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Abstract

Friedrichs’ systems (FS) are symmetric positive linear systems of first-order partial differential equations (PDEs),
which provide a unified framework for describing various elliptic, parabolic and hyperbolic semi-linear PDEs such as the
linearized Euler equations of gas dynamics, the equations of compressible linear elasticity and the Dirac-Klein-Gordon
system. FS were studied to approximate PDEs of mixed elliptic and hyperbolic type in the same domain. For this and
other reasons, the versatility of the discontinuous Galerkin method (DGM) represents the best approximation space for
FS. We implement a distributed memory solver for stationary FS in deal.II. Our focus is model order reduction. Since
FS model hyperbolic PDEs, they often suffer from a slow Kolmogorov n-width decay. We develop two approaches to
tackle this problem. The first is domain decomposable reduced-order models (DD-ROMs). We will show that the DGM
offers a natural formulation of DD-ROMs, in particular regarding interface penalties, compared to the continuous finite
element method. We also develop new repartitioning strategies to obtain more efficient local approximations of the solution
manifold. The second approach involves graph neural networks used to infer the limit of a succession of projection-based
linear ROMs corresponding to lower viscosity constants: the heuristic behind is to develop a multi-fidelity super-resolution
paradigm to mimic the mathematical convergence to vanishing viscosity solutions while exploiting to the most interpretable
and certified projection-based ROMs.

1 Introduction

Friedrichs’ systems (FS) are a class of symmetric positive linear systems of first-order partial derivative equations (PDEs).
They were introduced by Friedrichs [34] as a tool to study hyperbolic and elliptic phenomena in different parts of the
domain within a unifying framework. The main ideas that allow recasting many models into the FS frameworks are the
introduction of extra variables to lower the order of the higher derivatives and the linearization of nonlinear problems.
FS are characterized by linear and positive operators and (non-uniquely defined) boundary operators that allow them to
impose classical boundary conditions (BCs). Various works proved uniqueness, existence and well–posedness of the FS
in their strong, weak and ultraweak formulation and the necessary conditions to properly define the boundary operators
[34, 72, 73, 28, 31, 3, 24].

In the last decades, different numerical discretizations of the FS have been proposed to approximate the analytical
solutions. The strategies vary among finite volume [78] and discontinuous Galerkin (DG) formulations [45, 52, 28, 29, 31,
30, 12, 17]. Along with the DG discretization, also error estimation analysis that provide, according to the type of edge
penalization, optimal or sub–optimal estimates, have been carried out [28, 29, 24]. We focus on the DG method since
it is more versatile to approximate both elliptic and hyperbolic PDEs and it fits naturally in the framework of domain
decomposable ROMs (DD-ROMs).

In the context of parametric PDEs, for multi–query tasks or real–time simulations, fast and reliable simulations of the
same problem for different parameters are often needed. This is especially true when the full-order models (FOMs) are based
on expensive and high-order DG discretizations. Reduced order models (ROMs) decrease the computational costs looking
for the solutions of unseen parametric instances on low-dimensional discretization spaces, called reduced basis spaces. This
is possible because the new solutions to be predicted are expected to be highly correlated with the database of training
DG solutions used to build the reduced spaces. ROMs have been proven to be a powerful tool for many applications
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[68, 61, 44, 76]. In particular for linear problems, classical Galerkin and Petrov-Galerkin projection methods are very easy
to set up and extremely convenient in terms of computational costs. FS are perfectly suited for such algorithms due to their
linearity. This is a preliminary step needed to reduce parametric nonlinear PDEs whose linearization results in FS. In the
most simple formulation, we will apply singular value decomposition (SVD) to compress a database of snapshots and provide
a reliable reduced order model (ROM), with standard a posteriori error estimators.

In the context of model order reduction, FS are particularly beneficial as theoretical frameworks for many reasons. They
represent a new form of structure-preserving ROMs: the positive symmetric properties of FS are in fact easily inherited by
the reduced numerical formulations. This advocates for the employment of FS for reduced order modelling whenever a PDE
can be reformulated in the FS framework. This is the case for the Euler equations of gas dynamics, when they are written in
terms of entropy variables [78, 65]. The same rationale is behind structure-preserving symplectic or Hamiltonian ROMs [43]
and port-Hamiltonian ROMs [83, 10]. Moreover, since FS are often studied in their ultraweak formulation, they are good
candidates for optimally stable error estimates [13] at the full-order level [12], also in a hybridized DG implementation in [17],
and at the reduced order level, similarly to what has been achieved in the works [11, 39, 42]. Finally, from the point of view
of software design, the possibility to implement in a unique maintainable and generic manner the realization of ROMs for
PDEs ascribed to the class of FS is a convenient feature to search for.

Though being linear, FS are hyperbolic systems and often show an advection dominated character, which is not easily
approximable through a simple proper orthogonal decomposition (POD). This leads to a slow Kolmogorov n-width (KnW)
decay that results in very inefficient approximations of the reduced models. Several approaches have been studied to overcome
this difficulty [79, 49, 66, 74, 16, 15, 2, 59, 20, 81, 51].

A strategy that has been developed to reduce PDEs solved numerically with domain decomposition approaches, like
fluid-structure interaction systems, are domain decomposable ROMS (DD-ROMS). The initial formulations [61, 62, 48,
27, 48] involved continuous finite elements discretizations for which new ways to couple the solutions restricted to different
subdomains needed to be devised, especially to enforce continuity at the interfaces. We show that the DGM imposes naturally
flux interface penalties from the full-order discretizations and it is, thus, amenable for straightforward implementations of
DD-ROMs. From the point of view of solution manifold approximability and so KnW decay, DD-ROMs are based on local
linear approximants that are employed to reach a higher accuracy for unseen solutions. This is useful when the computational
domain is divided in subdomains that are independently affected by the parametric instances. The typical case in which
this may happen are parametric models for which discontinuous values of the parameters over fixed subdomains cause non
correlated responses on their respective subdomains. Similar cases will be studied in sections 5.3.1 and 5.3.2. Another example
is represented by parametric fluid-structure interaction systems in which the parameters cause complex interdependencies
between the structure and fluid components in favor of partitioned linear solution manifold approximations (SVD is performed
separately for the fluid, for the structure and for the interface) rather than monolithic ones. In our implementation of DD-
ROMs, we exploit the partitions obtained from the distributed memory solver in deal.II. Since these domain decompositions
typically satisfy constraints related to the computational efficiency, we devise some strategies to repartition the domain
responding to solution manifold approximability concerns instead. Another work that implements this is [86] where the
Reynolds stress tensor is employed, among others, as indicator for partitioning the computational domain. Similarly, we
develop new indicators.

Another way to approach the problem of a slow KnW decay is exploiting the mathematical proofs of existence of vanishing
viscosity solutions [64, 57, 25, 38]. In fact, solutions of hyperbolic problems can be obtained as a limit process of solutions
associated to viscosity terms approaching zero. The crucial point is that ROMs associated to larger viscosity values may not
suffer from a slow Kolmogorov n-width decay. Hence, we can set up classical projection based ROMs for the high viscosity
solutions, and use graph neural networks (GNNs) [80] only to infer the vanishing viscosity solution in a very efficient manner.
This procedure can be applied also to more general hyperbolic problems, not necessarily FS. The key features of this new
methodology are the following: the employment of computationally heavy graph neural networks is reduced to a minimum
and, at the same time, interpretable certified projection ROMs are exploited as much as possible in their regime of accurate
linear approximability. In fact, GNNs, used generally to perform non-intrusive MOR, have high training computational costs
and they are employed mainly for small academic benchmarks in terms of number of degrees of freedom, up to now. We
avoid these high computational efforts with our multi-fidelity formulation: the GNNs are employed only to infer the vanishing
viscosity solutions from the previous higher viscosity level, not to approximate and perform dimension reduction of the entire
solution manifold. The overhead is the collection of additional full-order snapshots corresponding to high viscosity values,
but this can be performed on coarser meshes as it will be done in section 6. Moreover, the support of our GNNs is the DG
discretization space, so, we can enrich the typical machine learning framework of GNNs with data structure and operators
from numerical analysis. We validate the use of data augmentation with numerical filters (discretized Laplacian, gradients),
as proposed in [80].

In brief, we summarize our contributions with the present work:

• structure-preserving model order reduction for Friedrichs’ systems. We synthetically describe the realization of ROMs
for FS and the definition of standard a posteriori error estimators. Hints towards the implementation of optimally
stable ROMs are highlighted.
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• domain decomposable reduced-order models for full-order models discretized with the discontinuous Galerkin method.
We introduce DD-ROMs for DG discretizations and introduce novel indicators to repartition the computational domain
with the aim of obtaining more efficient local solution manifold approximants.

• surrogate modelling of vanishing viscosity solutions with graph neural networks. We propose a new framework for the
MOR of parametric hyperbolic PDEs with a slow Kolmogorov n-width decay.

The topics addressed in this work are presented as follows. In Section 2, we introduce the definition of FS and well–
posedness results and we will provide several examples of models that fall into this framework: the Maxwell equations in
stationary regime, the equations of linear compressible elasticity and the advection diffusion reaction equations. Then, we
provide a DG discretization of the FS following [24] with related error estimates in Section 3. In Section 4, we introduce the
projection-based MOR technique and some error bounds that can be effectively used. In Section 5, we will discuss a new
implementation of domain decomposable ROMs for FOMs discretized with the DGM and we will test the approach on three
parametric models. In Section 6, we introduce the concept of vanishing viscosity solutions and how graph neural network
are exploited to overcome the problem of a slow Kolmogorov n-width decay. We will provide some numerical tests to show
the effectiveness of the proposed approach. Finally, in Section 7 we summarize our results and we suggest further directions
of research.

2 Friedrichs’ systems

In this section, we will provide a summary of FS theory: their definition, existence, uniqueness and well-posedness results,
their weak and ultraweak forms and many PDEs which can be rewritten into FS. The following discussion collects many
results from [34, 72, 47, 73, 46, 52, 78, 52, 29, 31, 30, 3, 12, 24], but we will follow the notation in [24]. Let us represent
with d the ambient space dimension and with m ≥ 1 the number of equations of the FS. We consider a connected Lipschitz
domain Ω ⊂ Rd, with boundary ∂Ω and outward unit normal n : ∂Ω → Rd.

A FS is defined through (d+1) matrix-valued fields A0, A1 . . . , Ad ∈ [L∞(Ω)]m×m and the following differential operators
X , A, Ã : Ω → Rm×m. We suppose that X ∈ [L∞(Ω)]m×m and define

X =

d∑
k=1

∂kA
k , A = A0 +

d∑
i=1

Ai∂i , Ã =
(
A0
)t −X −

d∑
i=1

Ai∂i , (1)

assuming that

Ak = (Ak)T a.e. in Ω, for k = 1, . . . , d, (symmetry property) (2a)

A0 + (A0)T −X is u.p.d. a.e. in Ω, (positivity property) (2b)

thus, the name symmetric positive operators or Friedrichs operators, which is used to refer to (A, Ã). We recall that
the operator in (2b) is uniformly positive definite (u.p.d) if and only if

∃µ > 0 : A0 + (A0)T −X > 2µ0I a.e. in Ω. (3)

If this property is not satisfied, it can be sometimes recovered as shown in Appendix A. A weaker condition can be required
for two-field systems [30].

The boundary conditions are expressed through two boundary operators D : ∂Ω → Rm×m with

D =

d∑
k=1

nkA
k, a.e. in ∂Ω (4)

and M : ∂Ω → Rm×m satisfying the following admissible boundary conditions

M is nonnegative a.e. on ∂Ω, (monotonicity property) (5a)

ker(D −M) + ker(D +M) = Rm a.e. on ∂Ω. (strict adjointness property) (5b)

Remark 1 (Strict adjointness). The term strict adjointness property comes from Jensen [52, Theorem 31]. The strict
adjointness property is needed for the solution of the ultra-weak formulation of the FS to uniquely satisfy the boundary
conditions: in a slightly different framework from the one presented here, see [52, Theorem 29] and [12, proof of Lemma 2.4].

3



Theorem 1 (Friedrichs’ system strong solution [34]). Let f ∈ [L2(Ω)]m, the strong solution z ∈ [C1(Ω)]m to Friedrichs’
system {

Az = f, in Ω,

(D −M)z = 0, on ∂Ω.
(6)

is unique. Moreover, there exists a solution of the ultra-weak formulation

(z, Ãy)L2 = (f, y)L2 , ∀y ∈ [C1(Ω)]m s.t. (D +Mt)y = 0. (7)

Let L = [L2(Ω)]m. We define the weak formulation on the graph space V = {z ∈ L : Az ∈ L}, which amounts to
differentiability in the characteristics directions: A ∈ L(V,L) and Ã ∈ L(V ′, L). The boundary operator D is translated into
the abstract operator D ∈ L(V, V ′):

⟨Dz, y⟩V,V ′ = (Az, y)L − (z, Ãy)L, ∀z, y ∈ V. (8)

When z is smooth, it can be seen as the integration by parts formula [52, 12]:

⟨Dz, y⟩V,V ′ = ⟨Dz, y⟩
H

1
2 (∂Ω),H− 1

2 (∂Ω)
, ∀z ∈ H1(Ω), y ∈ H1(Ω). (9)

A sufficient condition for well-posedness of the weak formulation is provided by the cone formalism [3, 24] that poses the
existence of two linear subdomains (V0, V

∗
0 ) of V :

V0 maximal in C+, V ∗
0 maximal in C− (10a)

V0 = D(V ∗
0 )

⊥, V ∗
0 = D(V0)

⊥, (10b)

such that A : V0 → L and Ã : V ∗
0 → L are isomorphism, where C± = {w ∈ V | ± ⟨Dw,w⟩V,V ′ ≥ 0}.

Provided that V0 + V ∗
0 ⊂ V is closed [3], the conditions in (10) are equivalent to the existence of the boundary operator

M ∈ L(V, V ′) that satisfies admissible boundary conditions analogue to the ones in (5):

M is monotone, (monotonicity property) (11a)

ker(D −M) + ker(D +M) = V, (strict adjointness property) (11b)

identifying V0 = ker(D −M) and V ∗
0 = ker(D +M∗).

Theorem 2 (Friedrichs’ System weak form [28, 29, 24, 12]). Let us assume that the boundary operator M ∈ L(V, V ′) satisfies
the monotonicity and strict adjointness properties (11). Let us define for z, z∗ ∈ V the bilinear forms

a(z, y) = (Az, y)L + 1
2 ⟨(D −M)z, y⟩V ′,V , ∀y ∈ V, (12a)

a∗(z∗, y) =
(
Ãz∗, y

)
L
+ 1

2 ⟨(D +M∗)z∗, y⟩V ′,V , ∀y ∈ V. (12b)

Then, Friedrichs’ operators A : V0 → L and Ã : V ∗
0 → L are isomorphisms: for all f ∈ L and g ∈ V there exists unique

z, z∗ ∈ V s.t.

a(z, y) = (f, y)L + ⟨(D −M)g, y⟩V ′,V ∀y ∈ V, (13a)

a∗(z∗, y) = (f, y)L + ⟨(D +M∗)g, y⟩V ′,V ∀y ∈ V, (13b)

that is {
Az = f, in L,

(M −D)(z − g) = 0 in V ′,

{
Ãz∗ = f, in L,

(M∗ +D)(z∗ − g) = 0 in V ′.
(14)

2.1 A unifying framework

The theory of Friedrichs’ systems provides a unified framework to study different classes of PDEs [52]: first-order uniformly
hyperbolic, second-order uniformly hyperbolic, elliptic and parabolic partial differential equations. Originally, Friedrichs’
aim was to study equations of mixed type (hyperbolic, parabolic, elliptic) inside the same domain such as the Tricomi
equation [34] (or more generally the Frankl equation [52]) inspired by models from compressible gas dynamics for which the
domain is subdivided in a hyperbolic supersonic and an elliptic subsonic part.

