝑛,( 𝑗)
2 , 𝑔( 𝑗)

)
= inf

(𝑢𝑛1 ,𝑝
𝑛
1 ,𝑢

𝑛
2 ,𝑝

𝑛
2 ,𝑔)∈U𝑎𝑑

J𝛾 (𝑢𝑛1, 𝑢
𝑛
2, 𝑔).

From the definition of the admissible set U𝑎𝑑 and the functional J𝛾, it is ev-
ident that the set

{
𝑔( 𝑗)

}
is uniformly bounded in 𝐿2(Γ0), which in turn, due

to the a priori estimates (19) and (20), implies that the sets
{(
𝑢
𝑛,( 𝑗)
𝑖

)}
are uni-

formly bounded in 𝑉𝑖,0 and the sets
{(
𝑝
𝑛,( 𝑗)
𝑖

)}
are uniformly bounded in 𝑄𝑖 for

𝑖 = 1, 2. Thus there exists a point
(
�̂�𝑛1, 𝑝

𝑛
1, �̂�

𝑛
2, 𝑝

𝑛
2, �̂�

)
∈ U𝑎𝑑 and a subsequence{(

𝑢
𝑛,( 𝑗𝑘)
1 , 𝑝

𝑛,( 𝑗𝑘)
1 , 𝑢

𝑛,( 𝑗𝑘)
2 , 𝑝

𝑛,( 𝑗𝑘)
2 , 𝑔( 𝑗𝑘)

)}
of the minimising sequence such that for

𝑖 = 1, 2

𝑢
𝑛,( 𝑗𝑘)
𝑖

⇀ �̂�𝑛𝑖 in 𝑉𝑖,0, (21)

𝑝
𝑛,( 𝑗𝑘)
𝑖

⇀ 𝑝𝑛𝑖 in 𝑄𝑖, (22)
𝑔( 𝑗𝑘) ⇀ �̂� in 𝐿2(Γ0), (23)

𝑢
𝑛,( 𝑗𝑘)
𝑖

→ �̂�𝑛𝑖 in 𝐿2(Ω𝑖), (24)

𝑢
𝑛,( 𝑗𝑘)
𝑖

|Γ0 → �̂�𝑛𝑖 |Γ0 in 𝐿2(Γ0). (25)

The last two results are obtained by the trace theorem and compact embedding
results in Sobolev spaces, see for example [44, 45].
Since the forms 𝑚𝑖 (·, ·), 𝑎𝑖 (·, ·) and 𝑏𝑖 (·, ·) are bilinear and continuous by (21),
(22) and (23) we obtain the following convergence results:
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𝑚𝑖 (𝑢𝑛,( 𝑗𝑘)𝑖
, 𝑣𝑖) → 𝑚𝑖 (�̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

𝑎𝑖 (𝑢𝑛,( 𝑗𝑘)𝑖
, 𝑣𝑖) → 𝑎𝑖 (�̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

𝑏𝑖 (𝑢𝑛,( 𝑗𝑘)𝑖
, 𝑞𝑖) → 𝑏𝑖 (�̂�𝑛𝑖 , 𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑖,

𝑏𝑖 (𝑣𝑖, 𝑝𝑛,( 𝑗𝑘)𝑖
) → 𝑏𝑖 (𝑣𝑖, 𝑝𝑛𝑖 ) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

(𝑔( 𝑗𝑘) , 𝑣𝑖)Γ0 → (�̂�, 𝑣𝑖)Γ0 ∀𝑣𝑖 ∈ 𝑉𝑖,0.

Concerning the trilinear form 𝑐𝑖 (·, ·, ·), we exploit integration by part twice,
divergence–free conditions for 𝑢𝑛,( 𝑗𝑘)

𝑖
and �̂�𝑛

𝑖
, and the strong convergence results

(24)–(25). We obtain ∀𝑣𝑖 ∈ 𝑉𝑖,0

lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛,( 𝑗𝑘)
𝑖

· ∇)𝑣𝑖 · 𝑢𝑛,( 𝑗𝑘)𝑖
𝑑Ω =

1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)𝑣 · �̂�𝑛𝑖 𝑑Ω,

lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛,( 𝑗𝑘)
𝑖

· ∇)𝑢𝑛,( 𝑗𝑘)
𝑖

· 𝑣𝑖𝑑Ω = lim
𝑘→∞

1
2

∫
Γ0

(
𝑢
𝑛,( 𝑗𝑘)
𝑖

· 𝑣𝑖
) (
𝑢
𝑛,( 𝑗𝑘)
𝑖

· n𝑖
)
𝑑Γ

− lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛,( 𝑗𝑘)
𝑖

· ∇)𝑣𝑖 · 𝑢𝑛,( 𝑗𝑘)𝑖
𝑑Ω =

1
2

∫
Γ0

(
�̂�𝑛𝑖 · 𝑣𝑖

) (
�̂�𝑛𝑖 · n𝑖

)
𝑑Γ

−1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)𝑣𝑖 · �̂�
𝑛,
𝑖
𝑑Ω =

1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)�̂�𝑛𝑖 · 𝑣𝑖𝑑Ω,

which leads to

lim
𝑘→∞

𝑐𝑖 (𝑢𝑛,( 𝑗𝑘)𝑖
, 𝑢
𝑛,( 𝑗𝑘)
𝑖

, 𝑣𝑖) = 𝑐𝑖 (�̂�𝑛𝑖 , �̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0.

These convergence results mean that the functions �̂�𝑛1, 𝑝
𝑛
1, �̂�

𝑛
2, 𝑝

𝑛
2, �̂� satisfy the state

equations (10). We also note that the functional J𝛾 is lower–semicontinuous, i.e

lim inf
𝑗→∞

J𝛾 (𝑢𝑛,( 𝑗𝑘)1 , 𝑢
𝑛,( 𝑗𝑘)
2 , 𝑔( 𝑗𝑘)) ≥ J𝛾 (�̂�𝑛1, �̂�

𝑛
2, �̂�),

which implies that

inf
(𝑢𝑛1 ,𝑝

𝑛
1 ,𝑢

𝑛
2 ,𝑝

𝑛
2 ,𝑔)∈U𝑎𝑑

J𝛾 (𝑢𝑛1, 𝑢
𝑛
2, 𝑔) = J𝛾 (�̂�𝑛1, �̂�

𝑛
2, �̂�).

Hence, we have proved the existence of optimal solutions.
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3.4. Convergence with vanishing penalty parameter
In the previous section, we have proved the existence of optimal solutions of the

regularised function J𝛾 for any 𝛾 > 0, where the parameter 𝛾 indicates the relative
importance of the two terms entering the definition of the functional. This poses
an issue in our domain–decomposition setting since the optimal solution does not
satisfy the coupling condition 𝑢𝑛1 |Γ0 = 𝑢

𝑛
2 |Γ0 . In this section, we prove the existence

of an optimal solution to the unregularised functional J with corresponds to the
functional J𝛾 with 𝛾 = 0.

