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Abstract. In this work, we propose viable and efficient strategies for stabilized parametrized advection dom-
inated problems, with random inputs. In particular, we investigate the combination of wRB (weighted reduced
basis) method for stochastic parametrized problems with stabilized reduced basis method, which is the integration
of classical stabilization methods (SUPG, in our case) in the Offline–Online structure of the RB method. Moreover,
we introduce a reduction method that selectively enables online stabilization; this leads to a sensible reduction of
computational costs, while keeping a very good accuracy with respect to high fidelity solutions. We present numer-
ical test cases to assess the performance of the proposed methods in steady and unsteady problems related to heat
transfer phenomena.
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1. Introduction. Advection–diffusion equations are very important in many engineering ap-
plications, because they are used to model, for example, heat transfer phenomena [25] or the
diffusion phenomena, such as of pollutants in the atmosphere [13]. We are interested in studying
related advection–diffusion PDEs when their Péclet numbers, representing, roughly, the ratio be-
tween the advection and the diffusion field, are high. Moreover, in such applications, we often need
very fast evaluations of the approximated solution, depending on some input parameters, which
may be deterministic or uncertain. This happens, for example, in the case of real-time simulation
or if we need to perform repeated approximations of solutions, for different input parameters. We
find such many-query situations in optimization problems, in which the objective function to be
optimized depends on the parameters through the solution of a PDE or a system of PDEs.

The aim of this work is to study a stabilized reduced basis method suitable for the approx-
imation of parametrized advection–diffusion partial differential equations (PDEs), in advection
dominated cases, including a stochastic context, by considering random inputs. Indeed, the re-
duced basis (RB) method [20] has been devised to reduce the computational effort required by the
repeated solution of parametrized problems. It provides rapidly approximation of solution of PDEs
and it is able to guarantee the reliability of the solution with a sharp and accurate a posteriori
error bound. In literature we can find many works about the application of the RB method to
advection-diffusion problems, in particular with low Péclet number [16, 40, 44].

In contrast, problems characterized by high Péclet numbers are far more complex and may
exhibit instabilities even with classical high fidelity numerical approximations, such as finite element
or finite difference method. To deal with this issue we have to resort to some stabilization techniques
[7, 42], such as SUPG stabilization. A similar stabilization needs to be accounted for also at
the reduced order level, resulting in a stabilized version of the RB algorithm [37, 38, 39]. In
particular, in these works it was shown that a double stabilization in Offline and Online stage was
necessary to obtain an accurate approximation. Nevertheless, stabilizations in Online phase can
be a bothersome computational cost that may damage the efficiency of the method (for example
in many-query context), while in some other situation an Offline–only stabilized method can be
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preferred. Stabilization of problems characterized by strong convection effects is an active topic of
research in the model order reduction community, see e.g. [1, 2, 3, 8, 17, 23, 24, 31, 32, 37, 38, 47]
for several different proposed methods with applications in heat transfer and computational fluid
dynamics.

When dealing with stochastic equations, i.e., with random input parameters, we can modify
the RB method, according to probability laws that rule our parameters. In this direction, the wRB
(weighted reduced basis) method [10] wants to exploit all the information that random variables
give us (a review is provided in [12]). The main novelty of the papers are (i) the synergy of wRB with
a stabilized formulation, suitable for stochastic advection dominated problems, and the resulting
(ii) capability to enable adaptive toggling of the stabilization depending on the stochastic Péclet
number. In particular, we will apply the weighted method to stabilized reduced basis strategies
and prove the accuracy of the combined method. Throughout the work we will test these methods
on some steady and time–dependent problems.

The outline of the manuscript is as follows. In section 2 we will briefly introduce elliptic
coercive parametrized PDEs, their associate RB method, some classical stabilization methods
for FE approximation of advection dominated problems; then we will study two reduced basis
stabilization methods by testing them on some examples. We will consider next stochastic partial
differential equations; we will present in section 3 the weighted RB method and we will combine it
with proper stabilization techniques. Moreover, we will provide a method that selectively enables
stabilization to optimize computational costs. In section 4 we will extend these ideas to parabolic
problems, by introducing the general weighted RB method for these problems, combining it with
a suitable stabilization technique (based on stabilization for the FE approximation of advection
dominated parabolic problems), and testing it on few examples. Finally, section 5 will provide
some conclusions and future perspectives.