Some examples of FS can be found in the literature:

(x2∂
2
1 •+∂21•)u = 0, (Tricomi [34]) (15a)
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[
−∂1• ∂2•
−∂2• ∂1•

](
u1
u2

)
= 0, (Cauchy-Riemann [34]) (15b)

(A(x2)∂
2
1 + ∂21)u = 0, (Frankl [52]) (15c)[

I3 −λ−1I3(∇ · •)− (∇•+(∇•)t)
2

− 1
2∇ · (•+ •t) αI3

](
σ
u

)
= 0, (Compressible linear elasticity [28]) (15d)[

µI3 ∇× •
−∇× • σI3

](
H
E

)
= 0, (Maxwell eq. in stationary regime [28]) (15e)

(−∇ · (κ∇•) + β · ∇ •+µ•)u = 0, (Diffusion advection reaction [28]) (15f)

(A0∂t •+Σ3
i=1Ãi∂i•)V = 0, (Linearized symmetric Euler [47, 78]) (15g)

(aγ0∂t •+γ1∂1 •+γ2∂2 •+γ3∂3 •+B)ψ = 0, (Dirac system [4]) (15h)[
−aiγ0∂t • −iγ1∂1 • −iγ2∂2 • −iγ3∂3 •+M 14

04 ∂2t • −∆ •+m2I1

](
ψ
ϕ

)
= f , (Dirac-Klein-Gordon system [4]) (15i)[

− i
2π (aγ

0∂t •+γ1∂1 •+γ2∂2 •+γ3∂3 •+B) 14

04 −∂2t •+∆•

](
ψ
A

)
= f , (Maxwell-Dirac system [4]) (15j)[

−iωµI3 ∇× •
−∇× • (−iωϵ+ σ)I3

](
H
E

)
= 0, (Time-harmonic Maxwell [4]) (15k)[

νI3 ∇× •
µβ × • −∇× • σI3

](
H
E

)
= f , (Magneto-hydrodynamics [29]) (15l) ν−1I3 13 − (∇•+(∇•)t)

2
tr(•) dI1 0

− 1
2∇ · (•+ •t) 0 β · ∇•


σp
u

 = f , (Incompressible linearized Navier-Stokes [30])

(15m)

for the employed notation we refer to the respective reported references. A non-stationary version of (15e) and (15f) from [24]
is omitted. The FS framework here presented easily extends to complex-valued systems as in (15h), (15i), (15j) and (15k)
from [4]. We will consider only semi-linear PDEs but FS can be encountered as intermediate steps when solving quasi-linear
PDEs: for example solving the compressible Euler equations of gas dynamics in entropy variables with the Newton method
brings to the FS (15g), as studied in [78].

One of the critical points of FS is the definition of the boundary conditions. Friedrichs’s idea [34] was to impose boundary
conditions through a matrix-valued boundary operator. Ern, Guermond and Caplain [31] revised the FS theory, without
employing the trace of functions in the graph space as developed in [72, 73, 46, 52], but in terms of operators acting in
abstract Hilbert spaces, as presented here.

The most common homogeneous boundary conditions (homogeneous Dirichlet, Neumann, Robin) for (15d), (15e) and
(15f) can be found in the literature [28, 29, 31]. For a choice of boundary conditions, and thus for a choice of spaces (V0, V

∗
0 ),

there can be more than one definition of the boundary operatorM [31, Remark 5.3]. A constructive methodology for defining
the boundary operator M ∈ L(V, V ′) from specific boundary conditions can be found in [31] and it will be employed for the
compressible linear elasticity test case in Section 2.1.2. Also inhomogeneous boundary conditions can be imposed through
the definition of traces of functions in graph spaces as in [52] or through a Petrov-Galerkin formulation as in [12]. In the
following, we will present in detail three FS on which we will focus in the numerical test section.

2.1.1 Curl–curl problem: Maxwell equations in stationary regime

We will consider the Maxwell equations in stationary regime, also known as the curl-curl problem. Let E ∈ Rd = R3 be the
electric field and H ∈ R3 be the magnetic field. The curl–curl problem is defined as{

µH+∇×E = r,

σE−∇×H = g,

with µ, σ > 0, the permeability and permittivity constants. The FS is obtained by setting

A0 =

[
µId,d 0d,d
0d,d σId,d

]
, Ak =

[
0d,d Rk

(Rk)T 0d,d

]
, f =

(
r
g

)
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with Rk
ij = ϵikj being the Levi-Civita tensor. The graph space is V = H(curl,Ω)×H(curl,Ω). The boundary operator is

D =

d∑
k=1

nkA
k =

[
0d,d T
T T 0d,d

]
, with T ξ := n× ξ, (16)

⟨D(H,E), (h, e)⟩V ′ ,V = (n×E, e)L2(∂Ω) − (n×H,h)L2(∂Ω). (17)

We impose homogeneous Dirichlet boundary conditions tangential to the electric field (n×E)|∂Ω = 0 through

M =

[
0d,d −T
T T 0d,d

]
, ⟨M(H,E), (h, e)⟩V ′ ,V = −(n×E, e)L2(∂Ω) − (n×H,h)L2(∂Ω). (18)

2.1.2 Compressible linear elasticity

We consider the parametric compressible linear elasticity system in Rd = R3, where σ ∈ Rd×d is the stress tensor and u ∈ Rd

is the displacement vector. The system can be written as(
σ − µ1(∇ · u)I3,3 − 2µ2

(∇u+(∇u)t)
2

− 1
2∇ · (σ + σt) + µ3u

)
=

(
0
r

)
, ∀x ∈ Ω, (19)

where r ∈ R3, and µ1, µ2 > 0 are the Lamé constants. Rescaling the displacement u by 2µ2, we obtain(
σ − µ1

2µ2+3µ1
tr(σ)I3,3 −

(∇u+(∇u)T )
2

− 1
2∇ ·

(
σ + σT

)
+ µ3

2µ2
u

)
=

(
0
r

)
, ∀x ∈ Ω. (20)

In this case, we consider the graph space

V = Hσ × [H1(Ω)]d, Hσ = {σ ∈ [L2(Ω)]d×d | ∇ · (σ + σt) ∈ [L2(Ω)]d}. (21)

If we reorder the coefficients of σ into a vector, we can define z =

(
σ
u

)
and have

A0 =

[
Id2,d2 − µ1

2µ2+3µ1
Z 0d2,d

0d,d2
µ3

2µ2
Id,d

]
, Ak =

[
0d2,d2 Ek

(Ek)T 0d,d

]
, f =

[
0d2

r

]
, (22)

with Z[ij],[kl] = δijδkl and Ek
[ij],l = − 1

2 (δikδjl + δilδjk). This leads to the definition of the boundary operator

D =

d∑
k=1

nkA
k =

[
0d2,d2 N
N T 0d,d

]
with Nξ := −1

2
(n⊗ ξ + ξ ⊗ n), (23a)

⟨D(σ,u), (τ ,v)⟩V ′ ,V = −⟨ 12 (σ + σt) · n,v⟩− 1
2 ,

1
2
− ⟨ 12 (τ + τ t) · n,u⟩− 1

2 ,
1
2
. (23b)

Mixed boundary conditions u|ΓD
= 0 and (σ · n)|ΓN

= 0 can be applied through the following boundary operator on the
Dirichlet boundary ΓD and on the Neumann boundary ΓN :

⟨M(σ,u), (τ ,v)⟩V ′ ,V =− ⟨ 12 (σ + σt) · n,v⟩− 1
2 ,

1
2 ,ΓD

+ ⟨ 12 (τ + τ t) · n,u⟩− 1
2 ,

1
2 ,ΓD

+ ⟨ 12 (σ + σt) · n,v⟩− 1
2 ,

1
2 ,ΓN

− ⟨ 12 (τ + τ t) · n,u⟩− 1
2 ,

1
2 ,ΓN

,
(24)

the constructive procedure employed to define the boundary operator M ∈ L(V, V ′) is reported in the Appendix B.

2.1.3 Grad–div problem: advection–diffusion–reaction equations

Another example is the advection–diffusion–reaction equation

−∇ · (κ∇u) + β · ∇u+ µu = r, (25)

with κ ∈ [L∞(Ω)]d×d and β ∈ [W 1,∞(Ω)]d, under the hypothesis that κ ∈ [L∞(Ω)]d×d and µ−∇ ·β ∈ L∞(Ω) are uniformly
bounded from below to satisfy the positivity property (2b). Let us write the equation in the mixed form with σ = −κ∇u

and z =

(
σ
u

)
. Then, (25) can be rewritten as (6) with

A0 =

[
κ−1 0d,1
01,d µ

]
, Ak =

[
0d,d ek
(ek)

T βk

]
, f =

(
0
r

)
. (26)
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Here, 0m,ℓ ∈ Rm×ℓ is a matrix of zeros and ek is the unitary vector with the k-th entry equal to 1. The graph space is
V = H(div,Ω)×H2(Ω). The boundary operator D becomes

D =

d∑
k=1

nkA
k =

[
0d,d n
nt β · n

]
, ⟨D(σ, u), (τ , v)⟩V ′ ,V = ⟨σ · n, v⟩− 1

2 ,
1
2
− ⟨τ · n, u⟩− 1

2 ,
1
2
. (27)

Homogeneous Dirichlet boundary conditions u|∂Ω = 0 can be imposed with

M =

[
0d,d −n
nt 0

]
, (28)

while Robin/Neumann boundary conditions of the type σ · n = γu are imposed with

M =

[
0d,d n
−nt 2γ + β · n

]
. (29)

For our test case in Section 6, we will consider as advection field β : Ω → Rd an incompressible velocity field from the
solution of the 2d incompressible Navier-Stokes equations as described later. Similarly to the linear compressible elasticity
mixed boundary conditions in Section 2.1.2, we want to impose u|ΓD

= g ∈ [L
1
2 (ΓD)]d and (σ · n)|ΓN

= 0. This is possible
with

⟨M(σ, u), (τ , v)⟩V ′ ,V = ⟨σ · n, v⟩− 1
2 ,

1
2 ,ΓD

+ ⟨τ · n, u⟩− 1
2 ,

1
2 ,ΓD

− ⟨σ · n, v⟩− 1
2 ,

1
2 ,ΓN

− ⟨τ · n, u⟩− 1
2 ,

1
2 ,ΓN

, (30)

the proof is similar to the one reported in Appendix B.

3 Discontinuous Galerkin discretization

In the literature, a few discretization approaches for FS are presented, e.g. finite volume method [78] or discontinuous
Galerkin (DG) method [28, 24, 12]. More recently, a hp-adaptive hybridizable DG formulation was introduced in [17]. In
this work, we perform a DG discretization following the notation reported in [28, 24]. Consider a shape-regular tessellation
Th of the domain Ω and take a piecewise polynomial space Vh over Th, defined by Vh = {z ∈ V : z|T ∈ Pk

d(T ),∀T ∈ Th},
where k is the polynomial degree. We assume that there is a partition PΩ = {Ωi}1≤i≤NΩ

of Ω into disjoint polyhedra such
that the exact solution z belongs to V ∗ = V ∩ [H1(PΩ)]

m. We define the discrete bilinear form ∀yh ∈ Vh, z ∈ V ∗

acfh (z, yh) =
∑
T∈Th

(Az, yh)L2(T ) +
1
2

∑
F∈Fb

h

((M−D)z, yh)L2(F ) −
∑

F∈Fi
h

(DF [[z]], {{yh}})L2(F ) (31a)

=
∑
T∈Th

(z, Ãyh)L2(T ) +
1
2

∑
F∈Fb

h

((M+D)z, yh)L2(F ) +
∑

F∈Fi
h

(DF {{z}}, [[yh]])L2(F ), (31b)

where the first two terms are the piece-wise discontinuous discretization of the bilinear form (12a) and the last term penalizes
the jump across neighboring cells and stabilizes the method. Here, Fb

h is the collection of the faces of the triangulation Th
belonging to the boundary of Ωh, while F i

h is the collection of internal faces. The jump and the average of a function on
a face F shared by two elements T1 and T2 are defined as [[u]] = u|T1

− u|T2
and {{u}} = 1

2 (u|T1
+ u|T2

), respectively. The

boundary operator D : ∂Ω → Rm×m can be extended also on the internal faces F ∈ F i
h as DF =

∑d
k=1 n

F
k A

k, where nF is a
normal to the face F and it is well-defined.

In order to obtain quasi-optimal error estimates, extra stabilization terms are needed. We additionally impose that

Ai ∈ [C0,
1
2 (Ωj)]

m×m, ∀T ∈ Th, i = 1, . . . , d, ∀Ωj ∈ PΩ. A possibility is given by the following stabilization term

sh(z, yh) =
∑

F∈Fb
h

(Sb
F z, yh)L2(F ) +

∑
F∈Fi

h

(Si
h[[z]], [[yh]])L2(F ), (32)

where the operators Si
h and Sb

F have to satisfy the following constraints for some αj > 0 for j = 1, . . . , 5:

Sb
F z = 0 ∀F ∈ Fb

h, Si
F [[z]] = 0 ∀F ∈ F i

h, with z the exact solution, (33a)

Sb
F and Si

F are symmetric and nonnegative, (33b)

Sb
F ≤ α1Im,m, α2|DF | ≤ Si

F ≤ α3Im,m, (33c)

|((M −D)y, z)L2(F )| ≤ α4((S
b
F +M)y, y)

1/2
L2(F )∥z∥L2(F ), (33d)

|((M +D)y, z)L2(F )| ≤ α5((S
b
F +M)z, z)

1/2
L2(F )∥y∥L2(F ). (33e)
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Specific definitions of these operators for our test cases are presented in [28, 24], properly declined for our mixed boundary
conditions in the compressible linear elasticity and advection–diffusion–reaction test cases, see Sections 2.1.2 and 2.1.3,
respectively. Finally, we can define the bilinear form and the right-hand side

ah(z, yh) = acfh (z, yh) + sh(z, yh), lh(yh) =
∑
T∈Th

(f, yh)L2(T ) +
1
2

∑
F∈Fb

h

((M −D)g, yh)L2(F ) (34)

that lead to the definition of the discrete problem.