Let (𝑢𝑛,𝑚𝑜𝑛, 𝑝𝑛,𝑚𝑜𝑛) be a weak solution to the monolithic equations (2), and for
each 𝛾 > 0 we denote by (𝑢𝑛,𝛾1 , 𝑝

𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾) an optimum of J𝛾 under the
constraints (10). We define the following functions for 𝑖 = 1, 2:

𝑢
𝑛,𝑚𝑜𝑛
𝑖

:= 𝑢𝑛,𝑚𝑜𝑛 |Ω𝑖
,

𝑝
𝑛,𝑚𝑜𝑛
𝑖

:= 𝑝𝑛,𝑚𝑜𝑛 |Ω𝑖
,

𝑔𝑚𝑜𝑛 := a
𝜕𝑢

𝑛,𝑚𝑜𝑛

1
𝜕n1

− 𝑝𝑛,𝑚𝑜𝑛1 n1 −
1
2
(𝑢𝑛,𝑚𝑜𝑛1 · n1)𝑢𝑛,𝑚𝑜𝑛1 on Γ0.

Due to optimality of the point (𝑢𝑛,𝛾1 , 𝑝
𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾), we obtain that ∀𝛾 > 0

J𝛾 (𝑢𝑛,𝛾1 , 𝑝
𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾) ≤ J𝛾 (𝑢𝑛,𝑚𝑜𝑛1 , 𝑝
𝑛,𝑚𝑜𝑛

1 , 𝑢
𝑛,𝑚𝑜𝑛

2 , 𝑝
𝑛,𝑚𝑜𝑛

2 , 𝑔𝑚𝑜𝑛),

which due to the definition of 𝑢𝑛,𝑚𝑜𝑛1 and 𝑢𝑛,𝑚𝑜𝑛2 gives us the following bound:

1
2

∫
Γ0

��𝑢𝑛,𝛾1 − 𝑢𝑛,𝛾2

��2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔𝛾 |2 𝑑Γ ≤ 𝛾

2

∫
Γ0

|𝑔𝑚𝑜𝑛 |2 𝑑Γ ∀𝛾 > 0.

The last inequality tells as that the sequence {𝑔𝛾 : 𝛾 > 0} is bounded in
𝐿2(Γ0). Following the exact same lines of arguments as in the previous sec-
tion, we are able to deduce that there is a subsequence of the original sequence
(we will keep the same notation for the sake of simplicity) that converges to
(𝑢𝑛,∗1 , 𝑝

𝑛,∗
1 , 𝑢

𝑛,∗
2 , 𝑝

𝑛,∗
2 , 𝑔∗) ∈ 𝑉1,0 × 𝑄1 × 𝑉2,0 × 𝑄2 × 𝐿2(Γ0) in the sense of (21) –

(25). In addition to this, the inequality above tells us that | |𝑢𝑛,𝛾1 − 𝑢𝑛,𝛾2 | |𝐿2 (Γ0) → 0
as 𝛾 → 0, which in turn yields 𝑢1,∗

1 = 𝑢
1,∗
2 a.e. on Γ0. The non–negativity of J

leads to the fact that (𝑢𝑛,∗1 , 𝑝
𝑛,∗
1 , 𝑢

𝑛,∗
2 , 𝑝

𝑛,∗
2 , 𝑔∗) is a global minimum of J . Also, it

is easy to see that the following functions 𝑢𝑛,∗ ∈ 𝐻1
0,Γ𝐷 (Ω), 𝑝

𝑛,∗ ∈ 𝐿2(Ω), defined
as

𝑢𝑛,∗ :=

{
𝑢
𝑛,∗
1 , in Ω1 ∪ Γ0,

𝑢
𝑛,∗
2 , in Ω2 ∪ Γ0,

𝑝𝑛,∗ :=

{
𝑝
𝑛,∗
1 , in Ω1 ∪ Γ0,

𝑝
𝑛,∗
2 , in Ω2 ∪ Γ0,

satisfy the monolithic equations (2) in the weak sense.
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Remark (Uniqueness of optimal solutions). It is well–known that the solution to the
non–stationary incompressible Navier–Stokes equation in 2D is unique [46], and
it can be proved that uniqueness transfers to the implicit–Euler time–discretisation
scheme with a good choice of a time–step parameter (see, for instance, [47]). This,
together with the convexity of the objective functional, leads to the uniqueness of
the optimal solution discussed above.
Remark (Weak formulation with “non–symmetric” trilinear form). As we pointed
out the condition (12) was essential in order to conduct the analysis of the optimal–
control problem. Concerning the problem posed in the weak from (6), the nu-
merical experiments show the same convergence results as in the case where the
trilinear form (11) is adopted.

4. Optimality system and optimisation algorithms

In this section, we will provide the tools to tackle the optimal–control problem
that arises in Section 2.3. First, we will derive the optimality system by means of
Lagrangian functional. Then, we will use the sensitivity derivatives technique to
obtain the representation for the gradient of the objective functional, which will
allow us to define an optimisation–based minimisation algorithm for the optimal–
control problem in hand.

4.1. Optimality system
One of the ways to address the constrained optimisation problem is to refor-

mulate the initial problem in terms of a Lagrangian functional by introducing
the so–called adjoint variables. In this way, the optimal solution to the original
problem is sought among the stationary points of the Lagrangian, see, for instance,
[48, 49].

We define the Lagrangian functional as follows:

L(𝑢𝑛1, 𝑝
𝑛
1, 𝑢

𝑛
2, 𝑝

𝑛
2, b1, b2, _1, _2; 𝑔) := J𝛾 (𝑢𝑛1, 𝑢

𝑛
2; 𝑔)

−
2∑︁
𝑖=1

[
𝑚𝑖 (𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖
, b𝑖)

Δ𝑡
+ 𝑎𝑖 (𝑢𝑛𝑖 , b𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , b𝑖) + 𝑏𝑖 (b𝑖, 𝑝𝑛𝑖 ) + 𝑏𝑖 (𝑢𝑛𝑖 , _𝑖)

]
+

2∑︁
𝑖=1

( 𝑓 𝑛𝑖 , b𝑖)Ω𝑖
+

2∑︁
𝑖=1

((−1)𝑖+1𝑔, b𝑖)Γ0 .

(26)
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The Lagrangian functional above takes into account our objective functional (5)
and the PDE constraints (6) multiplied by additional so–called adjoint variables
b1, b2, _1, _2 ∈ 𝑉1,0 ×𝑄1 × 𝑉2,0 ×𝑄2. It is proved (see, e.g. [49]) that the optimal
solution to the constrained optimisation problem (5)–(6) coincides with stationary
points of the higher–dimensional functional (26) that, in turn, gives us an easy way
to obtain the optimality conditions.

Notice that, technically, we should also have included Lagrange multipliers
corresponding to the non–homogeneous Dirichlet boundary conditions (6c) in the
definition of the functional L. However, since the functional J𝛾 (5) does not
explicitly depend on 𝑢𝑛1,𝐷 and 𝑢𝑛2,𝐷 , the corresponding adjoint Dirichlet boundary
conditions will be homogeneous on these parts of the boundaries.