2. Stabilized reduced basis method for deterministic elliptic equations.

2.1. A brief introduction to reduced basis method. The reduced basis (RB) method
is a reduced order modelling (ROM) technique which provides rapid and reliable solutions for
parametrized partial differential equations (PPDEs) [20], in which the parameters can be either
physical or geometrical, deterministic or stochastic.

The need to solve this kind of problems arises in many engineering applications, in which the
evaluation of some output quantities is required. These outputs are often functionals of the solution
of a PDE, which can in turn depend on some input parameters. The aim of the RB method is
to provide a very fast computation of this input-output evaluation and so it turns out to be very
useful especially in real-time or many-query contexts.

Roughly speaking, given a value of the parameter, the (Lagrange) RB method consists in a
Galerkin projection of the continuous solution on a particular subspace of a high-fidelity approx-
imation space, e.g. a finite element (FE) space with a large number of degrees of freedom. This
subspace is the one spanned by some pre-computed high-fidelity global solutions (snapshots) of the
continuous parametrized problem, corresponding to some properly chosen values of the parameter.

For a complete presentation of the reduced basis method we refer to [20], now we just recall
its main features in order to introduce some notations.

2.1.1. The continuous problem. Let µ belong to the parameter domain D ⊂ Rp, p ∈ N.
Let Ω be a regular bounded open subset of Rd, d = 1, 2, 3, and X a suitable Hilbert space. For any
µ ∈ D, let a(·, ·;µ) : X ×X → R be a bilinear form and let F (·;µ) : X → R be a linear functional.
As we will focus on advection–diffusion equations, that are second order elliptic PDE, the space
X will be such that H1

0 (Ω) ⊂ X ⊂ H1(Ω). Formally, our problem can be written as follows:

for any µ ∈ D, find u(µ) ∈ X :

a(u(µ), v;µ) = F (v;µ), ∀v ∈ X .
(1)
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We require a to be coercive and continuous, i.e., respectively:

(2) ∃ α0 s.t. α0 ≤ α(µ) = inf
v∈X

a(v, v;µ)

||v||2X
, ∀µ ∈ D,

and

(3) +∞ > γ(µ) = sup
v∈X

sup
w∈X

|a(v, w;µ)|
||v||X ||w||X

, ∀µ ∈ D.

For the sake of online efficiency, we assume an affine dependence of a on the parameter µ, i.e. we
assume that

(4) a(v, w;µ) =

Qa∑
q=1

Θq
a(µ)aq(v, w), ∀µ ∈ D.

Here, Θq
a(µ) : D → R, q = 1, . . . , Qa, are smooth functions, while aq : X ×X → R, q = 1, . . . , Qa,

are µ-independent continuous bilinear forms.
In a similar way, we assume that also the functional F is continuous and depends “affinely”

on parameters:

(5) F (v;µ) =

QF∑
q=1

Θq
F (µ)F q(v), ∀µ ∈ D,

where, also in this case, Θq
F (µ) : D → R, q = 1, . . . , QF , are smooth functions, while F q : X → R,

q = 1, . . . , QF , are µ-independent continuous linear functionals.
Let XN ⊂ X be a conforming finite element space with N degrees of freedom, we can now set

the truth approximation of the problem (1):

for any µ ∈ D, find uN (µ) ∈ XN s.t.

a(uN (µ), vN ;µ) = F (vN ;µ), ∀vN ∈ XN .
(6)

As we are considering the conforming FE case, conditions similar to (2) and (3) are fulfilled by
restriction. More precisely, as regards the coercivity of the restriction of a to XN ×XN , we define:

(7) αN (µ) := inf
vN∈XN

a(vN , vN ;µ)

||vN ||2X
, ∀µ ∈ D

and, as we are considering a restriction, it easily follows that α(µ) ≤ αN (µ), ∀µ ∈ D. Similarly,
for the continuity, we can define

(8) +∞ > γN (µ) = sup
vN∈XN

sup
wN∈XN

|a(vN , wN ;µ)|
||vN ||X ||wN ||X

, ∀µ ∈ D.