Definition 1 (DG Friedrichs’ System). Given f ∈ L and g ∈ Vh, the DG approximation of the FS constitute in finding a
zh ∈ Vh such that

ah(zh, yh) = lh(yh), ∀yh ∈ Vh. (35)

To prove the accuracy of the discrete problem, it is necessary to have the following conditions:

• Consistency, i.e., ah(z, yh) = a(z, yh) for z ∈ V ∗;

• L2-coercivity, i.e., ah(yh, yh) ≥ µ0∥yh∥2L + 1
2 |yh|

2
M , with |yh|2M =

∫
∂Ω
ytMy;

• Inf-sup stability

|||zh||| ≲ sup
yh ̸=0

ah(zh, yh)

|||yh|||
(36)

with |||y|||2 = ||y||2L2 + |y|2M + |y|2S +
∑

T∈Th
hT
∥∥Ak∂ky

∥∥2
L2(T )

and |y|2S = sh(y, y);

• Boundedness ah(w, yh) ≲ |||w|||∗|||yh||| with

|||y|||2∗ = |||y|||2 +
∑
T∈Th

(
h−1
T ||y||2L2(T ) + ||y||2L2(∂T )

)
. (37)

Theorem 3 (Error estimate from [28, 24]). Let z ∈ V ∗ be the solution of the weak problem (13a) and z ∈ Vh be the solution
of the discrete DG problem (35). Then, the consistency and inf-sup stability of the discrete system (35) imply

|||z − zh||| ≲ inf
yh∈Vh

|||z − yh|||∗, (38)

in particular, if z ∈ [Hk+1(Ω)]m the following convergence rate holds

|||z − zh||| ≲ hk+
1
2 ∥z∥[Hk+1(Ω)]m . (39)

4 Projection-based model order reduction

The computation of discrete solutions of parametrized PDEs can require a not negligible computational time. In particular, in
multi-query context, when many evaluations for different parameters are required, the computations may become unbearable.
In this section, we introduce a reduced order model (ROM) for the FS in case of parameter dependent problems [44, 76], in
order to drastically reduce the computational costs. To do so, we exploit two aspects of the above presented FS: the linearity
of the problems and the affine dependence of the operators on the physical parameters.

As we have seen in Section 2.1, all the problems are depending on some parameters ρ ∈ P ⊂ RNpar and the dependence
is affine. This means that it is possible to find Naff terms independent on the parameters for each form, such that they can
be affinely combined with some parameter dependent functions to obtain the original operator, i.e.,

ah(z, yh;ρ) =

Naff∑
ℓ=1

θaℓ (ρ)aℓ,h(z, yh), lh(yh) =

Naff∑
ℓ=1

θfℓ (ρ)lh,l(yh). (40)

Then, we select a reduced space Vr ⊂ Vh provided by a compression algorithm, e.g. SVD/POD/PCA [53, 58, 82] or
Greedy algorithm [69, 68, 44, 20]. We suppose that the reduced dimension r is much smaller than the dimension Nh of the
full order model space Vh. We look as ansatz for a reduced solution zRB ∈ Vr a linear combination of the bases {ψRB

j }rj=1 of
Vr, i.e.,

zRB =

r∑
j=1

zjRBψ
RB
j , (41)

then, performing a standard Galerkin projection, we obtain the following RB problem.
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Definition 2 (Reduced Basis Problem). Find zRB ∈ Vr, given by the coefficients zjRB, such that

r∑
i=1

zjRB(ρ)

Naff∑
ℓ=1

θaℓ (ρ)aℓ,h(ψ
RB
j , ψRB

i ) =

Naff∑
ℓ=1

θfℓ (ρ)(fℓ, ψ
RB
i ), for all i = 1, . . . , r. (42)

The obtained problem scales depend on the dimension r and Naff in its assembly and only on r in its solution, and it is
completely independent on Nh. To obtain computational advantages for the parametric problem, we split the tasks into an
expensive offline phase and a cheap online phase. In the offline phase, we find the reduced space Vr and we assemble the
reduced matrices and right hand sides

Aℓ := {aℓ,h(ψRB
j , ψRB

i )}i,j , bℓ := {(fℓ, ψRB
i )}i. (43)

In the online phase, we can simply evaluate the coefficients θaℓ (ρ) and θ
f
ℓ (ρ) and obtain the reduced linear system

A(ρ)zRB = b(ρ), with A(ρ) :=
∑
ℓ

θaℓ (ρ)Aℓ and b(ρ) :=
∑
ℓ

θfℓ (ρ)bℓ. (44)

This gives a great speed up in computational times.

4.1 Reduced basis a posteriori error estimate

We derive two error estimators for the energy norm and the L2 norm of the reduced basis error eh = zh− zRB ∈ Vh following
the procedure in [44]. Exploiting the equality in (31), we obtain the following lower bound

ah(eh, eh) =a
cf
h (eh, eh) + sh(eh, eh) (45a)

=
∑
T∈Th

(Aeh, eh)L2(T ) +
1
2

∑
F∈Fb

((M−D)eh, eh)L2(F ) −
∑

F∈Fi
h

(DF [[eh]], {{eh}})L2(F ) + (45b)

∑
F∈Fb

h

(Sb
F eh, eh)L2(F ) +

∑
F∈Fi

h

(Si
h[[eh]], [[eh]])L2(F ) (45c)

=
∑
T∈Th

((A0 − 1
2X )eh, eh)L2(T ) +

1
2

∑
F∈Fb

(Meh, eh)L2(F ) +
∑

F∈Fb
h

(Sb
F eh, eh)L2(F ) +

∑
F∈Fi

h

(Si
h[[eh]], [[eh]])L2(F ) (45d)

≥µ0∥eh∥2L + 1
2 |eh|

2
M + |eh|2S , (45e)

where we have defined | · |2M = 1
2

∑
F∈Fb (M·, ·)L2(F ) and | · |2S = sh(·, ·). We define the R-norm

||yh||2R = µ0∥yh∥2L + 1
2 |yh|

2
M + |yh|2S , ∀yh ∈ Vh, (46)

that may depend on ρ only through µ0 and is generated by the scalar product

⟨uh, vh⟩R = µ0

∑
T∈Th

(uh, vh)L2(T ) +
1
2

∑
F∈Fb

(Msymuh, vh)L2(F ) +
∑
F b

(Sbuh, vh) +
∑
F i

(Siuh, vh). (47)

The boundary operators we will employ in our benchmarks are all skew-symmetric so Msym = M+Mt

2 is the null matrix
and |eh|M = 0. Now, we can proceed to provide an a posteriori error estimate for the R-norm and energy norm. Hence, let
us define rRB(yh) = lh(yh; ρ)− ah(zRB , yh; ρ) and its R and L-Riesz representations as r̂R and r̂L such that

rRB(uh) = ⟨r̂R, uh⟩R, XRr̂R = Lh −AhzRB , rRB(uh) = ⟨r̂L, uh⟩L, XLr̂L = Lh −AhzRB , (48)

where XR and XL are the R-norm and L-norm mass matrices, and Lh, Ah and zRB are the representations of lh(·; ρ),
ah(·, ·; ρ) and zRB in the DG basis of Vh. The r̂L representation can be computed cheaply when the parametric model is
affinely decomposable with respect to the parameters, while r̂R requires the inversion of a possibly parametric dependent
matrix XR.

Now, consider the energy norm of the error ∥eh∥2nrg = ah(eh, eh) and the coercivity constant ∥eh∥2nrg ≥ µ0∥eh∥2L derived
in (45e), we have the following a posteriori error estimates

∥eh∥nrg
∥zh∥nrg

≤ ||r̂R||R
∥zh∥nrg

,
∥eh∥R
∥zh∥R

≤ ||r̂R||R
∥zh∥R

,
∥eh∥nrg
∥zh∥nrg

≤ ||r̂L||L√
µ0∥zh∥nrg

,
∥eh∥L
∥zh∥L

≤ ||r̂L||L
µ0∥zh∥L

, (49)

namely, the relative energy error with the corresponding a posteriori R-norm energy estimate, the relative R-norm error
with the corresponding a posteriori R-norm estimate, the relative energy error with the corresponding a posteriori L-norm
energy estimate, and the relative L-norm error with the corresponding a posteriori L-norm estimate.
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4.2 Optimally stable error estimates for the ultraweak Petrov-Galerkin formulation

In this section, we show that Friedrichs’ systems are a desirable unifying formulation to consider when performing model
order reduction also due to the possibility to achieve an optimally stable formulation. This can further simplify the error
estimator analysis reaching the equality between the error and the residual norm. This is not the first case in which optimally
stable formulations are introduced also at the reduced level, see [11, 39, 42]. In the following, we describe how to achieve
this ultraweak formulation and we delineate the path one should follow to use such formulation. Nevertheless, we will not
use this formulation in our numerical tests and we leave the implementation to future studies.

We introduce the following Discontinuous Petrov-Galerkin (DPG) formulation from [12]. To do so, we first define V (Th)
the broken graph space with norm ∥•∥2V (Th)

= ∥•∥2L +
∑

T∈Th
∥A•∥2L2(T ) and Ṽ = V/Q(Ω) the quotient of the graph space V

with

Q(Ω) =

{
z ∈ V

∣∣∣∣ ∑
T∈Th

⟨Dz, y⟩Ṽ (T ),V (T ) +
1
2 ⟨(M −D)z, y⟩Ṽ (Ω),V (Ω) = 0, ∀y ∈ V (Th)

}

=

{
z ∈ V

∣∣∣∣ a(z, y) = 0, ∀y ∈ V (Th)
}
.

(50)

The DPG formulation reads: find (z, q) ∈ L× Ṽ such that, for all y ∈ V (Th),∑
T∈Th

(z, Ãy)L2(T ) +
∑
T∈Th

⟨Dq, y⟩Ṽ (T ),V (T ) +
1
2 ⟨(M −D)q, y⟩Ṽ ,V =

∑
T∈Th

(f, v)Ṽ (T ),V (T ) +
1
2 ⟨(M −D)g, y⟩Ṽ ,V . (51)

The introduction of the hybrid face variables q ∈ Ṽ is necessary since z ∈ L does not satify (8). In practice, assuming that the
traces of y ∈ V (Th) are well-defined and belong to a space X(Fi,b), we can formulate (51) as follows: find (z, q) ∈ L×X(Fi,b)
such that, for all y ∈ V (Th),∑
T∈Th

(z, Ãy)L2(T ) +
∑
F∈Fi

(Dq, [[y]])X(F ) +
1
2

∑
F∈Fb

((M−D)q, y)X(F ) =
∑
T∈Th

(f, v)Ṽ (T ),V (T ) +
1
2

∑
F∈Fb

((M−D)g, y)X(F ), (52)

where X(Fi,b) is, for example, [H− 1
2 (Fi,b)]

d × [H
1
2 (Fi,b)]

d for compressible linear elasticity, H− 1
2 (Fi,b) × H

1
2 (Fi,b) for the

scalar advection–diffusion–reaction and L2
T (Fi,b) × L2

T (Fi,b) for the Maxwell equations in stationary regime, with L2
T (Fi,b)

being the space of fields in H(curl, Th) whose tangential component belongs to [L2(Fi,b)]
3.

The problem (51) above is well-posed and consistent [12, Lemma 2.4] with the previous formulation in (13a). We consider
the optimal norms,

∥(z, q)∥2U =
∑
T∈Th

∥z∥2L(T ) + ∥q∥2
Ṽ
, ∥y∥2Y =

∑
T∈Th

∥Ãy∥2L(T ) + ∥[[y]]∥2∂Ωh
, with ∥[[y]]∥∂Ωh

= sup
q∈Ṽ

a(q, y)

∥q∥Ṽ
, (53)

or formally, considering (52)

∥(z, q)∥2U =
∑
T∈Th

∥z∥2L(T ) +
∑

F∈Fi,b

∥q∥2X(F ), ∥y∥2Y =
∑
T∈Th

∥Ãy∥2L(T ) +
∑
F∈Fi

∥DF [[y]]∥2X(F ) +
∑
F∈Fb

∥(Mt −D)y∥2X(F ). (54)

With these optimal norms for the trial and test spaces we have the following result [13, Theorem 2.6].

Theorem 4 (Optimally stable formulation). The bilinear form b : (L× Ṽ , ∥•∥U ) → (V (Th), ∥•∥Y) defined as

b(u, y) =
∑
T∈Th

(z, Ãy)L2(T ) +
∑
T∈Th

⟨Dq, y⟩Ṽ (T ),V (T ) +
1
2 ⟨(M −D)q, y⟩Ṽ ,V (55)

with u = (z, q), is an isometry between L× Ṽ and V ′(Th): we have that γ = β = β∗ = 1, where

γ := sup
u∈U

sup
y∈Y

b(u, y)

∥u∥U∥y∥Y
, β := inf

u∈U
sup
y∈Y

b(u, y)

∥u∥U∥y∥Y
, β∗ := inf

y∈Y
sup
u∈U

b(u, y)

∥u∥U∥y∥Y
(56)

with U = (L× Ṽ , ∥•∥U ).

This property is inherited at the discrete level as long as fixed UNh

h ⊂ U a discretization of the trial space with dim Zh =

Nh, the discrete test space Y Nh

h ⊂ V (Th) is the set of supremizers

Y Nh

h = span

{
yuh

∈ V (Th)
∣∣∣∣ y = argmax

y∈V (Th)

b(uh, y)

∥y∥Y
, uh ∈ ZNh

h

}
(57)
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and dim Uh = dim Yh, see [13, Lemma 2.8]. In particular, for every uh = (zh, qh) ∈ UNh

h , we have the optimal a posteriori
error estimate

∥u− uh∥U = sup
y∈V (Th)

b(u− uh, y)

∥y∥Y
= ∥rh(uh)∥(V (Th))′ , ⟨rh(uh), v⟩(V (Th))′,V (Th) = ⟨f, v⟩(V (Th))′,V (Th) − b(uh, v). (58)

The same reasoning can be iterated another time to perform model order reduction with the choice Vn = {ψRB
j }rj=1 ⊂ UNh

h ⊂
U , and

Y RB = span

{
yuRB

∈ V (Th)
∣∣∣∣ y = argmax

y∈V (Th)

b(uRB , y)

∥y∥Y
, uRB ∈ Vn

}
, (59)

such that for uRB ∈ Vn,

∥u− uRB∥U = ∥rRB(uRB)∥(V (Th))′ , ⟨rRB(uRB), v⟩(V (Th))′,V (Th) = ⟨f, v⟩(V (Th))′,V (Th) − b(uRB , v). (60)

The main difficulty is the evaluation of the trial spaces Y Nh

h and Y RB since the bilinear form b may depend on the
parameters ρ. If the parameters affect only the source terms, the boundary conditions or the initial conditions for time-
dependent FS, this problem is avoided. The evaluation of Y Nh

h can be performed locally for each element T ∈ Th, differently
from Y RB . An example of the evaluation of the basis of Y Nh

h is presented in [13, Equations 24, 25] for linear scalar hyperbolic
equations that can be interpreted as FS.

5 Domain decomposable Discontinuous Galerkin ROMs

Extreme-scale parametric models are unfeasible to reduce with standard approaches due to the high computational costs of
the offline stage. Parametric multi-physics simulations, such as fluid-structure interaction problems, are reduced inefficiently
with a global reduced basis, depending on the complexity of the interactions between the physical models considered and
the parametric dependency. In some cases, only a part of a decomposable system is reducible with a ROM, thus a possible
solution is to implement a ROM-FOM coupling through an interface. In presence of moving shocks [7] affected by the
parametrization, one may want to isolate these difficult features to approximate and apply different dimension reduction
methodologies depending on the subdomain. These are the main reasons to develop domain decomposable or partitioned
ROMs (DD-ROMs).