We now apply the necessary conditions for finding stationary points of L.
Setting to zero the first variations w.r.t. b𝑖 ∈ 𝑉𝑖,0 and _𝑖 ∈ 𝑄𝑖, for 𝑖 = 1, 2, yields
the state equations (6a)–(6b). Setting to zero the first variations w.r.t. 𝑢𝑛1, 𝑝𝑛1, 𝑢𝑛2
and 𝑝𝑛2 yields the adjoint equations:

1
Δ𝑡
𝑚𝑖 ([𝑖, b𝑖) + 𝑎𝑖 ([𝑖, b𝑖) + 𝑐𝑖

(
[𝑖, 𝑢

𝑛
𝑖 , b𝑖

)
+ 𝑐𝑖

(
𝑢𝑛𝑖 , [𝑖, b𝑖

)
+ 𝑏𝑖 ([𝑖, _𝑖) = ((−1)𝑖+1[𝑖, 𝑢

𝑛
1 − 𝑢

𝑛
2)Γ0 ,

∀[𝑖 ∈ 𝑉𝑖,0, (27a)

𝑏𝑖 (b𝑖, `𝑖) = 0, ∀`𝑖 ∈ 𝑄𝑖 . (27b)

Finally, setting to zero the first variations w.r.t. 𝑔 ∈ 𝐿2(Γ0) yields the optimality
condition:

𝛾(ℎ, 𝑔)Γ0 + (ℎ, b1 − b2)Γ0 = 0, ∀ℎ ∈ 𝐿2(Γ0). (28)

4.2. Sensitivity derivatives
In order to obtain the expression for the gradient of the optimisation problem

at hand, we will resort to the sensitivity approach, see for instance [48, 49].
The approach consists of finding equations for directional derivatives of the state
variables with respect to the control, called sensitivities.
The first derivative 𝑑J𝛾

𝑑𝑔
of J𝛾 is defined through its action on the variation �̃� as

follows: 〈
𝑑J𝛾
𝑑𝑔

, �̃�

〉
= (𝑢𝑛1 − 𝑢

𝑛
2, �̃�1 − �̃�2)Γ0 + 𝛾(𝑔, �̃�)Γ0 , (29)

where �̃�1 ∈ 𝑉1,0, �̃�2 ∈ 𝑉2,0 are the solutions to:
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1
Δ𝑡
𝑚𝑖 (�̃�𝑖, 𝑣𝑖) + 𝑎𝑖 (�̃�𝑖, 𝑣𝑖) + 𝑐𝑖 (�̃�𝑖, 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , �̃�𝑖, 𝑣𝑖)

+ 𝑏𝑖 (𝑣𝑖, 𝑝𝑖) = ((−1)𝑖+1�̃�, 𝑣𝑖)Γ0 ,

∀𝑣𝑖 ∈ 𝑉𝑖,0, (30a)

𝑏𝑖 (�̃�𝑖, 𝑞𝑖) = 0, ∀𝑞𝑖 ∈ 𝑄𝑖 . (30b)

We can make use of the adjoint equations (27) in order to find the representation
of the gradient of the functional J𝛾. Let b1 and b2 be the solutions to (27) and
�̃�1 and �̃�2 be the solutions to (30). By setting [𝑖 = �̃�𝑖 in (27a), `𝑖 = 𝑝𝑖 in (27b),
𝑣𝑖 = b𝑖 in (30a) and 𝑞𝑖 = _𝑖 in (30b) we obtain:

(𝑢𝑛1 − 𝑢
𝑛
2, �̃�1 − �̃�2)Γ0 = (�̃�, b1 − b2)Γ0 ,

so that it yields the explicit formula for the gradient of J𝛾:

𝑑J𝛾
𝑑𝑔

(𝑢𝑛1, 𝑢
𝑛
2; 𝑔) = 𝛾𝑔 + (b1 − b2) |Γ0 , (31)

where b1 and b2 are determined from 𝑔 through (27). Notice that the gradient
expression (31) is consistent with the optimality condition (28) derived in the
previous section.

4.3. Gradient–based algorithm for the optimisation problem
In view of being able to provide a closed–form formula for the gradient for the

objective functional J𝛾, the natural way to proceed is to resort to a gradient–based
iterative optimisation algorithm.
In order to keep the exposition simple, we will describe the idea using the steepest
descent method, while, in practice, we will use more sophisticated gradient–based
methods. For every time step 𝑡𝑛, given an initial guess 𝑔(0) , which we set from the
previous time step, we update successive values of 𝑔( 𝑗) with

𝑔( 𝑗+1) = 𝑔( 𝑗) − 𝛼
𝑑J𝛾
𝑑𝑔

(
𝑢
𝑛,( 𝑗)
1 , 𝑢

𝑛,( 𝑗)
2 ; 𝑔( 𝑗)

)
. (32)

Combining this with (31) we obtain:

𝑔( 𝑗+1) = 𝑔( 𝑗) − 𝛼
(
𝛾𝑔( 𝑗) + (b ( 𝑗)1 − b ( 𝑗)2 ) |Γ0

)
, (33)

where b ( 𝑗)1 and b ( 𝑗)2 are determined from (27) with 𝑔 replaced by 𝑔( 𝑗) .
To summarise, we have the following algorithm to find 𝑔𝑛 at every time step 𝑡𝑛:
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Algorithm 1.

1. Choose an initial guess 𝑔(0) := 𝑔𝑛−1 and a step size 𝛼 > 0.
2. For j=0,1,2,... until convergence criterion is met

(a) Determine 𝑢𝑛,( 𝑗)1 ∈ 𝑉1, 𝑢𝑛,( 𝑗)2 ∈ 𝑉2 by solving (6a)–(6b) with 𝑔 = 𝑔( 𝑗) .
(b) Determine b ( 𝑗)1 ∈ 𝑉1,0, b ( 𝑗)2 ∈ 𝑉2,0 by solving (27) with 𝑢𝑛1 = 𝑢

𝑛,( 𝑗)
1 ,

𝑢𝑛2 = 𝑢
𝑛,( 𝑗)
2 .

(c) Update 𝑔( 𝑗+1) := (1 − 𝛼𝛾) 𝑔( 𝑗) − 𝛼
(
b
( 𝑗)
1 − b ( 𝑗)2

)
|Γ0 .

3. Set 𝑔𝑛 := 𝑔( 𝑗) .

Some of the commonly used convergence criteria for Step 2 of the algorithm are:
the value of the functional or of the gradient norm is less than a certain given
tolerance and the maximum number of optimisation iterations. Most commonly, a
couple of them are used together. In practice, the methods we will use to solve such
problems are Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Newton Conjugate
Gradient (CG) algorithms, which show faster convergence and higher efficiency
with respect to the steepest–descent algorithm.

5. Finite Element Discretisation

In this section, we present the Finite Element spatial discretisation for the
optimal control problem previously introduced. We assume to have at hand two
well–defined triangulations T1 and T2 over the domainsΩ1 andΩ2 respectively, and
an extra lower–dimensional triangulation T0 of the interface Γ0. In theory, there is
no requirement for the meshes T1 and T2 to be conforming on the interface Γ0, but
in the numerical examples listed later in the paper, this limitation was imposed by
the software used by the authors. We can then define usual Lagrangian FE spaces
𝑉𝑖,ℎ ⊂ 𝑉𝑖, 𝑉𝑖,0,ℎ ⊂ 𝑉𝑖,0, 𝑄𝑖,ℎ ⊂ 𝑄𝑖, for 𝑖 = 1, 2, and 𝑋ℎ ⊂ 𝐿2(Γ0) endowed with
𝐿2(Γ0)–norm. Since the problems at hand have a saddle–point structure, in order
to guarantee the well–posedness of the discretised problem, we require the FE
spaces to satisfy the following inf–sup conditions: there exist 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∈ R+
s.t.