As we have already mentioned, also the domain of the equation can depend on the parameter.
In this case we need to map the parametric domain Ωp(µ) onto a reference one denoted with Ω, via
suitable parameter–dependent transformation T (·;µ) : Ω→ Ωp(µ), see [4, 20, 29, 33]. This allows
to track back on the reference domain Ω all the involved bilinear and linear forms, so that (4)
and (5) are defined on a common reference domain Ω. In this work we used only affine mappings
[20, 33] that allow to easily recover the affinity assumptions (4) and (5). In [33, 43] it is possible
to find, in particular, a detailed treatment of the advection–diffusion operators.
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2.1.2. The reduced basis method: main features. Let us suppose that we are given a
problem in the form (1) and its truth approximation (6). We recall that the dimension of the
finite element space XN is N . Given an integer N � N , suppose that we are given a set of N
suitable parameter values, SN = {µ1, . . . ,µN}: this allows us to define the reduced basis space
as XNN = span{uN (µn) : 1 ≤ n ≤ N}. To be more precise, a Gram-Schmidt orthonormalization
process on {uN (µn) : 1 ≤ n ≤ N} is usually carried out for the sake of numerical stability, and
the resulting orthonormal functions are considered as bases of the reduced space [20, 43].

Given a value µ ∈ D, we define the RB solution uNN (µ) such that:

(9) a(uNN (µ), vN ;µ) = F (vN ;µ) ∀vN ∈ XNN .

Recalling that N � N , we emphasize the fact that to find the RB solution we need just to
solve a N ×N linear system, instead of the N ×N one of the FE method. Moreover, we can also
guarantee that the error for a parameter µ ∈ D is bounded by an error estimator ∆N (µ):

(10) |||uN (µ)− uNN (µ)|||µ ≤ ∆N (µ) ∀µ ∈ D,

where ||| · |||µ is the norm induced by the symmetric part aS(·, ·;µ) of the bilinear form a(·, ·;µ).

The error estimator is defined as ∆N (µ) := ||r̂(µ)||X√
αLB(µ)

, where r̂ is the Riesz representor for the

functional r(vN ,µ) = F (vN ;µ) − a(uNN (µ), vN ;µ), || · ||X is the norm associated to the scalar
product in X and αLB(µ) is a lower bound for the coercivity constant α(µ), possibly dependent
on µ ∈ D.

The set SN is built in the Offline stage using a Greedy algorithm on a training set Ξtrain that
spans D [20, 43]. It is an iterative method that, at each step, chooses the parameter value which
maximizes the a posteriori error estimator µ 7→ ∆N (µ) in the training set. The algorithm stops
when a prescribed tolerance ε∗tol is reached, that is when ∆N (µ) ≤ ε∗tol for each parameter value
µ in the training set Ξtrain ⊂ D. We assume in this section that Ξtrain is a collection of randomly
selected parameter values according to an uniform distribution. The error estimator ∆N is sharp,
in order to avoid an unnecessarily high dimension N for the reduced basis space. Moreover, it
must be computationally inexpensive in order to speed up the Greedy algorithm (within which it
is computed many times) and to allow the certification of the RB solution during the Online stage.

We want to point out that all the expensive computations (i.e. those whose costs depend on the
FE space dimension N ) are performed during the Offline stage. Indeed, the affinity assumptions
(4) and (5) are crucial for the Offline—Online decoupling, as it is extensively shown in [20, 43]. The
affinity assumptions allow the storage, during the Offline stage, of the matrices corresponding to
the parameter independent forms aq, q = 1, . . . , Qa, restricted to XNN . Thanks to this fact, during
the Online stage the assembly of the reduced basis system only consists in a linear combination
of these precomputed matrices. A similar strategy can also be applied to the computation of the
error estimator [20, 43]. Indeed, thanks to the affine decomposition of F (5) and a (4), r̂ can be
computed in an Online phase, with a complexity that only depends on N but not on N [20]. Also
the αLB(µ) can be efficiently computed in an Online phase, thanks to suitable algorithms such
as the successive constraint method [20, 22]. Therefore, at each step of the Greedy algorithm, the
error estimator ∆N (µ) can be efficiently evaluated (with computational complexity independent
from N ) for any element in the training set, rather than relying on the computation of the error
|||uN (µ)−uNN (µ)|||µ (which would require an expensive truth solve for all parameters in the training
set, such as in a proper orthogonal decomposition basis generation). If affinity assumptions are not
fulfilled, it turns out to be necessary to use an interpolation strategy (e.g. empirical interpolation
method (EIM) [6, 15]) in order to recover them. A weighted version of EIM is provided in [11].