Some approaches from the literature are the reduced basis element methods [61, 62], the static condensation reduced
basis element method [48, 27], non-intrusive methods based on local regressions in each subdomain [85, 86], overlapping
Schwarz methods [23, 50], optimization-based MOR approaches [70, 71] and hyper-reduced ROMs [60]. In this last case,
local approximations are useful because the local reduced dimensions are smaller and therefore more accurate local regressions
can be designed to perform non-intrusive surrogate modelling. Little has been developed for the DG method, even though
its formulation imposes naturally flux and solution interface penalties at the internal boundaries of the subdomains, in
perspective of performing model order reduction. In our case, the linear systems associated to the parametric models are
algebraically partitioned in disjoint subdomains coupled with the standard penalties from the weak DG formulations, without
the need to devise additional operators to perform the coupling as long as the interfaces’ cuts fall on the cell boundaries.

Another less explored feature of DD-ROMs is the possibility to repartition the computational domain, while keeping the
data structures relative to each subdomain local in memory, with the aim of obtaining more efficient or accurate ROMs. In
fact, one additional reason to subdivide the computational domain is to partition the solution manifold into local solution
manifolds that have a faster decay of the Kolmogorov n-width. The repartition of the computational domain can be performed
with ad hoc domain decomposition strategies. To our knowledge, the only case found in the literature is introduced in [86],
where the degrees of freedom are split in each subdomain minimising the communication and activity between them and
balancing the computational load across them. Relevant is the choice of weights to assign to each degree of freedom: uniform
weights, nodal values of Reynolds stresses for the turbulent Navier-Stokes equations or the largest singular value of the
discarded local POD modes. In particular, the last option results in a balance of energy in L2 norm retained in each
subdomain. We explore a different approach.

It must be remarked that in any case, fixed the value of the reconstruction error of the training dataset in Frobenious norm
∥·∥F , there must be at least a local reduced basis dimension greater or equal to the global reduced basis space dimension. In
fact, for the Eckhart-Young theorem, if X ∈ Rd×n is the snapshots matrix ordered by columns, we have that the projection
into the first k modes {vk}ki=1 achieves the best approximation error in the Frobenious norm in the space of matrices of rank
k:

Pk = argmin
P∈Rm×ns.t. r(P )=k

∥X − PX∥F , Pk =

k∑
i=1

vi ⊗ vi, (61)
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where r(·) is the matrix rank. So, in general, it is not possible to achieve a better training approximation error in the
Frobenious norm ∥·∥F employing a number of local reduced basis smaller than what would be needed to achieve the same
accuracy with a global reduced basis. So, differently from [86], instead of balancing the local reduced basis dimension among
subdomains, we repartition the computational domain in regions whose restricted solution manifold is easily approximable
by linear subspaces and regions for which more modes are needed. Anyway, for truly decomposable systems we expect that
the reconstruction error on the test set is lower when considering local reduced basis instead of global ones, as will be shown
for the Maxwell equation in stationary regime test case with discontinuous piecewise constant parameters, see Figure 7.

5.1 Implementation of Domain Decomposable ROMs

Let us assume that the full-order model is implemented in parallel with distributed memory parallelism with K > 1 cores, i.e.,
each i-th core owns locally the data structures relevant only to its assigned subdomain Ωi of the whole computational domain
∪K
i=1Ωi = Ωh ⊂ Rd, for i = 1, . . . ,K. We will employ the deal.II library [6] to discretize the FS with the DG method,

assemble the associated linear systems and solve them in parallel [9]. In particular, we employ p4est [14] to decompose
the computational domain, PETSc [8] to assemble the linear system and solve it at the full-order level and petsc4py [22] to
assemble and solve the reduced order system. At the offline and online stages the computations are performed in a distributed
memory setting in which each core assembles its own affine decomposition, so that the evaluation of the reduced basis and
of the projected local operators is always performed in parallel.

The weak formulation (35) is easily decomposable thanks to the additive properties of the integrals. We recall the
definition of the weak formulation ∀yh ∈ Vh, zh ∈ V ∗

acfh (zh, yh) + sh(zh, yh) =
∑
T∈Th

(zh, Ãyh)L2(T ) +
1
2

∑
F∈Fb

h

((M+D)zh, yh)L2(F ) +
∑

F∈Fi
h

(DF {{zh}}, [[yh]])L2(F )+∑
F∈Fb

h

(Sb
F zh, yh)L2(F ) +

∑
F∈Fi

h

(Si
h[[zh]], [[yh]])L2(F ),

(62)

and we decompose it into the K subdomains as

acfh (zh, yh) + sh(zh, yh) =

K∑
i=1

 ∑
T∈Th,i

(zh, Ãyh)L2(T ) +
1
2

∑
F∈Fb

h,i

((M+D)zh, yh)L2(F ) +
∑

F∈Fi
h,i

(DF {{zh}}, [[yh]])L2(F )+

∑
F∈Fb

h,i

(Sb
F zh, yh)L2(F ) +

∑
F∈Fi

h,i

(Si
h[[zh]], [[yh]])L2(F )

+

K∑
i=1
j=i

 ∑
F∈Fi

h,i,j

(DF {{zh}}, [[yh]])L2(F )+

∑
F∈Fi

h,i,j

(Si
h[[zh]], [[yh]])L2(F )

 ,

(63)

lh(yh) =
∑
T∈Th

(f, yh)L2(T ) +
1
2

∑
F∈Fb

h

((M −D)g, yh)L2(F ) =

K∑
i=1

 ∑
T∈Th,i

(f, yh)L2(T ) +
1
2

∑
F∈Fb

h,i

((M −D)g, yh)L2(F )

 , (64)

where we have defined the internal subsets Th,i = Th∩Ωi, F i
h,i = F i

h∩Ω̊i and Fb
h,i = Fb

h∩Ω̊i, ∀i = 1, . . . ,K and the interfaces

subsets F i
h,i,j = F i

h ∩Ωi ∩Ωj and Fb
h,i,j = Fb

h ∩Ωi ∩Ωj , ∀i = 1, . . . ,K. We remark that the computational domain is always

decomposed such that the cuts of the subdomains {∂Ωi}Ki=1 fall on the interfaces of the triangulation F i
h ∪ Fb

h.
We define the bilinear and linear operators in V ∗

h ,

Aii =
∑

T∈Th,i

(•, Ã•)L2(T ) +
1
2

∑
F∈Fb

h,i

((M+D)•, •)L2(F ) +
∑

F∈Fi
h,i

(DF {{•}}, [[•]])L2(F )+

∑
F∈Fb

h,i

(Sb
F •, •)L2(F ) +

∑
F∈Fi

h,i

(Si
h[[•]], [[•]])L2(F ), ∀i = 1, . . . ,K,

(65)

Aij = Aji =
∑

F∈Fi
h,i,j

(DF {{•}}, [[•]])L2(F ) +
∑

F∈Fi
h,i,j

(Si
h[[•]], [[•]])L2(F ), ∀j, i = 1, . . . ,K, i ̸= j, (66)

Fi =
∑

T∈Th,i

(f, •)L2(T ) +
1
2

∑
F∈Fb

h,i

((M −D)g, •)L2(F ), ∀i = 1, . . . ,K, (67)

12



and their matrix representation in the discontinuous Galerkin basis of Vh,

(Aii)|Vh
= Aii, Fi|Vh

= Fi, ∀i = 1, . . . ,K, (Aij)|Vh
= (Aji)|Vh

= Aij = Aji, ∀j, i = 1, . . . ,K, i ̸= j, (68)

and in the local reduced basis Vi = {ψRB
j,i }rj=1 ⊂ Vh(Ωi), i = 1, . . . ,K,

(Aii)|VRB
= Bii, Fi|VRB

= Li, ∀i = 1, . . . ,K, (Aij)|VRB
= (Aji)|VRB

= Bij = Bji, ∀j, i = 1, . . . ,K, i ̸= j. (69)

As anticipated, in our test cases the subdomains interface penalties are naturally included inside {Aij}i,j=1,...,K . In
practice, additional penalty terms could be implemented:

Sij =
∑

F∈Fi
h,i,j

(S[[•]], [[•]])L2(F ), Sij |Vh
= Sij (Aij + Sij)|VRB

= Bij , ∀j, i = 1, . . . ,K, i ̸= j. (70)

Figure 1: Assembly of the reduced block matrix {Bi,j}4i,j=1 through the projection onto the local reduced basis {Vi}4i=1 of the

full-order partitioned matrix A = {Ai,j}4i,j=1 when considering 4 subdomains. The natural DG penalty terms are included

in the matrix A without the need for additional penalty terms {Si,j}4i ̸=j, ,i,j=1 to impose stability at the reduced level.

A matrix representation of the projection of the full-order block matrix (Aij)
K
i,j=1 ∈ Rd×d into the reduced order block

matrix (Bij)
K
i,j=1 ∈ RKr×Kr is shown in Figure 1 for K = 4. We remark that, differently from continuous Galerkin

formulations, the DG penalization on jumps across the interfaces is already enough to couple the subdomains and there
is no need of further stabilization, as shown in Figure 1. Nonetheless, additional interface penalties terms can be easily
introduced, taking also into account DG numerical fluxes. The reduced dimension is the number of subdomains K times the
local reduced basis dimensions {ri}Ki=1, here supposed equal r = ri, i = 1, . . . ,K, but in general can be different.

5.2 Repartitioning strategy

A great number of subdomains can pollute the efficiency of the developed DD-ROMs at the online stage since the reduced
dimension would be

∑K
i=1 ri that scales linearly with the number of cores if the local reduced dimensions ri are equal. In

order to keep the computational savings in the assembly of the affine decomposition at the offline stage, we may want to
preserve the distributed property of our ROM. One possible solution is to fix a reduced number of subdomains k ≪ K such
that

∑k
i=1 ri is small enough to achieve a significant speedup with respect to the FOM. The additional cost with respect to

a monodomain ROM is associated to the evaluation of the k local reduced basis with SVD and the assembly of the affine
decomposition operators. The new k reduced subdomains do not need to be agglomerations of the FOM subdomains, hence,
different strategies to assemble the new k reduced subdomains can be investigated.

The number of subdomains K was kept the same as the FOM since it is necessary to collect the snapshots efficiently
at the full-order level through p4est . However, if we decide to repartition our computational domain, we can develop
decomposition strategies that reduce

∑K
i=1 ri. Ideally, having in mind the Eckhart-Young theorem, a possible strategy is to

lump together all the dofs of the cells that have a fast decaying Kolmogorov n-width, and focus on the remaining ones. We
test this procedure in the practical case k = 2, K = 4 to perform numerical experiments in section 5.3.

To solve the classification problem of partitioning the elements of the mesh into k subdomains, we describe here two
scalar indicators that will be used as metrics. For k = 2 subdomains, it will be sufficient to choose the percentage of cells
Pl corresponding to the lowest values of the chosen scalar indicator. Other strategies for k > 2 may also involve clustering
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algorithms and techniques to impose connectedness of the clusters, as done for local dimension reduction in parameter spaces
in [75]. A first crude and cheap indicator to repartition the computational domain is the cellwise variance of the training
snapshots, as it measures how well, in mean squared error, the training snapshots are approximated by their mean, ∀T ∈ Th.

Definition 3 (Cellwise variance indicator). We define the cellwise variace indicator Ivar : Th → R+,

Ivar(T ) =

∫
T

∥Var({z(ρi)}ni=1)∥L2(Rm) dx, (Var({z(ρi)}ni=1))l =
1
n

n∑
i=1

∣∣∣∣∣∣zl(ρi)− 1
n

n∑
j=1

zl(ρj)

∣∣∣∣∣∣
2

, l = 1, . . . ,m, (71)

where n > 0 is the number of training DG solutions {z(ρi)}ni=1 with z(ρi) : Ω ⊂ Rd → Rm, ∀i ∈ {1, . . . , n}.

Note that the indicator is a scalar function on the set of elements of the triangulation Th. This is possible thanks to the
assumption that boundaries of the subdomains belong to the interfaces of the elements of Th. When this hypothesis is not
fulfilled, we would need to evaluate additional operators to impose penalties at the algebraical interfaces between subdomains
that are not included in the set F i

h ∪ Fb
h, not to degrade the accuracy.

The cellwise variance indicator is effective for all the test cases for which there is a relatively large region that is not
sensitive to the parametric instances, as in our advection diffusion reaction test case in Section 5.3.3. Common examples
are all the CFD numerical simulations that have a far field with fixed boundary conditions. However, the variance indicator
may be blind to regions in which the snapshots can be spanned by a one or higher dimensional linear subspace and are not
well approximated by a constant field, as in the compressible linear elasticity test case in Section 5.3.2.

In these cases, a valid choice is represented by a cellwise Grassmannian dimension indicator. We denote with DT the
number of degrees of freedom associated to each element T , assumed constant in our test cases.

Definition 4 (Cellwise Grassmannian dimension indicator). Fixed 1 ≤ rT ∈ N, and 1 ≤ nneig ∈ N, we define the cellwise
Grassmannian dimension indicator IG : Th → R+,

IG(T ) = ∥XT − UTU
T
T XT ∥F , (72)

where XT ∈ RnneigDT×n is the snapshots matrix restricted to the cell T and its nneig nearest neighbours, and UT ∈ RnneigDT×rT

are the modes of the truncated SVD of XT with dimension rT .

The cellwise Grassmannian dimension indicator IG is a measure of how well the training snapshots restricted to a
neighbour of each cell are approximated by a rT dimensional linear subspace. Employing this indicator, we recover an
effective repartitioning of the computational subdomain of the compressible linear elasticity test case, see Section 5.3.2.
The Grassmannian indicator has two hyper-parameters that we fix for each test case in section 5.3: the number of nearest-
neighbour cells is nneigh = 3 and the number of reduced local dimension used to evaluate the L2 reconstruction error is
rT = 1. The number of nearest-neighbour is chosen to deal with critical cases at the boundaries and the closest neighbouring
cells are chosen based on the distance of barycenters. The reduced local dimension rT = 1 is chosen very small as the
computations must be done on very few cells.

We remark that both indicators do not guarantee that the obtained subdomains belong to the same connected components
and, though this might be a problem in terms of connectivity and computational costs for the FOM, at the reduced level
this does not affect the online computational costs. Nevertheless, in the tests we perform, the obtained subdomains are
connected.

Now, the assembly of the affine decomposition proceeds as explained in Section 5.1 with the difference that at least
one local reduced basis and reduced operator is split between at least 2 subdomains/cores. A schematic block matrix
representation of the procedure is shown in Figure 2.