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖, 𝑖 = 1, 2, (34)

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,0,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,0,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖+2, 𝑖 = 1, 2. (35)
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A very common choice in this framework is to use the so–called Taylor–Hood finite
element spaces, namely the Lagrange polynomial approximation of the second–
order for velocity and of the first–order for pressure. We point out that the order of
the polynomial space 𝑋ℎ will not lead to big computational efforts as it is defined
on the 1–dimensional curve Γ0.

Using the Galerkin projection, we can derive the following discretised optimi-
sation problem. Minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

J𝛾,ℎ (𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) :=

1
2

∫
Γ0

���𝑢𝑛1,ℎ − 𝑢𝑛2,ℎ���2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔ℎ |2 𝑑Γ (36)

under the constraints that 𝑢𝑛
𝑖,ℎ

∈ 𝑉𝑖,ℎ, 𝑝𝑛𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfy the following variational
equations for 𝑖 = 1, 2

𝑚𝑖 (𝑢𝑛𝑖,ℎ − 𝑢
𝑛−1
𝑖,ℎ
, 𝑣𝑖,ℎ)

Δ𝑡
+ 𝑎𝑖 (𝑢𝑛𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖 (𝑢

𝑛
𝑖,ℎ, 𝑢

𝑛
𝑖,ℎ, 𝑣𝑖)

+𝑏𝑖 (𝑣𝑖,ℎ, 𝑝𝑛𝑖,ℎ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,ℎ)Ω𝑖
+
(
(−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ

)
Γ0
,

∀𝑣𝑖 ∈ 𝑉𝑖,0,ℎ, (37a)

𝑏𝑖 (𝑢𝑛𝑖,ℎ, 𝑞𝑖,ℎ) = 0, ∀𝑞𝑖,ℎ ∈ 𝑄𝑖,ℎ, (37b)
𝑢𝑛𝑖 = 𝑢

𝑛
𝑖,𝐷,ℎ, on Γ𝑖,𝐷 , (37c)

where 𝑢𝑛
𝑖,𝐷,ℎ

is the Galerkin projection of 𝑢𝑖,𝐷 onto the trace–space𝑉𝑖,ℎ |Γ𝑖,𝐷 . Notice
that the structure of the equations (37) and of the functional (36) is the same as the
one of the continuous case. This allows us to provide the following expression of
the gradient of the discretised functional (36):

𝑑J𝛾,ℎ
𝑑𝑔ℎ

(𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) = 𝛾𝑔ℎ + (b1,ℎ − b2,ℎ) |Γ0 , (38)

where b1,ℎ and b2,ℎ are the solutions to the discretised adjoint problem: for 𝑖 = 1, 2
find b𝑖,ℎ ∈ 𝑉𝑖,0,ℎ and _𝑖,ℎ ∈ 𝑄𝑖,ℎ that satisfy

𝑚𝑖 ([𝑖,ℎ, b𝑖,ℎ)
Δ𝑡

+ 𝑎𝑖 ([𝑖,ℎ, b𝑖,ℎ) + 𝑐𝑖 ([𝑖,ℎ, 𝑢𝑛𝑖,ℎ, b𝑖) + 𝑐𝑖 (𝑢
𝑛
𝑖,ℎ, [𝑖,ℎ, b𝑖,ℎ)

+ 𝑏𝑖 ([𝑖,ℎ, _𝑖,ℎ) = ((−1)𝑖+1[𝑖,ℎ, 𝑢
𝑛
1,ℎ − 𝑢

𝑛
2,ℎ)Γ0 ,

∀[𝑖,ℎ ∈ 𝑉𝑖,0,ℎ,

(39a)
𝑏𝑖 (b𝑖,ℎ, `𝑖,ℎ) = 0,∀`𝑖,ℎ ∈ 𝑄𝑖,ℎ. (39b)

In (38), the restriction ·|Γ0 is meant as an 𝐿2(Γ0)–projection onto space 𝑋ℎ. We
would also like to stress that at the algebraic level, the discretised minimisation
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problem acts only on the finite–dimensional space R𝑝 of the variable 𝑔ℎ, where 𝑝
is the number of Finite Element degrees of freedom that belong to the interface
Γ0.

6. Reduced–Order Model

As highlighted in Section 1, reduced–order methods are efficient tools for
significant reduction of the computational time for parameter–dependent PDEs.
This section deals with the ROM for the problem obtained in the previous section,
where the state equations, namely Navier–Stokes equations, are assumed to be
dependent on a set of physical parameters. First, we introduce two practical
ingredients we will be using in the course of the reduced–basis generation, namely
a lifting function and the velocity supremiser enrichment. Then, we describe the
offline phase based on the Proper Orthogonal Decomposition (POD) technique,
which is followed by two online phases based on a Galerkin projection onto the
reduced spaces and on a multilayer perceptron neural network.

6.1. Lifting Function and Velocity Supremiser Enrichment
In the following, we are going to discuss a snapshot compression technique for

the generation of reduced basis functions. In order to do so we need to introduce
two important ingredients in this context, namely the lifting function technique
and the supremiser enrichment of the velocity space.

The use of lifting functions is quite common in the reduced basis method
(RBM) framework; see, for example, [50, 1]. It is motivated by the fact that,
in the chosen model, we are supposed to tackle a non–homogeneous Dirichlet
boundary condition on the parts of the boundaries Γ𝑖,𝐷 , 𝑖 = 1, 2. From the
implementation point of view, this does not present any problem when dealing with
the high–fidelity model, since there are several well–known techniques for non–
homogeneous essential conditions, in particular at the algebraic level. However,
these boundary conditions create some problems when dealing with the reduced
basis methods. Indeed, we seek to generate a linear vector space that is obtained
by the compression of the set of snapshots, and this clearly cannot be achieved by
using snapshots that satisfy different Dirichlet conditions, as the resulting space
would not be linear. This problem is solved by introducing a lifting function
𝑙𝑛
𝑖,ℎ

∈ 𝑉𝑖,ℎ, for 𝑖 = 1, 2, during the offline stage, such that 𝑙𝑛
𝑖,ℎ

= 𝑢𝑛
𝑖,𝐷,ℎ

on Γ𝑖,𝐷 . We
define two new variables 𝑢𝑛

𝑖,0,ℎ := 𝑢𝑛
𝑖,ℎ

− 𝑙𝑛
𝑖,ℎ

∈ 𝑉𝑖,0,ℎ, for 𝑖 = 1, 2, which satisfy
the homogeneous condition 𝑢𝑛

𝑖,0,ℎ = 0 on Γ𝑖,𝐷 . So, they can be used to generate
the reduced basis linear space. We remark that the lifting function is needed only
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in the domain where the Dirichlet boundary is non–empty, i.e., where Γ𝑖,𝐷 ≠ ∅
for 𝑖 = 1, 2. It is important to point out that the choice of lifting functions is not
unique; in our work, we chose to use the solution of the incompressible Stokes
problem in one of the domains Ω, Ω1 or Ω2 (depending on the particular model we
are investigating) with the velocity equal to 𝑢𝐷 on the corresponding parts of the
boundaries and the homogeneous Neumann conditions analogous to the original
problem setting.