2.2. Stabilized reduced basis methods. The main goal of this section is to design an
efficient stabilization procedure for the RB method. More specifically, we will make a comparison
between an Offline–Online stabilized method and an Offline–only stabilized one as done in [37].
We want to approximate the solution of a parametric advection–diffusion problem:
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(11) − ε∆u+ β · ∇u = f in Ω ⊂ Rd

given a parameter value µ ∈ D and suitable Dirichlet, Neumann or mixed boundary conditions.
Here ε = ε(µ) : Ω→ [0,+∞) is a parametrized diffusion coefficient, while β = β(µ) : Ω→ Rd is a
parametrized advection field such that div(β) = 0.

Let Th be a triangulation of Ω and let K be an element of Th. We say that a problem is
advection dominated in K if the following condition holds:

(12) PeK(x) :=
|β(x)|hk

2ε(x)
> 1 ∀x ∈ K,

where hK is the diameter of K. It is very well known from literature (e.g. [42]) that the FE
approximation of advection dominated problems can show significant instability phenomena, e.g.
spurious oscillations near the boundary layers. Several recipes have been proposed to fix these
issues. We choose to resort to a strongly consistent stabilization method: the Streamline/Upwind
Petrov–Galerkin (SUPG) [7, 21, 27, 28]. The main idea of stabilization techniques is to add artificial
diffusion to equation (11). To increase the accuracy of the resulting solution, SUPG adds diffusion
only in the streamline direction, and not everywhere as in a purely artificial diffusion scheme.
Moreover, the resulting method is strongly consistent with the continuous PDE and, provided
that the stabilization coefficients are properly chosen, retains the same order of accuracy as the
underlying discretization scheme. For a detailed presentation of the stabilization method for the
FE approximation of advection dominated problems, we refer to [21, 42].

Let us now explain the basic ideas of the two RB stabilization methods mentioned before. As
regards the Offline–Online stabilized method, the choice of the name reveals that the Galerkin
projections are performed, in both Offline and Online stage, with respect to the SUPG stabilized
bilinear form [7, 42], that is

astab(w
N , vN ;µ) = a(wN , vN ;µ) + s(wN , vN ;µ)(13)

Fstab(v
N ;µ) = F (vN ;µ) + r(vN ;µ)

a(wN , vN ;µ) =

∫
Ω

ε(µ)∇wN · ∇vN + (β(µ) · ∇wN )vN(14)

F (vN ;µ) =

∫
Ω

fvN

s(wN , vN ;µ) =
∑
K∈Th

δK

∫
K

LwN
hK
|β(µ)|

LSSv
N(15)

r(vN ;µ) =
∑
K∈Th

δK

∫
K

f
hK
|β(µ)|

LSSv
N(16)

where wN , vN chosen in a suitable piecewise polynomial space XN . In (15) L is the parameter
dependent advection–diffusion operator, that is LvN = ε∆vN + β · ∇vN , which can be split into
its symmetric part LSu

N = −ε∆uN and its skew–symmetric part LSSu
N = β · ∇uN . Moreover,

hK denotes the diameter of the element K, while δK is a positive real number which may depend
on K through the parameter µ (but not directly on hK).

In contrast, in the Offline–only stabilized method we use the stabilized form (13) only during
the Offline stage, while during the Online stage we project with respect to the standard advection–
diffusion bilinear form (14). An advantage of using the Offline–only stabilized method would be a
certain reduction of the online computational effort in the assembly of the reduced linear system,
that could be also significant if the number of affine stabilization terms is very high. Among
possible disadvantages, we mention the inconsistency between the offline and online bilinear forms.
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We will start from the study of some test problems, which we will keep as prototypes for each
further extension that will be carried out in the next sections. The first one is a PG problem
[25, 40, 37], while the second is a parametrized internal layer problem [37]. From here on, we will
explicitly write the FE space dimension N only when it will be strictly necessary.