5.3 Numerical experiments

In this section, we test the presented methodology for different linear parametric partial differential equations: the Maxwell
equations in stationary regime in section 5.3.1 (MS), the compressibile linear elasticity equations in section 5.3.2 (CLE)
and the advection diffusion reaction equations in section 5.3.3 (ADR). We study two different parametrizations for the test
cases MS and CLE: one with parameters that affect the whole domain MS1 and CLE1, and one with parameters that
affect independently different subdomains MS2 and CLE2. We show a case in which DD-ROMs work effectively MS2 and
a case CL2 in which the performance is analogous to single domain ROMs, even if the parameters have a local influence.

We test the effectiveness of the a posteriori error estimates introduced in section 4.1, the accuracy of DD-ROMs for K = 4
and the results of repartitioning strategies with k = 2 subdomains. When performing a repartition of the computational
domain Ω in subdomains {Ωi}ki=1 with reduced dimensions {rΩi

}ki=1, we call the subdomains with lower values of the variance
indicator Ivar, see definition 3, low variance regions and with lower values of the Grassmannian indicator IG, see definition 4,
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Figure 2: Repartitioning of the reduced block matrix shown in Figure 1 from K = 4 subdomains to k = 2 repartitioned
subdomains. The projection from the full-order matrix A = {Ai,j}4i,j=1 to the reduced matrix B = {Bi,j}2i,j=1 is sketched.
It is performed locally in a distributed memory setting, the re-ordering shown by the arrows is reported only to visually see
the which block structure of the full-order matrix A would correspond to the blocks of the reduced matrix B.

low Grassmannian reconstruction error. The complementary subdomains are the high variance and high Grassmannian
reconstruction error regions, respectively. We show a case (CLE1) in which the Grassmannian indicator detects a better
partition in terms of local reconstruction error with respect to the variance indicator.

We will observe that the relative errors in R-norm and energy norm and the L2 relative error estimator and L2 relative
energy norm estimator are the most affected by the domain partitions.

The open–source software library employed for the implementation of the full-order Friedrichs’ systems discontinuous
Galerkin solvers is deal.II [6] and we have used piecewise P2 basis functions in all simulations. The partition of the compu-
tational domain is performed in deal.II through the open–source p4est package [14]. The distributed affine decomposition
data structures are collected in the offline stage and exported in the sparse NumPy format [41]. The reduced order models and
the repartition of the computational domains are implemented in Python with MPI-based parallel distributed computing
mpi4py [21] and petsc4py [8] for solving the linear full-order systems through MUMPS [1], a sparse direct solver.

5.3.1 Maxwell equations in stationary regime (MS)

We consider the parametric Maxwell equations in the stationary regime in d = 3 spatial dimensions, with m = 6 equations,
on a torus Ω ⊂ R3 with inner radius r = 0.5 and outer radius R = 2 centered in 0 and lying along the (x, z) plane:(

µH+∇×E
σE−∇×H

)
=

(
g
f

)
, ∀x ∈ Ω, (73)

the tangential homogeneous boundary conditions n × E = 0 are applied with the boundary operator (18). We vary the
parameters in the interval ρ = (µ, σ) ∈ [0.5, 2]× [0.5, 3] ⊂ R2, leading to µ0 = min(µ, σ).

We consider the exact solutions

Hexact(x) = − 1

µ

(
2xy√
x2 + z2

,
−4y2

√
x2 + z2 +

√
x2 + z2(−12(x2 + z2)− 15) + 32(x2 + z2)

4(x2 + z2)
,

2xy√
x2 + z2

)
,

Eexact(x) =

(
z√

x2 + z2
, 0,− x√

x2 + z2

)
·
(
r2 − y2 −

(
R−

√
x2 + z2

)2
)
.

We remark that the exact solutions can be approximated with a linear reduced subspace of dimension 1, if we obtained
the reduced basis with a partitioned SVD on the fields (H,E) separtely. We do not choose this approach and perform a
monolithic SVD to test the convergence of the approximation with a DD-ROMs with respect to the local reduced dimensions.
The source terms are defined consequently as

g(x) = 0, f(x) = σEexact −∇×Hexact. (74)

We consider two parametric spaces:

ρ = (µ, σ) ∈ [0.5, 2]× [0.5, 3] = P1 ⊂ R2, (MS1) (75a)

ρ = (µ1, σ1, µ2, σ2) ∈ [0.5, 2]× [0.5, 3]× [0.5, 2]× [0.5, 3] = P2 ⊂ R4, (MS2) (75b)

where in the second case, the parameters µ and σ are now piecewise constant:

µ =

{
µ1, x < 0,

µ2, x ≥ 0,
σ =

{
σ1, x < 0,

σ2, x ≥ 0,
(76)
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where x = (x, y, z) ∈ Ω ⊂ R3. In Figure 3, we show solutions for µ = σ = 1 and for discontinuous values of the parameters:
µ1 = σ1 = 1 in {x < 0} ∩Ω and µ2 = σ2 = 2 in {x ≥ 0} ∩Ω. The FOM partitioned and DD-ROM repartitioned subdomains
are shown in Figure 4. ForMS1, we choose the variance indicator to repartition the computational subdomain in two subsets:
Pl = 20% of the cells for the low variance part and 80% for the high variance part. For MS2, we split the computational
domain in two parts with the Grassmannian indicator and Pl = 50%.

At the end of this subsection a comparison of the effectiveness of DD-ROMs with and without discontinuous parameters
will be performed, the associated error plots are reported in Figure 6 and Figure 7. We will see that, for this simple test case
MS2, there is an appreciable improvement of the accuracy when the computational domain subdivisions match the regions
{x < 0} ∩ Ω and {x ≥ 0} ∩ Ω in which µ and σ are constant. Such subdivision is detected by the Grassmannian indicator
with Pl = 50%, as shown in Figure 4 on the right. This is the archetypal case in which DD-ROMs are employed successfully,
in comparison with MS1 for which there is no significant improvement with respect to classical global linear reduced basis.

Figure 3: MS. Electric and magnetic fields of the Maxwell equations in stationary regime with Dirichlet homogeneous
boundary conditions n × E = 0. The vectors of the magnetic and electric fields are scaled by 0.5 and 2 of their magnitude
respectively. Left: MS1, µ = σ = 1, test case errors shown in Figure 6. Right: MS2, µ = σ = 1 in {x < 0} ∩ Ω and
µ = σ = 2 in {x ≥ 0} ∩ Ω, test case errors shown in Figure 7.

Figure 4: MS. Left: FOM computational domain partitioned in K = 4 subdomains inside deal.II. Center: MS1, DD-
ROM repartition of the computational subdomain k = 2 with the cellwise variance indicator Ivar, definition 3: 20% of the
cells belong to the low variance part, represented in blue inside the torus, and the other 80% belong to the high variance
part, represented in red. Right: MS2, DD-ROM repartition with variance indicator Pl = 50%. The computational domain
is exactly split at the interfaces that separate the subdomains {x < 0} ∩ Ω and µ = σ = 2 in which the parameters µ and σ
are constant.

In Figure 5, we show how the different thresholds applied to the two indicators can affect the reconstruction error on a
reduced space with rΩi = 3. All the lines plot the local relative error computed on different subdomains (either one of the k
DD-ROM subdomains or on the whole domain). On the x-axis it is shown the percentage of cells that are grouped into the
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low variance or low Grassmannian DD-ROM subdomain. We observe that the cellwise variance indicator is a good choice for
the purpose of repartitioning the subdomain from K = 4 to k = 2. Indeed, it is possible to build a low variance subdomain
(value of the abscissa 20% in Figure 5) with a low local relative reconstruction error (5 · 10−4) with respect to the global one
(8.6 · 10−4). This means that choosing the threshold Pl = 20% for the low variance subdomain, we should be able to use less
reduced basis functions for that subdomain without affecting too much the global error.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Percentage of mesh cells with low variance/low Grassmannian rec error (Pl)
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IG, low Grassmannian rec error
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SVD on whole domain
chosen Pl

whole variance
whole Grassmannian

Figure 5: MS1. Local relative L2-reconstruction errors of the snapshots matrix restricted to the two subdomains of the
repartitioning performed with the indicator Ivar (in red and light-blue), Definition 3, and IG (in orange and blue), Definition 4.
The relative L2-reconstruction error attained on the whole domain is shown in black for the indicator Ivar and in brown for
the indicator IG. The local reduced dimensions used to evaluate the local reconstruction errors is rΩi

= 3, i = 1, 2.

Test caseMS1. We evaluate ntrain = 20 training full-order solutions and ntest = 80 test full-order solutions, corresponding
to a uniform independent sampling from the parametric domain P1 ⊂ R2. Figure 6 shows the result relative to the relative
L2-error and relative errors in energy norm, with associated a posteriori estimators. The numberd abscissae 0, 5, 10, . . . , 95
represents the train parameters ntrain = 20 while the others ntest = 80 parameters are the test set. For these studies, we
have fixed the local reduced dimensions to rΩi = 3, i = 1, . . . ,K for K = 4, rΩ = 3 for the whole computational domain and
rΩ1 = 2, rΩ2 = 3 for the DD-ROM repartitioned case with k = 2. This choice of repartitioning with the 20% of low variance
cells and local reduced dimension rΩ1

= 2 does not deteriorate significantly the accuracy and the errors almost coincide for
all approaches. However, unless the parameters σ, µ assume different discontinuous values in the computational domain Ω,
DD-ROMs are not advisable for this test case if the objective is improving the predictions’ accuracy.

Test case MS2. Similarly to the previous case, we evaluate ntrain = 20 training full-order solutions and ntest = 80 test
full-order solutions, corresponding to a uniform independent sampling from the parametric domain P2 ⊂ R4. As mentioned
above, if we vary the parameters ρ = (µ, σ) discontinuously on the subdomains {x ≥ 0} ∩ Ω and x ∈ {x < 0} ∩ Ω, we
obtain the results shown in Figure 7. It can be seen that repartitioning Ω in k = 2 DD-ROM subdomains with the local
Grassmannian indicator IG and Pl = 50% produces effective DD-ROMs compared to the case of a single reduced solution
manifold for the whole computational domain and for the DD-ROM with k = 4 for which the subdomains do not match
{x < 0} ∩ Ω and {x ≥ 0} ∩ Ω. In this case, we kept the local dimension of DD-ROM repartitioned case with k = 2 equal
rΩ1 = rΩ2 = 3. For this simple test case, there is an appreciable improvement for some test parameters in the accuracy for
k = 2 instead of K = 4 or a classical global linear basis ROM.

In Table 1, we list the computational times and speedups for a simulation with the different methods. For an error
convergence analysis with respect to the size of the reduced space, we refer to Appendix C.

Table 1: MS1. Average computational times and speedups for ROM and DD-ROM approaches for Maxwell equations. The
speedup is computed as the FOM computational time over the ROM one. The FOM runs in parallel with 4 cores, so “FOM
time” refers to wallclock time.

FOM ROM DD-ROM
Nh time r time speedup ri time speedup

6480 254.851 [ms] 3 51.436 [µs] ∼ 495 [3, 3, 3, 3] 62.680 [µs] ∼ 406
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Figure 6: MS1. Errors and estimators for Maxwell equations corresponding to the ntrain = 20 uniformly sampled training
snapshots corresponding to the abscissae 0, 5, 10, . . . , 95, and ntest = 80 uniformly sampled test snapshots, corresponding
to the other abscissae. The reduced dimensions of the ROMs are {rΩi

}Ki=1 = [3, 3, 3, 3] for K = 4 partitions, rΩ = 3 for
k = 1 partition, and {rΩi

}ki=1 = [2, 3] for k = 2 partitions. For the case k = 2 we employed the cellwise variance indicator
IG, Definition 3, with Pl = 20%. It can be seen that even reducing the local dimension from 3 to 2 of one of the k = 2
repartitioned subdomains, the accuracy of the predictions does not decrease sensibly.
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Figure 7: MS2. Errors and estimators for Maxwell equations with discontinuous µ and σ corresponding to the ntrain = 20
uniformly sampled training snapshots corresponding to the abscissae 0, 5, 10, . . . , 95, and ntest = 80 uniformly sampled test
snapshots, corresponding to the other abscissae. The reduced dimensions of the ROMs are {rΩi

}Ki=1 = [3, 3, 3, 3] for K = 4
partitions, rΩ = 3 for k = 1 partition, and {rΩi}ki=1 = [3, 3] for k = 2 partitions. For the case k = 2 we employed the
cellwise local Grassmannian dimension indicator IG, Definition 3, with Pl = 50%. The subdivisions detected exactly match
the subdomains {x < 0} ∩Ω and {x ≥ 0} ∩Ω in which the parameters are constant. An improvement of the predictions can
be appreciated for some test parameters when employing k = 2 repartitions.
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5.3.2 Compressibile linear elasticity (CLE)

Next, we consider the parametric compressible linear elasticity system in d = 3 physical dimensions with a cylindrical shell
along the z-axis as domain: the inner radius is 1, outer radius 3 and height 10, and the base centered in 0. The m = 12
equations of the FS are (

σ − µ1(∇ · u)I3 − 2µ2
(∇u+(∇u)t)

2
− 1

2∇ · (σ + σt) + µ3u

)
=

(
0
f

)
, ∀x ∈ Ω ⊂ R3, (77)

where ρ = (µ1, µ2, µ3) ∈ [100, 1000]2 × [1, 1] = P ⊂ R3 and f = (0,−1, 0). The system can be rewritten as FS as in (20). We
define the boundaries

ΓD = ∂Ω ∩ {z = 0}, ΓN = ∂Ω \ ΓD. (78)

Mixed boundary conditions are applied with the boundary operator (24): homogeneous Dirichlet boundary conditions are
imposed on ΓD and homogeneous Neumann boundary conditions on ΓN .

We consider two parametric spaces:

ρ = (µ1, µ2) ∈ [100, 1000]2 = P1 ⊂ R2, (CLE1) (79a)

ρ = (µ1, µ2, f1, f2) ∈ [100, 1000]2 × [−2, 2]2 = P2 ⊂ R4, (CLE2) (79b)

where in the second case, the source term f is now piecewise constant:

f =

{
f1 · (0,−1, 0), z < 5,

f2 · (0,−1, 0), z ≥ 5.
(80)

We show two sample solutions for µ1 = µ2 = 1000 in Figure 8 for CLE1 and µ1 = µ2 = 1000, f1 = 1 and f2 = −1 for
CLE2, on the left and on the right, respectively. The partitioned and repartitioned subdomains are shown in Figure 9. For
the first case CLE1 we employ a mesh of 24 cells and 7776 dofs, for the second CLE2 a mesh of 60 cells and 19440 dofs.

Figure 8: CLE. Left: solution of the compressible linear elasticity FS CLE1 with parameter values µ1 = µ2 = 1000.
The cylindrical shell displacement u, and with a different colorbar also the field σez, named sigma 3, are shown. At the
extremity close to z = 0 homogeneous Dirichlet boundary conditions are imposed. Right: solution of the test case CLE2
with discontinuous values of the source terms along the computational domain {z < 5}∩Ω and {z ≥ 5}∩Ω: µ1 = µ2 = 1000,
f1 = 1 and f2 = −1.