The other ingredient we will use in the following exposition is the so–called
velocity supremiser. We recall that each velocity snapshot, which is a solution to
the incompressible Navier–Stokes equation, is divergence–free. Hence, the term
𝑏𝑖 (·, ·) for 𝑖 = 1, 2 applied to any pair of functions in the span of the snapshots
will be zero. This does not allow us to fulfil the inf–sup condition of the type
(35). For this reason, there is a need of enriching the reduced velocity spaces
with extra functions, which are called supremisers, that will make the pairs of
velocity–pressure reduced spaces inf–sup stable. The supremiser variables 𝑠𝑛

𝑖,ℎ
,

for 𝑖 = 1, 2, are defined as the solution to the following problem: find 𝑠𝑛
𝑖,ℎ

∈ 𝑉𝑖,0,ℎ
such that (

∇𝑣𝑖,ℎ,∇𝑠𝑛𝑖,ℎ
)
= 𝑏𝑖,ℎ

(
𝑣𝑖,ℎ, 𝑝

𝑛
𝑖,ℎ

)
∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (40)

where 𝑝𝑛
𝑖,ℎ
, for 𝑖 = 1, 2, are the finite–element pressure solutions of the Navier–

Stokes problem and the left–hand side is the scalar product that defines the norm
with which the variational spaces 𝑉𝑖,0,ℎ are endowed. For more details, we refer to
[50, 51].

6.2. Reduced Basis Generation
Once we obtain the homogenised snapshots 𝑢𝑖,0,ℎ and the pressure supremisers

𝑠𝑖,ℎ for 𝑖 = 1, 2, we are ready to construct a set of reduced basis functions. A very
common choice when dealing with Navier–Stokes equations is to use the POD
technique; see, for instance, [1]. In order to implement this technique, we will
need two main ingredients: the matrices of the inner products and the snapshot
matrices, obtained by a full–order model (FOM) discretization as the one presented
in the previous sections. First, we define the basis functions for the FE element
spaces used in the weak formulation (36), (37) and (39): 𝑉𝑖,0,ℎ = span{𝜙𝑢𝑖

𝑗
}N

𝑢𝑖
ℎ

𝑗=1 ,

𝑄𝑖,ℎ = span{𝜙𝑝𝑖
𝑗
}N

𝑝𝑖
ℎ

𝑗=1 and 𝑋ℎ = span{𝜙𝑔
𝑗
}N

𝑔

ℎ

𝑗=1, where N∗
ℎ
, for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔},

denotes the dimension of the corresponding FE space.
We proceed by building the snapshot matrices. First, we sample the parameter

space and draw a discrete set of 𝐾 parameter values. Then, the snapshots, i.e., the
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high–fidelity FE solutions at each parameter value in the sampling set and at each
time–step 𝑡1, ..., 𝑡𝑀 , are collected into snapshot matrices S𝑢𝑖 ∈ RN

𝑢𝑖
ℎ
×𝑀𝐾 , S𝑠𝑖 ∈

RN
𝑢𝑖
ℎ
×𝑀𝐾 , S𝑝𝑖 ∈ RN

𝑝𝑖
ℎ

×𝑀𝐾 , for 𝑖 = 1, 2 and S𝑔 ∈ RN
𝑔

ℎ
×𝑀𝐾 for the corresponding

values.
The next step is to define the inner–product matrices 𝑋𝑢𝑖 , 𝑋𝑝𝑖 , for 𝑖 = 1, 2, and

𝑋𝑔:

(𝑋𝑠𝑖 ) 𝑗 𝑘 = (𝑋𝑢𝑖 ) 𝑗 𝑘 =
(
∇𝜙𝑢𝑖

𝑘
,∇𝜙𝑢𝑖

𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

(𝑋𝑝𝑖 ) 𝑗 𝑘 =
(
𝜙
𝑝𝑖
𝑘
, 𝜙

𝑝𝑖
𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N 𝑝𝑖
ℎ
, 𝑖 = 1, 2,

(𝑋𝑔) 𝑗 𝑘 =
(
𝜙
𝑔

𝑘
, 𝜙

𝑔

𝑗

)
Γ0
, for 𝑗 , 𝑘 = 1, ...,N𝑔

ℎ
.

We are now ready to introduce the correlation matrices C𝑢𝑖 , C𝑠𝑖 , C𝑝𝑖 for 𝑖 = 1, 2
and C𝑔, all of dimension 𝑀𝐾 × 𝑀𝐾 , as:

C∗ := S𝑇∗ 𝑋∗𝑆∗

for every ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑠1, 𝑠2, 𝑔}.
Once we have built the correlation matrices, we are able to carry out a POD

compression on the sets of snapshots. This can be achieved by solving the following
eigenvalue problems:

C∗Q∗ = Q∗Λ∗ (41)

where ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝑔}, Q∗ is the eigenvectors matrix and Λ∗ is the
diagonal eigenvalues matrix with eigenvalues ordered by decreasing order of their
magnitude. The 𝑘–th reduced basis function for the component ∗ is then obtained
by applying the matrix S∗ to 𝑣∗

𝑘
, the 𝑘–th column vector of the matrix Q∗:

Φ∗
𝑘 :=

1√︁
_∗
𝑘

S∗𝑣
∗
𝑘
,

where _∗
𝑘

is the 𝑘–th eigenvalue from (41). Therefore, we are able to form the set
of reduced basis as

A∗ :=
{
Φ∗

1, ...,Φ
∗
𝑁∗

}
,

where the integer numbers 𝑁∗ indicate the number of the basis functions used
for each component for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑠1, 𝑠2, 𝑔}. Now, it is time to include
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the supremiser enrichment of the velocities spaces discussed at the beginning of
this section. We provide the following renumbering of the functions for further
simplicity:

Φ
𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Φ
𝑠𝑖
𝑘
, for 𝑘 = 1, ..., 𝑁𝑠𝑖 , 𝑖 = 1, 2,

and we redefine 𝑁𝑢𝑖 := 𝑁𝑢𝑖 + 𝑁𝑠𝑖 , and new basis functions sets

A𝑢𝑖 :=
{
Φ
𝑢𝑖
1 , ...,Φ

𝑢𝑖
𝑁𝑢𝑖

}
,

for 𝑖 = 1, 2 and these new sets are now including extra basis functions obtained
from the corresponding supremiser. Finally, we introduce three separate reduced
basis spaces – for the state and the control variables, respectively:

𝑉∗
𝑁 = span(A∗), dim(𝑉∗

𝑁 ) = 𝑁∗,

for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔}. Now, due to the supremiser enrichment the spaces 𝑉𝑢𝑖
𝑁

and 𝑉 𝑝𝑖
𝑁

are inf–sup stable in the sense (35) for 𝑖 = 1, 2; the proof can be found in
[50].