2.2.1. Numerical test: Poiseuille–Graetz problem (PG). We consider a PG problem
where we have two parameters: one physical (the inverse of diffusivity coefficient µ1, which is
proportional to the Péclet number) and one geometrical (the length of the domain being equal to 1+
µ2). The PG problem deals with steady forced heat convection (advective phenomenon) combined
with heat conduction (diffusive phenomenon) in a duct with walls at different temperature. Let
us define µ = (µ1, µ2) with both µ1 and µ2 positive, real numbers. Let Ωp(µ) be the rectangle
(0, 1 +µ2)× (0, 1) in R2. The domain is shown in figure 1. The problem is to find a solution u(µ),

Figure 1. Geometry of PG problem. Parametrized domain. Boundary conditions: homogeneous Dirichlet on
blue sides, u = 1 on red sides, homogeneous Neumann on the dashed side

representing the temperature distribution, such that:

(17)


− 1
µ1

∆u(µ) + 4y(1− y)∂xu(µ) = 0 in Ωp(µ)

u(µ) = 0 on Γp,1(µ) ∪ Γp,2(µ) ∪ Γp,6(µ)

u(µ) = 1 on Γp,3(µ) ∪ Γp,5(µ)
∂u
∂ν = 0 on Γp,4(µ).

We set the reference domain as Ω = (0, 2) × (0, 1), and subdivide it in Ω1 = (0, 1) × (0, 1)
and Ω2 = (1, 2) × (0, 1). The affine transformation that maps the reference domain into the
parametrized one is:

T 1(µ) : Ω1 → Ωp,1(µ) ⊂ R2 T 2(µ) : Ω2 → Ωp,2(µ) ⊂ R2(18)

T 1

((
x
y

)
;µ

)
=

(
x
y

)
T 2

((
x
y

)
;µ

)
=

(
µ2x
y

)
+

(
1− µ2

0

)
.(19)

and define the continuous one–to–one transformation T (µ) by gluing together these two transfor-
mations.

Let us now define a mesh Th on the reference domain Ω and let us call T 1
h and T 2

h the restrictions
Th to Ω1 and Ω2, respectively. We use P1 FE discretization during the offline stage. Hence, the
corresponding bilinear forms a(·, ·;µ) and s(·, ·;µ) are

a(uN , vN ;µ) :=

∫
Ω1

1

µ1
∇uN∇vN + 4y(1− y)∂xu

N vN+

+

∫
Ω2

1

µ1µ2
∂xu

N∂xv
N +

µ2

µ1
∂xu

N∂yv
N + 4µ2y(1− y)∂xu

N vN
(20)
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and

s(uN , vN ;µ) :=
∑
K∈T 1

h

hK

∫
K

(4y(1− y)∂xu
N )∂xv

N +
∑
K∈T 1

h

hK√
µ2

∫
K

(4y(1− y)∂xu
N )∂xv

N .(21)

The choice of the stabilization coefficient δKp = δKp(µ) = 1√
µ2

for Kp ∈ T 2
h is motivated by the

transformation to the reference domain.

(a) µ1 ∈ (104, 105) (b) µ1 ∈ (1, 106)

Figure 2. Error comparison between Offline and Online-Offline stabilization

We test the performance of the RB approximation for two choices of the parameter space,
namely D1 =

[
104, 105

]
× [0.5, 4] and D2 =

[
1, 106

]
× [0.5, 4]. The parameter space D1 features

very large values of µ1, so that the solution manifold is characterized by solution with steep
boundary layers. In contrast, the parameter space D2 features both small and large values of µ1,
resulting in a richer set of solutions. The range of variation for the geometrical parameter µ2 is
the same in both parameter spaces.

The comparison of Offline–only and Offline–Online stabilized algorithms is shown in figure
2, for D1 (left) and D2 (right). In each figure, the evolution of the Greedy parameter selection is
presented, plotting both the error bound maxµ∈Ξtrain ∆N (µ) employed by the RB algorithm and,
for comparison, the energy norm error maxµ∈Ξtrain |||uN (µ) − uNN (µ)|||µ. For both D1 and D2,
the Greedy algorithm in the Online–Offline case is clearly converging as the RB space enriches its
dimension. In contrast, the Greedy algorithm does not converge in the Offline–only case, being
over 10−2 for both D1 and D2.