Test case CLE1. This test case presents no region for which the restricted solutions are more or less approximable with
a constant field, as would be detected by the variance indicator: as shown in Figure 10, the local relative L2-reconstruction
error in the region with low variance, assigned by Ivar, deteriorates from the value 2 · 10−3 of the abscissae 0% and 100% to
1 · 10−2 of the abscissae 4%. Nonetheless, despite the parametric solutions are not approximabile efficiently with a constant
field, they are well represented by a one dimensional linear subspace in the region located by the cellwise Grassmannian
dimension indicator IG, for Pl = 12%. The associated low local Grassmannian dimension region for Pl = 12% is shown in
Figure 9 in blue.

Also in this test case, the employment of DD-ROMs is not advisable, since there are little gains in the local relative
L2-reconstruction error for the low local Grassmannian dimensional region (values around 3 ·10−3, in orange for the abscissa
Pl = 12%, in Figure 10). The choice of local reduced dimensions rΩ1 = 2 and rΩ2 = 3 does not affect greatly the errors shown
in Figure 11. Also in this case, we evaluate ntrain = 20 training full-order solutions and ntest = 80 test full-order solutions,
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Figure 9: CLE. Left: computational subdomains partitioned in K = 4 subdomains by petsc4py inside deal.II. Center:
test case CLE1 repartition of the computational subdomain k = 2 with the cellwise Grassmannian dimension indicator IG,
Definition 4: 12% of the cells belong to the low local Grassmannian dimension part, represented in blue inside the torus,
and the other 88% belong to the high local Grassmannian dimension part, represented in red. Right: test case CLE2
repartition of the computational subdomain k = 2 with the cellwise Grassmannian dimension indicator IG and Pl = 50%.

corresponding to a uniform independent sampling from the parametric domain P ⊂ R3. Also for these studies, we have fixed
the local dimensions to rΩi = 3, i = 1, . . . ,K for K = 4, rΩ = 3 for the whole computational domain and rΩ1 = 2, rΩ2 = 3
for the repartitioned case with k = 2.
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Figure 10: CLE1. Local relative L2-reconstruction errors of the snapshots matrix for elasticity equations restricted to the
two subdomains of the repartitioning performed with the indicator Ivar (in red and light-blue), Definition 3, and IG (in
orange and blue), Definition 4. The relative L2-reconstruction error attained on the whole domain is shown in black for the
indicator Ivar and in brown for the indicator IG. The local reduced dimensions used to evaluate the local reconstruction
errors is rΩi = 3, i = 1, 2.

Test case CLE2. Similarly to the previous case, we evaluate ntrain = 20 training full-order solutions and ntest = 80 test
full-order solutions, corresponding to a uniform independent sampling from the parametric domain P2 ⊂ R4. This time, if
we vary the parameters f1 and f2 inside different subdomains {z ≥ 5} ∩ Ω and {z < 5} ∩ Ω, we obtain the results shown in
Figure 12. It can be seen that repartitioning Ω in k = 2 DD-ROM subdomains with the local Grassmannian indicator IG
and Pl = 50% does not produce more accurate DD-ROMs compared to the case of a single reduced solution manifold for
the whole computational domain and for the DD-ROM with k = 4. In this case, we kept the local dimension of DD-ROM
repartitioned case with k = 2 equal rΩ1 = rΩ2 = 3. For this simple test case, there is not an appreciable improvement for
some test parameters in the accuracy for k = 2 instead of K = 4 or a classical global linear basis ROM. The reason is that
even if the parameters f1 and f2 affect different subdomains of Ω, the solutions on the whole domain are still well correlated.
Differently from the previous test case MS2 from section 5.3.1, this is a typical case for which DD-ROMs are not effective,
even if the parametrization affects independently two regions of the whole domain Ω.

In Table 2, we list the computational times and speedups for a simulation with the different methods. For an error
analysis with respect to the size of the reduced space, we refer to Appendix C.
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Figure 11: CLE1. Errors and estimators for elasticity equations corresponding to the ntrain = 20 uniformly sampled training
snapshots corresponding to the abscissae 0, 5, 10, . . . , 95, and ntest = 80 uniformly sampled test snapshots, corresponding
to the other abscissae. The reduced dimensions of the ROMs are {rΩi}Ki=1 = [3, 3, 3, 3] for K = 4 partitions, rΩ = 3 for
k = 1 partition, and {rΩi

}ki=1 = [2, 3] for k = 2 partitions. For the case k = 2 we employed the cellwise local Grassmannian
dimension indicator IG, Definition 4, with Pl = 12%.

Table 2: CLE. Average computational times and speedups for ROM and DD-ROM approaches for Maxwell equations. The
speedup is computed as the FOM computational time over the ROM one. The FOM runs in parallel with 4 cores, so “FOM
time” refers to wallclock time. The first row correspond to test case CLE1, the second to test case CLE2.

FOM ROM DD-ROM
Nh time r time speedup ri time speedup

7776 411.510 [ms] 3 80.444 [µs] ∼ 5115 [3, 3, 3 ,3] 85.108 [µs] ∼ 4835
19440 2.080 [s] 3 69.992 [µs] ∼ 29718 [3, 3, 3 ,3] 94.258 [µs] ∼ 22067
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Figure 12: CLE2. Errors and estimators corresponding to the ntest=80 uniformly sampled test snapshots corresponding
to the abscissae 0, 5, 10, . . . , 95, and ntrain=20 uniformly sampled training snapshots, corresponding to the other abscissae.
The reduced dimensions of the ROMs are {rΩi}Ki=1 = [3, 3, 3, 3] for K = 4 partitions, rΩ = 3 for k = 1 partition, and
{rΩi}ki=1 = [3, 3] for k = 2 partitions. For the case k = 2 we employed the cellwise variance dimension indicator Ivar,
Definition 3, with Pl = 50%.
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5.3.3 Scalar concentration advected by an incompressible flow (ADR)

We consider the parametric semi-linear advection diffusion reaction equation in d = 2 dimensions, with m = 3 equations,
rewritten in mixed form: 

κ−1σ +∇u = 0, in Ω,

∇ · σ + v · ∇u+ u = f, in Ω,

σ · n = 0, on ΓN ∪ ΓD,0,

u =
∑P

i=1 µiχIi , on ΓD,

(81)

where κ = 0.05 is fixed for this study,

ρ = (µ1, . . . , µP ) ∈ P ⊂ RP , P = {ρ ∈ {0, 1}P |µi = 1, µj = 0, ∀j ∈ {0, . . . , 99}\{i}}, (82)

and {χIi}
Npar

i=0 are the characteristic functions of the symmetric intervals Ii = 0× [−i0.01 + 1.5, i0.01 + 2.5], with Npar = 99.
The domain is shown in Figure 13. The advection velocity v is obtained from the following incompressible Navier-Stokes
equation at t = 2s: 

∂tv + v · ∇v − ν∆v +∇p = 0, in Ω

∇ · v = 0, in Ω

v × n = 0, p = 0, on ΓN

v = 0, on ΓD,0

v(t = 0) = vb, on ΓD

(83)

with initial conditions on the boundary ΓD, vb = v(x, y, t = 0) = (6y(4.1−y)/4.12, 0) ∈ R2 and ν ∈ R such that the Reynolds
number is Re = 100. The implementation is the one of step-35 of the tutorials of the deal.II library [6]. Homogeneous

Figure 13: ADR. Computational domain of the advection diffusion reaction equation FS (81) and the incompressible Navier-
Stokes equations (83). The boundary conditions specified for each system are reported in the text.

Neumann boundary on ΓN ∪ΓD,0 and Dirichlet non-homogeneous boundary conditions on ΓD are applied with the boundary
operator (30). A sample solution is shown in Figure 14 for µi = 0, i = 0, . . . , 98 and µ99 = 1, κ = 0.05. We remark that,
for the moment, we consider only fixed values of κ = 0.05. For a convergence of ROMs to vanishing viscosity solutions with
graph neural networks, see Section 6.

Scalar concentration u Magnitude of the advection velocity v

Figure 14: ADR. Left: scalar concentration u of the advection diffusion reaction equations (81), with µi = 0, i = 0, 98 and
µ99 = 1, κ = 0.05. Right: advection velocity employed for the FS (81), obtained as the velocity v from the INS (83) at
t = 2s.
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The FOM partitioned and DD-ROM repartitioned subdomains are shown in Figure 15. We choose the variance indicator
to repartition the computational subdomain in two subset: 21% of the cells for the low variance part and 79% for the high
variance part. With respect to the previous test cases, now it is evident the change in the order of magnitude of the local
relative L2-reconstruction error in Figure 16, especially for the cellwise variance indicator Ivar. We expect that lowering the
local reduced dimension of the low variance repartitioned region will not affect sensibly the accuracy.

We use for the monodomain approach rΩ = 5 reduced basis as well as rΩi
= 5 for i = 1, . . . ,K for the FOM partitioned

subdomains. In the DD-ROM approach, we can use even rΩ1 = 2 and rΩ2 = 5 for the lower and higher variance subdomains,
respectively, without affecting the error of the ROM solution, as we see in Figure 17. Indeed, the accuracy in terms of L2

and energy norms is essentially identical for all approaches, even with so little number of basis functions for the DD-ROM
one.

Figure 15: ADR. Domain of advection diffusion reaction equation. Left: computational subdomains partitioned in K = 4
subdomains by petsc4py inside deal.II. Right: DD-ROM repartition of the computational subdomain k = 2 with the
cellwise variance indicator Ivar, Definition 3: 21% of the cells belong to the low variance part, represented in blue, and the
other 79% belong to the high variance part in red.
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Figure 16: ADR. Local relative L2-reconstruction errors of the snapshots matrix of the advection diffusion reaction equation
restricted to the two subdomains of the repartitioning performed with the indicator Ivar (in red and light-blue), Definition 3,
and IG (in orange and blue), Definition 4. The relative L2-reconstruction error attained on the whole domain is shown
in black for the indicator Ivar and in brown for the indicator IG. The local reduced dimensions used to evaluate the local
reconstruction errors is rΩi

= 3, i = 1, 2.

Again, we evaluate ntrain = 20 training full-order solutions and ntest = 80 test full-order solutions, corresponding to the
parameter choices µi = 1 and µī = 0, for i = 0, . . . , 99, with fixed viscosity κ = 0.05, where ī represents all the indices in
{0, . . . , 99} except from i. So, the training snapshots correspond to i = 0, 5, 10, . . . , 95. For these studies we have fixed the
local dimensions to rΩi = 5, i = 1, . . . ,K for K = 4, rΩ = 5 for the whole computational domain and rΩ1 = 2, rΩ2 = 5 for
the repartitioned case with k = 2, as mentioned.

In Table 3, we list the computational times and speedups for a simulation with the different methods.

6 Graph Neural Networks approximating Vanishing Viscosity solutions

In this section, we want to highlight how the well-known concept of vanishing viscosity solutions can be related to FS. In
hyperbolic problems, the uniqueness of the weak solution is not guaranteed, already for very simple problems, e.g. inviscid
Burgers’ equations. In order to filter out the physically relevant solution, the concept of vanishing viscosity solution has been
introduced, inter alia [37], and, consequently, vanishing viscosity methods have been developed, e.g. [26, 63].
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Figure 17: ADR. Errors and estimators for advection diffusion reaction equation corresponding to the ntrain=20 uniformly
sampled train snapshots corresponding to the abscissae 0, 5, 10, . . . , 95, and ntest=80 uniformly sampled test snapshots, cor-
responding to the other abscissae. The reduced dimensions of the ROMs are {rΩi

}Ki=1 = [5, 5, 5, 5] for K = 4 partitions,
rΩ = 5 for k = 1 partition, and {rΩi}ki=1 = [2, 5] for k = 2 partitions. For the case k = 2 we employed the cellwise variance
indicator IG, Definition 3, with Pl = 21%.

Table 3: ADR. Average computational times and speedups for ROM and DD-ROM approaches for Maxwell equations. The
speedup is computed as the FOM computational time over the ROM one. The FOM runs in parallel with 4 cores, so “FOM
time” refers to wallclock time.

FOM ROM DD-ROM
Nh time r time speedup ri time speedup

131328 3.243 [s] 5 79.112 [µs] ∼ 40992 [5, 5, 5, 5] 59.912 [µs] ∼ 54129
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We will consider the topic of vanishing viscosity solutions from the different perspective of model order reduction. It
is known that slow decaying Kolmogorov n-width solution manifolds result in ineffective linear reduced order models. The
origin of this problem rests theoretically on the regularity of the parameter to solution map [18, 19], and with less generality
on the nature of some PDEs (e.g. advection dominated PDEs, nonlinearities, complex dynamics), on the size of the parameter
space, and on the smoothness of the parametric initial data or parametric boundary conditions [5], mainly. A possible way
to obtain more approximable solution manifolds is through regularization or filtering [87, 84], e.g. adding artificial viscosity.
Heuristically, the objective is to smoothen out the parametric solutions of the PDEs, for example removing sharp edges,
local features, complex patterns, with the aim of designing more efficient ROMs for the filtered solution manifolds. Then,
the linear ROMs will be applied to different levels of regularization, still remaining in the regime where they have good
approximation properties. Finally, the original (vanishing viscosity) solutions will be recovered with a regression method
from the succession of filtered linear ROMs. This is realized without the need to directly reduce with a linear reduced
manifold the original solution manifold, thus avoiding the problem of its approximability with a linear subspace and the slow
Kolmogorov n-width decay.

In our case, we consider regularization by viscosity levels: the vanishing viscosity solutions uν with viscosity 0 ≤ ν ≪ 1,
will be recovered as the limit limi→∞ uνi

= uν of a potentially infinite succession of viscosity levels {νi}∞i=0, ν0 > ν1 > · · · > 0,
each associated to its efficient reduced order model. In practice, {νi}∞i=0 ≈ {νi}qi=0, where q is the number of additional
viscosity ROMs. It is clear the connection with multi-fidelity and super-resolution methods [35, 56]. The rationale of
the approach is supported by the proofs of convergence to vanishing viscosity solutions of hyperbolic PDEs under various
hypotheses [64, 57, 25, 38].

The framework is general and can be applied in particular to FS. We will achieve this for the advection–diffusion–reaction
problem changing the viscosity constant R ∋ κ > 0 in (81). While this choice is specific for the model we are considering, a
more general approach could consist in adding a viscous dissipative term to the generic FS obtaining another FS:

{
Au = f + κ∆u, in Ω

(D −M)(u− g) = 0, on ∂Ω
→


{
κ−1σ +∇u = 0

∇ · σ +Au = f
, in Ω

(D −M)(u− g) = 0, on ∂Ω,

(84)

recalling that the additional degrees of freedom are needed only for the high viscosity ROMs and FOMs (to collect the
snapshots) and not the full-order vanishing viscosity solutions. This is only an example of how the procedure could be
applied to any FS. In fact, the methodology is not designed specifically for FS.

The overhead of the methodology is related to the evaluation of the snapshots, the assembling of each level of viscosity
{νi}qi=0, and the computational costs of the regression method. We remark that the full matrices of the affine decomposition
of each {ROMνi}

q
i=0 are the same. This is the price necessary to tackle the realization of reduced order models of parametric

PDEs affected by a slow Kolmogorov n-width decay with our approach.
With respect to standard techniques for nonlinear manifold approximation, the proposed one is more interpretable as a

mathematical limit of a succession of solutions to the vanishing viscosity one. Moreover, it has a faster training stage relying
on the efficiency of the {ROMνi}

q
i=0. To the authors’ knowledge, cheap analytical ways to obtain the vanishing viscosity

solution from a finite succession of high viscosity ones are not available, so we will rely on data-driven regression methods.