6.3. Online Phase
Once we have introduced the reduced basis spaces, we can define the reduced

function expansions

(𝑢𝑛1,0,𝑁 , 𝑝
𝑛
1,𝑁 , 𝑢

𝑛
2,0,𝑁 , 𝑝

𝑛
2,𝑁 , 𝑔𝑁 ) ∈ 𝑉

𝑢1
𝑁

×𝑉 𝑝1
𝑁

×𝑉𝑢2
𝑁

×𝑉 𝑝2
𝑁

×𝑉𝑔
𝑁
,

as

𝑢𝑛𝑖,0,𝑁 :=
𝑁𝑢𝑖∑︁
𝑘=1

𝑢𝑛
𝑖,0,𝑘Φ

𝑢𝑖
𝑘
, 𝑝𝑖,𝑁 :=

𝑁𝑝𝑖∑︁
𝑘=1

𝑝𝑛
𝑖,𝑘
Φ
𝑝𝑖
𝑘
, 𝑖 = 1, 2, 𝑔𝑁 :=

𝑁𝑔∑︁
𝑘=1

𝑔
𝑘
Φ
𝑔

𝑘
.

In the previous equations, the underlined variables denote the coefficients of
the basis expansion of the reduced solution. Then, the online reduced problem
reads as follows: minimise over 𝑔𝑁 ∈ 𝑉𝑔

𝑁
the functional

J𝛾,𝑁 (𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) :=

1
2

∫
Γ0

���𝑢𝑛1,𝑁 − 𝑢𝑛2,𝑁
���2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔𝑁 |2 𝑑Γ (42)

where 𝑢𝑛1,𝑁 = 𝑢𝑛1,0,𝑁 +𝑙
𝑛
1,𝑁 , 𝑢2,𝑁 = 𝑢𝑛2,0,𝑁 +𝑙

𝑛
2,𝑁 and (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) satisfy

the following reduced equations:

21



1
Δ𝑡
𝑚𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑎𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢

𝑛
𝑖,0,𝑁 , 𝑢

𝑛
𝑖,0,𝑁 , 𝑣𝑖,𝑁 )

+ 𝑐𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑙
𝑛
𝑖,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑙

𝑛
𝑖,𝑁 , 𝑢

𝑛
𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) (43a)

+ 𝑏𝑖 (𝑣𝑖,𝑁 , 𝑝𝑛𝑖,𝑁 ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,𝑁 )Ω𝑖
+ ((−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁 )Γ0

+ 1
Δ𝑡
𝑚𝑖 (𝑢𝑛−1

𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) −
1
Δ𝑡
𝑚𝑖 (𝑙𝑛𝑖,𝑁 , 𝑣𝑖,𝑁 )

− 𝑎𝑖 (𝑙𝑛𝑖,𝑁 , 𝑣
𝑛
𝑖,𝑁 ) − 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ), ∀𝑣𝑖,𝑁 ∈ 𝑉𝑢𝑖

𝑁
,

𝑏𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑞𝑖,𝑁 ) = −𝑏𝑖 (𝑙𝑛𝑖,𝑁 , 𝑞𝑖,𝑁 ), ∀𝑞𝑖,𝑁 ∈ 𝑉 𝑝𝑖
𝑁
, (43b)

where 𝑙𝑛
𝑖,𝑁

is the Galerkin projection of the lifting function 𝑙𝑛
𝑖,ℎ

to the finite dimen-
sional vector space 𝑉𝑢𝑖

𝑁
and 𝑖 = 1, 2.

Similarly to the offline phase, we notice that the structure of the equations
(43) and the functional (42) are the same as the ones of the continuous case, so
this enables us to provide the following expression of the gradient of the reduced
functional (42)

𝑑J𝛾,𝑁
𝑑𝑔𝑁

(𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) = 𝛾𝑔𝑁 + (b1,𝑁 − b2,𝑁 ) |Γ0 , (44)

where (b1,𝑁 , b2,𝑁 ) are the solutions to the reduced adjoint problem: find (b1,𝑁 , _1,𝑁 ,
b2,𝑁 , _2,𝑁 ) ∈ 𝑉𝑢1

𝑁
×𝑉 𝑝1

𝑁
×𝑉𝑢2

𝑁
×𝑉 𝑝2

𝑁
such that it satisfies, for 𝑖 = 1, 2,

1
Δ𝑡
𝑚𝑖 ([𝑖,𝑁 , b𝑖,𝑁 ) + 𝑎𝑖 ([𝑖,𝑁 , b𝑖,𝑁 ) + 𝑐𝑖

(
[𝑖,𝑁 , 𝑢

𝑛
𝑖,𝑁 , b𝑖

)
+ 𝑐𝑖

(
𝑢𝑛𝑖,𝑁 , [𝑖,𝑁 , b𝑖,𝑁

)
(45a)

+ 𝑏𝑖 ([𝑖,𝑁 , _𝑖,ℎ) = ((−1)𝑖+1[𝑖,𝑁 , 𝑢
𝑛
1,𝑁 − 𝑢𝑛2,𝑁 )Γ0 , ∀[𝑖,𝑁 ∈ 𝑉𝑢𝑖

𝑖,𝑁
,

𝑏𝑖 (b𝑖,𝑁 , `𝑖,𝑁 ) = 0, ∀`𝑖,𝑁 ∈ 𝑉 𝑝𝑖
𝑖,𝑁
. (45b)

Above, the restriction ·|Γ0 is meant as an 𝐿2(Γ0)–projection onto space 𝑉𝑔
𝑁

. We
would also like to stress that from the numerical implementation point of view the
reduced minimisation problem can be recast in the setting of the finite–dimensional
space R𝑝, where 𝑝 is the number of reduced basis functions used for the control
variable 𝑔𝑁 in the online phase, that is 𝑝 = 𝑁𝑔.

6.4. POD–NN
In this section, we would like to give a quick overview of the POD–NN method

[37]. After the construction of the POD reduced spaces as described in Section 6.2,
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the POD–NN tries to learn the map that, given the physical parameters and time,
returns the reduced coefficients of the POD projection. To learn this map, we form
a training set by the projection of each snapshot for variables 𝑢1, 𝑝1, 𝑢2, 𝑝2 onto
the corresponding reduced space – 𝑈∗,output, ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2}. The input set
is composed of the tuples 𝑈input that contain 𝐾 sets of physical parameters (the
same ones that have been sampled for snapshot construction) and 𝑀 time–steps
𝑡𝑖, 𝑖 = 1, .., 𝑀; this results in 𝐾𝑀 tuples of dimension (𝐿 + 1), where 𝐿 is the
number of considered physical parameters.
Having built the input and output training sets, we build an artificial neural network
(ANN) for each component ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2} which approximates 𝑈input →
𝑈∗,output. Then, the POD–NN reduced solutions are defined by recovering the
predicted values by these ANN in the corresponding FEM space. Notice that this
approach does not require any optimisation algorithm, just the prediction by ANN
at the required parameter value and time step.