6.1 Graph neural networks augmented with differential operators

Generally, machine learning (ML) architectures are employed in surrogate modelling to approximate nonlinear solution man-
ifolds, otherwise linear subspaces are always preferred. The literature is vast on the subject and there are many frameworks
that develop surrogate models with ML architectures. They promise to define data-driven reduced order models that infer
solutions for new unseen parameters provided that there are enough data to train such architectures. This depends crucially
on the choice of the encoding and inductive biases employed to represent the involved datasets: the training computational
time and the amount of training data can change drastically.

On this matter, convolutional autoencoders (CNN) are one of the most efficient architectures to approximate nonlinear
solution manifolds [59] for data structured on Cartesian grids, mainly thanks to their shift-equivariance property. For fields
on unstructured meshes the natural choice are Graph neural networks (GNNs). Since their employment, GNNs architectures
from the ML community have been enriched with physical inductive biases and other tools from numerical analysis. We
want to test one of the first implementations and modifications of GNNs [80]. We also want to remark that in the literature,
there are still very few test cases of ROMs that employ GNNs with more than ≥ 50000 degrees of freedom. The difficulty
arises when the training is performed on large meshes, thus the need for tailored approaches.

The majority of GNNs employed for surrogate modelling are included in autoencoders [33, 67] or are directly parametrized
to infer the unseen solution with a forward evaluation. These architectures may become heavy, especially for non-academic
test cases. One way to tackle the problem of parametric model order reduction of slow Kolmogorov n-width solution manifolds
is to employ GNNs only to recover the high-fidelity solution in a multi-fidelity setting, through super-resolution. Since efficient
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ROMs are employed to obtain the lower levels of fidelity (high viscosity solutions in our case), the solution manifold dimension
reduction is performed only at those levels, avoiding the costly and heavy in memory training of autoencoders of GNNs.

We describe the implementation of augmented GNNs as in [80], with the difference that we need to train only a map
from a collection of DD-ROMs solutions to the full-order vanishing viscosity solution, and not an autoencoder with pooling
and unpooling layers to perform dimension reduction. The GNN we will employ is rather thin with respect to autoencoder
GNNs used to perform dimension reduction. Its details are reported in Table 4.

We represent with
G = (V, E ,W), V ∈ Rnnodes×f , E ∈ Nnedges×2, W ∈ Rnattr×d, (85)

a graph with node features V, edges E and edge attributes W. The number f represents the nodal features dimension. We
denote with eij = (i, j) ∈ N2 the edge between the nodes ni,nj ∈ Rf : eij corresponds to a row of E , and ni,nj correspond
to the i-th and j-th rows of V, for i, j = 1, . . . , nnodes. Similarly, ωij represents the edge attributes of edge eij . We have
nedges = nattr. For their efficiency, GNNs rely on a message passing scheme composed of propagation and aggregation steps.
Supposing that the graph is sparsely connected their implementation is efficient.

When the graph is supported on a mesh, it is natural to consider the generalized support points of finite element spaces as
nodes of the graph and the sparsity pattern of the linear system associated to the numerical model as the adjacency matrix of
the graph. We employ only Lagrangian nodal basis of discontinuous finite element spaces, but the framework can be applied
to more general finite element spaces. As edge attributes ωij , we will employ the difference ωij = xi − xj ∈ Rd between the
corresponding spatial coordinates associated to the nodes ni,nj ∈ Rf . The nodes adjacent to node ni are represented with
the set Nneigh(i) for all i = 1, . . . , nnodes.

We consider only the two following types of GNN layers: a continuous kernel-based convolutional operator lNNconv [36, 77]
and the GraphSAGE operator lSAGEconv [40],

Vout = lNNconv(Vinp, E ,W) = VinpW3 +Avg1(Vinp, h(W)) + b3, h(W) = ReLU(WW1 + b1)W2 + b2, (86)

Vout = lSAGEconv(Vinp, E ,W) = VinpW6 +Avg2(ReLU(VinpW4 + b4))W5 + b5, (87)

with weight matrices dimensions,

W1 ∈ R2×l, W2 ∈ Rl×(finp×fout), W3 ∈ Rfinp×fout , W4 ∈ Rfinp×finp , W5,W6 ∈ Rfinp×fout , (88)

b1 ∈ Rl, b2 ∈ R(finp×fout), b3,b5 ∈ Rfout , b5 ∈ Rfinp , (89)

h(W) ∈ Rnedges×(finp×fout), W = {Wh
s }

nedges

s=1 , Wh
s ∈ Rfinp,s×fout,s , ∀s = 1, . . . , nedges, (90)

with the following average operators used as aggregation operators,

(Avg1(V, {Wh
s }

nedges

s=1 ))i =
1

Nneigh(i)

∑
s∈Nneigh(i)

Wh
s ns, (Avg2(V))i =

1

Nneigh(i)

∑
s∈Nneigh(i)

ns, ∀i = 1, . . . , nnodes, (91)

where Vinp ∈ Rnnodes×finp ,Vout ∈ Rnnodes×fout are the input and output nodes with feature dimensions finp, fout. We remark
that, differently from graph neural networks with heterogeneous layers, i.e., with changing mesh structure between different
layers, in this network the edges E and edge attributes W are kept fixed, only the node features change. The feed-forward
neural network h : Rnedges×d → Rfinp,s×fout,s defines a weight matrix Wh

s ∈ Rfinp,s×fout,s for each edge s = 1, . . . , nedges. The
number l is the hidden layer dimension of h.

The aggregation operators are defined from the edges E that are related to the sparsity pattern of the linear system of
the numerical model. So, the aggregation is performed on the stencils of the numerical scheme chosen for every layer of the
GNN architecture in Table 4. Many variants are possible, in particular, we do not employ pooling and unpooling layers to
move from different meshes: we always consider the same adapted mesh.

Since our GNNs work on the nodal features, a good strategy is to augment their dimensions as proposed in [80]. In fact,
in the majority of applications of GNNs for physical models the input features dimensions is the dimension of the physical
fields considered and it is usually very small. Considering FS, the fields’ dimension is m. To augment the input features, we
will filter them with some differential operators discretized on the same mesh in which the GNN is supported. We consider
the following differential operators

∆ : Vh(Ω) → Vh(Ω), (Laplace operator) (92)

v · ∇ : Vh(Ω) → Vh(Ω), (Advection operator) (93)

∇x : Vh(Ω) → Vh(Ω), (Gradient x-component) (94)

∇y : Vh(Ω) → Vh(Ω), (Gradient y-component) (95)

for a total of four possible feature augmentation operators, where, in our case, v is the advection velocity from the incom-
pressible Navier-Stokes equations (83). We employ the representation of the previous differential operators with respect to
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the polynomial basis of Lagrangian shape functions, so they act on the vectors of nodal evaluations in RNh . As in [80], we
consider three sets of possible augmentations:

O1 = {INh
,∆,v · ∇,∇x,∇y}, (96)

O2 = {INh
,∇x,∇y} (97)

O3 = {INh
} (98)

where INh
is the identity matrix in RNh , |O1| = 5 = naug, |O2| = 3 = naug and |O3| = 1 = naug. We will reconstruct only

the scalar concentration u with the GNN, so, in our case, the field dimension is 1, which is the output dimension. The input
dimension depends on the number of high viscosity DD-ROMs employed that we denote with q. Given a single parametric
instance ρ ∈ RP the associated solutions of {D-ROMκi

}qi=1 are {uRB(ρi)}qi=1.
We divide the snapshots {uRB(ρi)}ntrain+ntest

i=1 in training {uRB(ρi)}i∈Intrain
and test snapshots {uRB(ρi)}i∈Intest

, with
|Itrain| = ntrain and |Itest| = ntest. We have decided to encode the reconstruction of the vanishing viscosity solution uq+1

learning the difference uq+1(ρ) − uRB
q (ρ) − uq+1train with the mesh-supported-augmented GNN (MSA-GNN) described in

Table 4:

uq+1(ρ) = ReLU
(
uRB
q (ρ) +MSA-GNN

(
{Oa{{uRB

i (ρ)}qi=1, {u
RB
i (ρ)− uRB

i−1(ρ)}
q−1
i=1 }}

naug

a=2

)
+ uq+1train

)
, (99)

where uq+1train = 1
ntrain

∑ntrain

i=1 uq+1(ρi). Learning the difference instead of the solution itself helps in getting more infor-
mative features. The input dimension is therefore 3naug = 15 for O1 and 3naug = 9 for O2.

Table 4: Mesh supported augmented GNN

Net Weights [finp, fout] Aggregation Activation

Input NNConv [3naug, 18] Avg1 ReLU
SAGEconv [18, 21] Avg2 ReLU
SAGEconv [21, 24] Avg2 ReLU
SAGEconv [24, 27] Avg2 ReLU
SAGEconv [27, 30] Avg2 ReLU
Output NNConv [30, 1] Avg1 -

NNConvFilters First Layer [2, l] Activation Second Layer [l, finpfout]

Input NNConv [2, 12] ReLU [12, 3naug · 18]
Output NNConv [2, 8] ReLU [8, 30]

6.2 Decomposable ROMs approximating vanishing viscosity (VV) solution through GNNs

In this section, we test the proposed multi–fidelity approach that reconstruct the lowest viscosity level with the GNN. We
consider the FS (81), with three levels of viscosity, from highest to lowest: κ1 = 0.05, κ2 = 0.01 and κ3 = 0.0005. We want to
build a surrogate model that efficiently predicts the parametric solutions of the FS (81) for unseen values of ρ ∈ P with fixed
viscosity κ3 = 0.0005. These solutions will be referred to as vanishing viscosity solutions. The other two viscosity levels are
employed to build the D-ROMκ1 and D-ROMκ2 with viscosities κ1 = 0.05 and κ2 = 0.01, respectively. The parametrization
affects the inflow boundary condition and is the same as the one described in section 5.3.3, see equation (82). We also employ
the same number of training 20 and test 80 parameters.

The DD-ROMs provided for κ1 = 0.05 and κ2 = 0.01 can be efficiently designed with reduced dimensions {rΩi
}Ki=1[5, 5, 5, 5].

To further reduce the cost, we employ an even coarser mesh for ROMκ1
and ROMκ2

and a finer mesh for the vanishing
viscosity solutions. The former is represented on the left of Figure 18, the latter on the right. The degrees of freedom related
to the coarse mesh are 43776, while the ones on the fine one are 175104.

For the training of the GNN we use the open source software library PyTorch Geometric [32]. The employment of efficient
samplers that partition the graphs on which the training set is supported is crucial to lower the otherwise heavy memory
burden [40]. We preferred samplers that partition the mesh with METIS [54] as it is often employed in this context. We
decided to train the GNN with early stopping at 50 epochs as our focus is also in the reduction of the training time of
the NN architectures used for model order reduction. It corresponds on average to less than 60 minutes of training time.
The batch size is 100 and we clustered the whole domain in 100000 subgraphs in order to fit the batches in our limited
GPU memory. Each augmentation strategy and additional fidelity level, do not affect the whole training time as they only
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Figure 18: VV. Left part of the computational domain partitioned in 4 for distributed parallelism: coarse mesh (left), fine
mesh (right). The solution with viscosity κ ∈ {0.05,0.01} are evaluated on the coarse mesh with 4868 cells and 43776 dofs,
those with κ = 0.0005 on the finer with 19456 cells and 175104 dofs.

increase the dimension of the input features from a minimum of 1 (1 fidelity, no augmentation) to a maximum of 15 (all
augmentations O3, 2 fidelities). As optimizer we use ADAM [55] stochastic optimizer. Every architecture is trained on a
single GPU NVIDIA Quadro RTX 4000.

FOM u, κ = 0.05 ROM u, κ = 0.05 Difference FOM–ROM u with κ = 0.05

FOM u, κ = 0.01 ROM u, κ = 0.01 Difference FOM–ROM u, κ = 0.01

FOM u, κ = 0.0005 ROM u, κ = 0.0005 Difference FOM–ROM u, κ = 0.0005

FOM u, κ = 0.0005 GNN u, κ = 0.0005 Difference FOM–GNN u, κ = 0.0005

Figure 19: VV. Scalar concentration advected by incompressible flow for i = 0. Comparison of ROM approach at different
viscosity levels κ ∈ {0.05, 0.01, 0.0005} and GNN for κ = 0.0005. FOMs on the left, reduced solution at the center and error
on the right.

Figures 19, 20 and 21 show the results of the algorithm for parameters with index i ∈ {0, 50, 99}. In particular, we show
on the left columns the FOM simulations, in the center column the ROM simulations and the error in the right column.
Moreover, in the different rows, we have different viscosity levels. The first three rows use the classical DD-ROM approach.
We can immediately see that the vanishing viscosity κ = κ3 = 0.0005 level shows strong numerical oscillations along the
whole solution, which are not present in the FOM method. This phenomenon is observable also for higher viscosity levels but
it is less pronounced and concentrated on the left of the domain, where the discontinuity are imposed as boundary conditions
(see error plots). Finally, in the last row, we show the results of the GNN approach, which uses the first two viscosity levels
to predict the vanishing viscosity one. Contrary the DD-ROM, we do not observe many numerical oscillations in the reduced
solutions and they are much more physically meaningful. Thinking about extending this approach for more complicated
problems, as Euler’s equations, one could guarantee the presence of the correct amount of shocks and the right location or
maintaining the positivity of density and pressure close to discontinuities.

In Figure 22, we show a quantitative measure of the error of the reduced approaches presented in terms of relative L2

error. Overall, we can immediately see that the new GNN approach can always reach errors of the order of 1 − 2% for the

30



FOM u, κ = 0.05 ROM u, κ = 0.05 Difference FOM–ROM u with κ = 0.05

FOM u, κ = 0.01 ROM u, κ = 0.01 Difference FOM–ROM u, κ = 0.01

FOM u, κ = 0.0005 ROM u, κ = 0.0005 Difference FOM–ROM u, κ = 0.0005

FOM u, κ = 0.0005 GNN u, κ = 0.0005 Difference FOM–GNN u, κ = 0.0005

Figure 20: VV. Scalar concentration advected by incompressible flow for i = 50. Comparison of ROM approach at different
viscosity levels κ ∈ {0.05, 0.01, 0.0005} and GNN for κ = 0.0005. FOMs on the left, reduced solution at the center and error
on the right.