The ANN used in this algorithm is a simple dense multilayer perceptron that
consists of a repeated composition of affine operations and nonlinear activation
functions [52]. The chosen architecture contains 3 hidden layers with 40, 60 and
100 neurons, respectively. This means that there are 4 affine mappings between the
input, hidden and output layers, and at each layer, we use the hyperbolic tangent
as an activation function. The learning of the weights and biases of the NN is
optimised using the Adam algorithm [53], a variation of the stochastic gradient
descent. In both test cases of the numerical result section, we used 5000 as the
maximum number of optimisation iterations (epochs) and 10−5 as target for the
loss functional.

The hyperparameters are the result of a quick optimization process. We ob-
served that a lower number of layers/neurons were less accurate in representing
the map of interest, while more layers were too expensive to be trained in terms of
necessary epochs.

7. Numerical Results

We now present some numerical results obtained by applying the two–domain
decomposition optimisation algorithm to the backward–facing step and the lid–
driven cavity flow benchmarks.

All the numerical simulations for the offline phase were obtained using the
software FEniCS [54], whereas the online phase simulations were carried out
using RBniCS [55] and EZyRB [56].
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Figure 2: Physical domain and domain decomposition for the backward–facing step problem

Physical parameters FE parameters
Range a [0.4, 2] Velocity–pressure space in a cell P2 × P1

Range �̄� [0.5, 4.5] Total dofs 27,890
Final time 𝑇 1 Dofs at interface 130

Time step Δ𝑡 0.01
Optimization Snapshots training set parameters

Algorithm L–BFGS–B Timestep number 𝑀 100
itmax 1000 Parameters training set size 𝐾 62
tolopt 10−9 Maximum retained modes 𝑁max 100

Table 1: Backward–facing step: computational details of the offline stage.

7.1. Backward–facing step test case
We start with introducing the backward–facing step flow test case. Figure 2

represents the physical domain of interest, the dimensional lengths and the bound-
ary conditions. The splitting into two domains is performed by dissecting the
domain by a vertical segment at the distance 9 cm from the left end of the channel,
as shown in Figure 2.

We consider zero initial velocity condition, homogeneous Dirichlet boundary
conditions on walls Γ𝑤𝑎𝑙𝑙 for the fluid velocity, and homogeneous Neumann con-
ditions on the outlet Γ𝑜𝑢𝑡 , meaning that we assume free outflow on this portion of
the boundary.

We impose a parabolic profile 𝑢𝑖𝑛 on the inlet boundary Γ𝑖𝑛, where 𝑢𝑖𝑛 (𝑥, 𝑦) =
(𝑤(𝑦), 0)𝑇 with𝑤(𝑦) = �̄� · 4

9 (𝑦−2) (5−𝑦), 𝑦 ∈ [2, 5]; the range of �̄� is reported in
Table 1. Two physical parameters are considered: the viscosity a and the maximal
magnitude �̄� of the inlet velocity profile 𝑢𝑖𝑛. Details of the offline stage and the
finite–element discretisation are summarised in Table 1. High–fidelity solutions
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Figure 3: Backward–facing step: POD singular eigenvalue decay of the first 50 POD modes (a)
and the monolithic solution for a parameter (�̄�, a) = (4.5, 0.4) at the final time step (b)

Parameter POD modes
a 0.4 velocity 𝑢1 30 pressure 𝑝1 5 supremiser 𝑠1 5
�̄� 4.5 velocity 𝑢2 12 pressure 𝑝2 5 supremiser 𝑠2 5

control 𝑔 5

Table 2: Backward–facing step: computational details of the online stage.

are obtained by carrying out the minimisation in the space of dimension equal to
the number of degrees of freedom at the interface, which is 130 for our test case.
The best performance has been achieved by using the limited–memory Broyden–
Fletcher–Goldfarb–Shanno (L–BFGS–B) optimisation algorithm [57], where the
following stopping criteria were applied: either the maximal number of iteration
itmax is reached or the gradient norm of the target functional is less than the given
tolerance tolopt or the relative reduction of the functional value is less than the
tolerance that is automatically chosen by the scipy library [58].

Snapshots are sampled from a training set of 𝐾 parameters randomly sampled
from the 2–dimensional parameter space for each time–step 𝑡𝑖, 𝑖 = 1, ..., 𝑀 , and
the first 𝑁max POD modes have been retained for each component. Figure 3a shows
the POD singular values for all the state and the control variables; we can see an
evident exponential decay of the singular values. Figure 3b shows an example of a
monolithic (whole–domain) solution with which we would conduct a comparison
and the numerical analysis of the DD–FOM and the ROM.

In Table 2, we list the values of the parameters for which we conduct a numerical
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(a) 𝑡 = 0.01 (b) 𝑡 = 0.25

(c) 𝑡 = 0.5 (d) 𝑡 = 1

Figure 4: Backward–facing step: high–fidelity solution for the velocities 𝑢1 and 𝑢2 at 4 different
time instances

(a) 𝑡 = 0.01 (b) 𝑡 = 0.25

(c) 𝑡 = 0.5 (d) 𝑡 = 1

Figure 5: Backward–facing step: high–fidelity solution for the pressures 𝑝1 and 𝑝2 at 4 different
time instances
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(a) FOM velocity (magnitude) (b) FOM pressure

(c) ROM velocity (magnitude) (d) ROM pressure

Figure 6: Backward–facing step: absolute errors of DD–FOM and ROM solutions w.r.t. the
monolithic solution at the final time step

test of the ROM and the number of POD modes for each component of the problem.
The number of reduced bases is chosen so that the discarded energy for each of the
components is less than 10−6. Reduced–order solutions are obtained by carrying
out the minimisation in the space of dimension equal to the number of POD modes
for the control 𝑔, which is 5 for our test case. Clearly, the minimisation in this
space of dimension 5 is much simpler than in the FOM one. The optimisation
algorithm used in this test case is the same as in the FOM case described above.

Figures 4–5 represent the high–fidelity solutions for a value of the parameters
(�̄�, a) = (4.5, 0.4) at 4 different time instances. Visually, we can see a great
degree of continuity on the interface, which will be highlighted below. Figure 6
shows the spatial distribution of the error with respect to the monolithic solution
at the final time step for both the FOM and ROM solutions. As expected, the error
of the FOM solution is mostly concentrated at the interface, while ROM contains
some extra noise due to the POD reduction.

Figure 7 shows the number of iterations for both FOM and ROM optimisation
processes. Each iteration of the optimisation algorithm requires at least one
computation of the state and the adjoint solvers. Therefore, we can see that we
have managed to obtain a significant reduction in terms of computational efforts:
the average number of iterations over all time steps in the case of the FOM solver
is 170, while it is 24 in the case of the ROM solver. Additionally, each solver at
the reduced level is of much smaller dimension (see Table 2), and with good use
of hyper–reduction techniques (see, for instance, [1]), it will allow to obtain very
efficient solvers in terms of computational time.