FOM u, κ = 0.05 ROM u, κ = 0.05 Difference FOM–ROM u with κ = 0.05

FOM u, κ = 0.01 ROM u, κ = 0.01 Difference FOM–ROM u, κ = 0.01

FOM u, κ = 0.0005 ROM u, κ = 0.0005 Difference FOM–ROM u, κ = 0.0005

FOM u, κ = 0.0005 GNN u, κ = 0.0005 Difference FOM–GNN u, κ = 0.0005

Figure 21: VV. Scalar concentration advected by incompressible flow for i = 99. Comparison of ROM approach at different
viscosity levels κ ∈ {0.05, 0.01, 0.0005} and GNN for κ = 0.0005. FOMs on the left, reduced solution at the center and error
on the right.
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Figure 22: VV. Relative errors for the scalar conservation advected by incompressible flow problem. The parameters
corresponding to the snapshots used for the GNNs and DD-ROMs training correspond to the abscissae 0, 5, 10, . . . , 95 the
rest are test parameters. The dashed red background highlights the extrapolation range. Top: errors on train and test
set with different GNN approaches given by the three augmentation O1, O2 and O3 and by using either 1 viscosity level (1
fidelity) or 2 (all fidelities) and errors for DD-ROM with the same viscosity level ν = 0.0005. Bottom: errors for DD-ROM
approaches at different viscosity levels. The reduced dimensions of the ROMs are {rΩi

}Ki=1 = [5, 5, 5, 5] with K = 4 partitions.

vanishing viscosity solutions, with few peaks in the extrapolatory regime of 8%, while the classical DD-ROM on the vanishing
viscosity solutions perform worse, with errors around 6-10%. On the other hand, the DD-ROM for higher viscosity levels
have lower errors around 3% for κ2 and 0.5% for κ1, hence, they are still reliably representing those solutions.

On the different GNN approaches, in Figure 22 at the top we compare the different augmentations O1, O2 and O3 and
how many levels of viscosity we keep into considerations to derive the vanishing viscosity solution. The usage of multiple
fidelity levels (two viscosity levels) is a great improvement for all the augmentations proposed and it can make gain a factor
of 2 in terms of accuracy. There are slight differences with the used augmentations and, in particular, we observe that the
O1 augmentation, with all operators, guarantee better performance, while there are no appreciable differences between O2

and O3. Clearly, one could come up with many other augmentation possibilities choosing more operators, but at a cost
of increasing the dimensions of the GNN and the offline training costs. We believe that all the presented options already
perform much better with respect to classical approaches and can already be used without further changes.

In Table 5, we compare the computational times necessary to compute the FOM solutions, the DD-ROM ones, the
training time for the GNN and the online costs of the GNN. As mentioned before, we employ only one GPU NVIDIA Quadro

Table 5: VV. Computational costs for scalar advected by a incompressible flow problem with GNNs approximating vanishing
viscosity solutions (VV). The speedup is computed as the FOMs computational time over the ROM one. The speedup of the
GNN is with respect to the FOM with viscosity ν = 0.0005. The FOM runs in parallel with K = 4 cores as the DD-ROMs, so
“FOM time” and “DD-ROM time” refers to wallclock time. Regarding the GNN results, “Single forward GNN online time”
refers to a single online evaluation while “Total online time” refers to the evaluation of the 100 training and test snapshots
altogether with only two separate GNN forward evaluations with batches of 50 inputs each. The speedup is evaluated as
“FOM time” over ”Total online time” divided by 100.

FOM DD-ROM
κ Nh time ri time speedup mean L2 error

0.05 43776 3.243 [s] [5, 5, 5, 5] 59.912 [µs] 54129 0.00595
0.01 43776 3.236 [s] [5, 5, 5, 5] 79.798 [µs] 40552 0.0235
0.0005 175104 9.668 [s] [5, 5, 5, 5] 95.844 [µs] 100872 0.0796

κ GNN training time Single forward GNN online time Total online time GNN speedup mean L2 error

0.0005 ≤ 60 [min] 2.661 [s] 17.166 [s] ∼ 56 0.0217
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RTX 4000 with 8GB of memory. Typical GNNs applications that involve autoencoders to perform nonlinear dimension
reduction are much heavier. The training time of the GNNs for the different choice of augmentation operators vary between
48 minutes and 60 minutes approximately. We believe that in the near future more optimized implementations will reduce
the training costs of GNNs. The computational time of the evaluation of a single forward of the GNN is on average 2.661
seconds but vectorization ensures the evaluation of multiple online solutions altogether: with our limited memory budget we
could predict all the 100 training and test snapshots with just 2 batches of 50 stacked inputs each. The “Total online time”
computed as previously described is 17.166 seconds that is 171.66 milliseconds per online solution with a speedup of around
56 with respect to the 9.668 seconds for the FOM.

Although the speedup for the GNN simulations are not as remarkable as for the DD-ROM, we want to highlight that
the accuracy of the GNN solutions are qualitatively much better than the DD-ROM for that viscosity level, and physically
more meaningful. This aspect is a major advantage with respect to classical linear ROMs that is probably worth the loss of
computational advantage. In perspective, when dealing with nonlinear and more expensive FOM for different equations, the
GNN approach will not require any extra computational costs, while FOMs and ROMs model might need special treatments
for the nonlinearity that would make their costs increase.

7 Conclusions

We argue that Friedrichs’ systems represent a valuable framework to study and devise reduced order models of many
parametric PDEs at the same time: among them the ones studied in this work and others, like mixed elliptic and hyperbolic
problems, complex and time-dependent FS and also nonlinear PDEs whose linearization results in FS, e.g. the Euler
equations. The advantages include the availability of a posteriori error estimators and the easy to preserve mathematical
properties of positivity and symmetry from the full-order formulations to the reduced-order ones. We underlined in section 4.2
how optimally stable reduced-order models can be obtained from the ultraweak formulation. A more efficient numerical solver
for Friedrichs’ systems is the hybridized discontinuous Galerkin method [17]. These are possible future directions of research.

Working with discontinuous Galerkin discretizations is not only crucial from the possibly mixed elliptic and hyperbolic
nature of Friedrichs’ systems, but also to design domain decomposable reduced-order models with a minimum effort: in fact,
penalties at the subdomains interfaces are inherited directly from the full-order models. We demonstrated with numerical
experiments the limits and the ranges of application of domain decomposable ROMs: generally, with respect to single
domain ROMs, there are benefits only when the model under study is truly decomposable, that is when the parameters
affect independently different subdomains and the respective solutions are poorly correlated for unseen parametric instances.
The results we showed in our academic benchmarks were obtained with the aim to tackle more complex multi-physics models
like fluid-structure interaction systems. A typical application of DD-ROMs for FS is represented by parametric PDEs with a
mixed elliptic and hyperbolic nature and possibly solution manifolds more and less linearly approximable respectively. The
repartitioning strategies we developed are suited to adapt the reduced local dimension of the linear approximants, especially
when the parameters influence only a limited region like in test case ADR 5.3.3. The implementation of ad hoc physics
inspired indicators can be a future direction of research.

The Friedrichs’ systems formulation itself does not solve the problems caused by a slow decaying Kolmogorov n-width.
DD-ROMs can help in this regard, isolating regions with a slow Kolmogorov n-width for which nonlinear approximants can
be employed and regions with a fast decaying Kolmogorov n-width for which classical linear projection-based ROMs provide
efficient and reliable predictions. Related to this subject and motivated also by the heavy computational resources that graph
neural networks require when employed for model order reduction, we introduced a new paradigm for surrogate modeling:
the inference with GNNs of vanishing viscosity solutions from a succession of higher viscosity projection-based ROMs. The
approach is, of course, general and can be applied to PDEs that are not FS. The crucial hypotheses underneath this approach
is the approximability with linear spaces of the solution manifolds corresponding to higher viscosity levels. We showed that
the additional computational costs are not too large in our test case in section 6. Possible directions of research include more
complex problems and different regularization or filtering choices, other than additional viscous terms.
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A Transformation into dissipative system

In some cases, the term A0 = 0 or property (2b) is not satisfied, but there is a way to recover the previous framework. We
want to recover a dissipative [46] or accretive system [52]. For example the linearized Euler equations in entropy variables [78]
have A0 = 0.

The condition of uniform positive definiteness

∃µ0, A0 + (A0)t −X ≥ 2µ0Im a.e. in Ω, (100)

is still valid if there exist ξ ∈ Rd, ∥ξ∥ = 1 and β ∈ R, β > 0 such that after the transformation

v(x) = e−βξ·xz(x), (101)

the resulting system ∑
i

Ai∂iv(x) + β

d∑
i=1

ξiA
iv(x) = e−β(ξ·x)f, (102)

satisfies, with the newly found A0 = β
∑d

i=1 ξiA
i,

∃µ0, A0 + (A0)t −X = 2β

d∑
i=1

ξiA
i −X ≥ 2µ0Im a.e. in Ω. (103)

In some cases, such ξ and β exist, for example if the symmetric matrix
∑d

i=1 ξiA
i has at least one positive eigenvalue for

some ξ for almost every x ∈ Ω, then taking β sufficiently large is enough to satisfy the condition. It is also sufficient that∑d
i=1 ξi(x)A

i(x) has at least a positive eigenvalue for almost every x ∈ Ω where ξ = ξ(x), see [52, Example 28].

Remark 2. A more general transformation is
v(x) = w(x)z(x), (104)

so that the positive definiteness condition becomes

∃µ0, A0 + (A0)t −X = 2

d∑
i=1

∂i(− logw)Ai −X ≥ 2µ0Im a.e. in Ω. (105)

B Constructive method to define boundary operators

We report a procedure to define a boundary operator M ∈ L(V, V ′) starting from some specified boundary conditions. We
exploit Theorem 4.3, Lemma 4.4 and Corallary 4.1 from [31]. It can be seen that the most common Dirichlet, Neumann and
Robin boundary conditions can be found for some FS [28, 29, 24], following this procedure.

Lemma 1 (Theorem 4.3, Lemma 4.4 and Corollary 4.1 from [31]). Let us assume that (V0, V
∗
0 ) satisfy (10) and that

V0 + V ∗
0 ⊂ V is closed. We denote with P : V → V0 and Q : V :→ V ∗

0 the projectors onto the subspaces V0 ⊂ V and V ∗
0 ⊂ V

of the Hilbert space V , respectively. Then, the boundary operator M ∈ L(V, V ′) defined as

⟨Mu, v⟩V ′,V = ⟨DPu, Pv⟩V ′,V − ⟨DQu,Qv⟩V ′,V +

⟨D(P +Q− PQ)u, v⟩V ′,V − ⟨Du, (P +Q− PQ)v⟩V ′,V

(106)

is admissible and satisfies V0 = ker(D −M) and V ∗
0 = ker(D +M∗). In particular,

1. If V = V0 + V ∗
0 , then M is self-adjoint and

⟨Mu, v⟩V ′,V = ⟨DPu, Pv⟩V ′,V − ⟨DQu,Qv⟩V ′,V . (107)

2. If V0 = V ∗
0 , then M is skew-symmetric and

⟨Mu, v⟩V ′,V = ⟨DPu, v⟩V ′,V − ⟨DPv, u⟩V ′,V . (108)

We remark that, for fixed (V0, V
∗
0 ), admissible boundary operators M ∈ L(V, V ′) that satisfy V0 = ker(D − M) and

V ∗
0 = ker(D + M∗) are not unique. The boundary operator defined in Lemma 1 is just a possible explicit definition, in

general.
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As an exercise, we show how to find the definition of the operator M for our linear compressible elasticity FS, from
Section 2.1.2. We want to impose the boundary conditions u|ΓD

= 0 and (σ · n)|ΓN
= 0, so,

V0 = V ∗
0 = {(u,σ) ∈ V | u|ΓD

= 0, (σ · n)|ΓN
= 0} = Hσ,ΓN

× [H1
ΓD

(Ω)]d, (109)

since we defined V = Hσ × [H1(Ω)]d, with Hσ = {σ ∈ [L2(Ω)]d×d | ∇ · (σ + σt) ∈ [L2(Ω)]d}, the traces γD : [H1(Ω)]d →
[H

1
2 (ΓD)]d and γN : Hd

σ → [H− 1
2 (ΓN )]d on ΓD and ΓN are well-defined. In particular,

Hσ,ΓN
= {σ ∈ Hσ | γN (σ) = (σ · n)|ΓN

= 0}, [H1
ΓD

(Ω)]d = {u ∈ [H1(Ω)]d | γD(u) = u|ΓD
= 0}. (110)

Moreover, (V0, V
∗
0 ) satisfy the properties of cone formalism (10). Thus, we can use the definition (108) of Lemma 1:

⟨M(σ,u), (τ ,v)⟩V ′,V = ⟨DP (σ,u), (τ ,v)⟩V ′,V − ⟨DP (τ ,v), (σ,u)⟩V ′,V

=− ⟨ 12 (σ + σt) · n,v⟩− 1
2 ,

1
2 ,ΓD

+ ⟨ 12 (τ + τ t) · n,u⟩− 1
2 ,

1
2 ,ΓD

+

⟨ 12 (σ + σt) · n,v⟩− 1
2 ,

1
2 ,ΓN

− ⟨ 12 (τ + τ t) · n,u⟩− 1
2 ,

1
2 ,ΓN

,

(111)

where P : V = Hσ × [H1(Ω)]d → V0 = Hσ,ΓN
× [H1

ΓD
(Ω)]d is the projector into the subspace V0 of the Hilbert graph space

V with scalar product:

((σ,u), (τ ,v))V = (u,v)[Ld(Ω)]d + (σ, τ )[L2(Ω)]d×d + (A(σ,u), A(τ ,v)). (112)

C ROM convergence studies

In this section, we validate the DD-ROM implementation, checking the convergence towards the FOM solutions with respect
to the dimension of the reduced space. Uniform local reduced dimensions are employed {rΩi}Ki=1 and {rΩi}ki=1. For each
convergence study 20 uniformly independent samples are used as training dataset and 50 uniformly independent samples as
test dataset.
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Figure 23: MS1. The convergence of DD-ROMS with uniform local reduced dimensions {rΩi}Ki=1 and {rΩi}ki=1 is assessed.
The uniform value of the local reduced dimensions is reported in the abscissae. For this test case an improvement of the
accuracy with respect to the single domain reduced basis is not observed.
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Figure 24: CLE1. The convergence of DD-ROMS with uniform local reduced dimensions {rΩi}Ki=1 and {rΩi}ki=1 is assessed.
The uniform value of the local reduced dimensions is reported in the abscissae. For this test case an improvement of the
accuracy with respect to the single domain reduced basis is not observed.

In Figure 23, we show the L2-error, the R-error and the energy error decay and their respective error estimators for the
Maxwell equations test case MS1, section 5.3.1, with constant parameters µ and σ on the whole domain. We clearly see
an exponential behavior in the error as we add basis functions. On the other hand, we do not observe strong differences
between the ROM, DD-ROM with repartition and DD-ROM with deal.II subdomains, for this simple test case. Similar
results can be observed in Figure 24, where the same analysis is applied for the compressible linear elasticity test CLE1
from section 5.3.2.

From these results, it should be clear that the employment of local reduced basis is not always useful to increase the
accuracy of the predictions. Nonetheless, it may be used to locally reduce the dimension of the linear approximants. Possible
benefits include the adaptation of the computational resources (higher dimensional reduced basis are chosen only where it
is necessary) and the possibility to speedup parametric studies and non-intrusive surrogate modelling thanks to the further
reduced local dimensions [85, 86].

Typical cases where DD-ROMs are effective to increase the accuracy of the predictions are truly decomposable systems
where the parameters affect independently different regions of the computational domain, as in test caseMS2 in section 5.3.1.
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