We would like also to provide a comparison of the full–order and the reduced–
order models with non–intrusive POD–NN model. Due to the discontinuity with
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Figure 7: Backward–facing step: number of optimisation iterations of FOM and ROM solvers

the initial condition, the first time step was excluded from the training set in order
to achieve better performance. In practice, this first step can be computed with
a Galerkin projection or a FOM step. Figure 8 shows the relative errors with
respect to the monolithic solution for the FOM, ROMs and POD–NN model. As
we can see, both FOM and ROM give us very good convergence results – the
relative error does not exceed 1% in either case. Regarding the POD–NN, in
terms of computational time, it is very effective, but the approximation can be
very poor, especially in the initial and final time steps. Just to give an idea of the
differences in the computational times, one time step of the FOM takes between
30 and 60 minutes, one time step of the ROM (without hyper–reduction) takes
around 5 minutes, while a POD–NN prediction needs around 0.003 seconds. One
of the possible scenarios could be a combination of the ROM and the POD–NN
model based on the a posteriori error estimates, so that the time steps in which
a much more computationally effective ANN model fails to produce a sufficient
approximation, the ROM is applied. Similar ideas can be found inter alia in [59].
This will be the subject of future works.

7.2. Lid–driven cavity flow test case
In this section, we provide the numerical simulation for the lid–driven cavity

flow test case. Figure 9a represents the physical domain of interest – the unit
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Figure 8: Backward–facing step: relative errors of FOM, ROM and POD–NN solutions w.r.t. the
monolithic solution

square. The split into two domains is performed by dissecting the domain by a
median horizontal line as shown in Figure 9b.

We consider zero initial velocity condition, homogeneous Dirichlet boundary
conditions on the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity and the nonzero horizontal
constant velocity on the lid boundary Γ𝑙𝑖𝑑: 𝑢𝑙𝑖𝑑 =

(
�̄�, 0

)
; the values of �̄� are

reported in Table 3. We consider one physical parameter – the magnitude �̄� of the
lid velocity profile 𝑢𝑖𝑛. Details of the offline stage and the FE discretisation are
summarised in Table 3. High–fidelity solutions are obtained by carrying out the
minimisation in the space of dimension equal to the number of degrees of freedom
at the interface, which is 294 for our test case.

Snapshots are derived from a training set of 𝐾 values uniformly sampled from
the 1–dimensional parameter space for each time–step 𝑡𝑖, 𝑖 = 1, ..., 𝑀 , and the first
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Figure 9: Lid–driven cavity flow geometry and domain decomposition

Physical parameters FE parameters
Range a [1, 1] Velocity–pressure space in a cell P2 × P1

Range �̄� [0.5, 5] Total dofs 58,056
Final time 𝑇 0.4 Dofs at interface 294

Time step Δ𝑡 0.01
Optimization Snapshots training set parameters

Algorithm L–BFGS–B Timestep number 𝑀 40
itmax 300 Parameters training set size 𝐾 10
tolopt 10−7 Maximum retained modes 𝑁max 100

Table 3: Lid–driven cavity flow: computational details of the offline stage.

𝑁𝑚𝑎𝑥 POD modes have been retained for each component. In Figure 10a, we see
that the POD singular values decay even faster than in the previous test for all the
state and the control variables. As before, we show in Figure 10b the monolithic
(whole–domain) solution related to the parameter (�̄� = 3) on which we will test
the DD–FOM and the ROM.

In Table 4 we report the number of POD modes we use to obtain the ROM.
The number of reduced bases is chosen so that the discarded energy for each of
the components is less than 10−6. As before, the ROM optimization is the same
used in the FOM, but on a smaller space with dimension 5 instead of 294. As an
optimisation algorithm in this case we use L–FBGS–B, but in this case, we use a
smaller value for tolopt of 10−6.
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Figure 10: Lid–driven cavity flow: POD singular eigenvalue decay of POD modes (a) and the
monolithic solution for a parameter �̄� = 3 at the final time step (b)

(a) 𝑡 = 0.01 (b) 𝑡 = 0.05 (c) 𝑡 = 0.4

Figure 11: Lid–driven cavity flow: FOM velocity solution at 3 different time instances

Parameter POD modes
a 1 velocity 𝑢1 15 pressure 𝑝1 10 supremiser 𝑠1 10
�̄� 3 velocity 𝑢2 10 pressure 𝑝2 10 supremiser 𝑠2 10

control 𝑔 5

Table 4: Lid–driven cavity flow: Computational details of the online stage.
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Figure 12: The number of optimisation iterations of FOM and ROM solvers

Figures 11 represent the DD–FOM solutions for �̄� = 3 at 3 different time
instances, where we see a qualitative agreement with the monolithic solution in
Figure 10b.

Again, in Figure 12 we observe that the number of optimization iterations for
FOM is between 10 and 100 times larger than the ROM ones. Recalling that each
iteration requires at least one computation of the state and the adjoint solvers, we
obtain a great computational advantage. For the test with �̄� = 3, the average
number of the iteration over all time steps in the case of the FOM solver is 170
while it is 24 in the case of the ROM solver. Additionally, each solver at the
reduced level is of a much smaller dimension (see Table 4).

As in the previous test case, we would like to provide a comparison of the
full–order and the reduced–order models with non–intrusive POD–NN model.
The architecture is still the one reported in Section 6.4 Again, the initial condition
leads to a discontinuity in time at the starting timestep, hence, we exclude it from
the training set in order to achieve better performance. Figure 13 shows the relative
errors with respect to the monolithic solution for the FOM, ROMs and POD–NN
model. As we can see, both FOM and ROM give us very good convergence results,
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Figure 13: Lid–driven cavity flow: relative errors of FOM, ROM and POD–NN solutions w.r.t.
the monolithic solution

i.e., the relative error does not exceed 1% in either case; but, in this case, also
POD–NN gives quite good results, indeed, for each variable the relative error does
not exceed 3%. Computational times for each method, FOM, ROM and POD–NN,
are comparable with those of the backward–facing step flow, that is, one time step
of the FOM takes between 15 and 45 minutes, one time step of the ROM (without
hyper–reduction) takes on average 5 minutes, while a POD–NN prediction needs
around 0.003 seconds.
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8. Conclusions

In this work, we described and conducted the convergence analysis of an
optimisation–based domain decomposition algorithm for nonstationary Navier–
Stokes equations.

The original problem cast into the optimisation–based domain–decomposition
framework leads to the optimal control problem aimed at minimising the coupling
error at the interface; the problem, then, has been tackled using an iterative
gradient–based optimisation algorithm, which allowed us to obtain a complete
separation of the solvers on different subdomains.

At the reduced–order level, we provided two techniques: a POD–Galerkin
projection and a data–driven POD–NN, both of them on separate domains. In
the Galerkin projection, the optimal–control problem was solved much faster, not
only because of the reduced dimensions but also because of the smaller number of
iterations. In the POD–NN results are less accurate, but the computational time is
way cheaper with respect to the other methods.

As it has been mentioned in the paper, the aforementioned techniques could be
promising for various areas of computational physics. First of all, these algorithms
can be used when complex time–dependent problems arise and domain decom-
position becomes necessary due to the number of degrees of freedom. Moreover,
in the context of multi–physics or fluid–structure interaction, the coupling of pre–
existing solvers on each subcomponent can be exploited in this framework, with
the additional benefit of the reduction for parametric problems, which guarantees
high adherence with respect to the full order solutions. Finally, in case the codes
are not directly accessible, the presented non–intrusive approach can be used to
highly speed up the simulations while still obtaining meaningful results.
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