We show a representative online solution for both stabilization cases, characterized by large
value of Péclet number, in figure 3, obtained for N = 20. As we can see, the Offline–Online stabi-
lized RB solution is showing marked boundary layers, while the Offline–only stabilized RB solution
still has some noise near the boundary layer and some peaks near discontinuities of solution at top
and bottom walls.

Moreover, if we compare the time used to perform one truth solution (N = 4369) and a RB
one (N = 20), we can see that the former lasts 0.0411 seconds, while the stabilized Online RB
solution lasts 0.000512 seconds, on average on a test set. The non-stabilized in the online phase
lasts even less time, namely 0.000151 seconds, even though it is less accurate (see figure 3). The
further speedup of the non-stabilized version is due to the lower number of affine terms to be
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assembled online. Even bigger gains can be observed in the parabolic case in section 4, or for
problems characterized by a large number of affine terms Qa and QF .

(a) Offline-Online stabilized, µ = (104.8, 3.3) (b) Zoom on the boundary
layer

(c) Offline Stabilized, µ = (104.8, 3.3) (d) Zoom on the boundary
layer

Figure 3. RB solution, stabilized Offline-Online and Offline, µ = (104.8, 3.3)

2.2.2. Numerical test: propagating front in a square (PFS). In this section we will
test the reduced order stabilization method for a second test case where the parameter controls
the angle of an internal layer. The problem we want to study is set over a unit square Ω ⊂ R2, as
sketched in figure 4, it has two parameter µ1, µ2 ∈ R, and is as follows:

(22)


− 1
µ1

∆u(µ) + (cosµ2, sinµ2) · ∇u(µ) = 0 in Ω

u(µ) = 1 on Γ1 ∪ Γ2

u(µ) = 0 on Γ3 ∪ Γ4 ∪ Γ5.

Figure 4. Geometry PFS problem

Let us note that µ1 is proportional to the Péclet number of the advection–diffusion problem,
while µ2 is the angle between the x axis and the direction of the constant advection field. The
bilinear form associated to the problem is:

(23) a(u, v;µ) =

∫
Ω

1

µ1
∇u · ∇v + (cosµ2 ∂xu+ sinµ2 ∂yu)v.
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(a) µ2 = 0, δK = 2.1 (b) µ2 = 0.8, δK = 1.4 (c) µ2 = 1.2, δK = 0.7

Figure 5. FE solution comparison varying δK and µ2

We introduce again a triangulation Th on the domain Ω and we consider a P1 discretization. The
corresponding stabilization term is

(24) s(uN , vN ;µ) =
∑

K∈T N

δK

∫
K

(cosµ2, sinµ2) · ∇uN (cosµ2, sinµ2) · ∇vN

where δK is manually tuned according to µ2. A few representative FE solutions are shown in
figure 5. The figure clearly shows that the direction of the advection fields largely affects the
solution, which exhibits strong variations in energy norm [36]. For this reason, we test the RB
method for two different choices of the parameter space, namely D1 =

[
104, 105

]
× [0.5, 1] and

D2 =
[
104, 105

]
× [0, 1.57]. Both choices are characterized by dominant advection; moreover, a

wider range of angles is considered in D2 than in D1, resulting in a richer manifold of solutions.
The performance of the RB algorithm is shown in figure 6 for D1 (left) and D2 (left). Only

the Offline–Online stabilization case is reported, since the Offline-only case gave poor results as
in the previous test case. In both cases the stabilized reduced order method converges, reaching
an error around 10−6 for D1 and around 10−3 for D2. Computational times are: 0.461346 seconds
on average for a truth solution (N = 15626), 0.034271 seconds for a RB solution (N = 20) with
online stabilization, and 0.001862 seconds for a RB solution (N = 20) without online stabilization.

3. Stabilized weighted reduced basis algorithm for problems with uncertain pa-
rameters. The reduced basis method formulated in section 2 assumed deterministic parameters;
in contrast, for random parameters, a weighted reduced basis has been proposed [9, 10] as an
extension of the standard reduced basis approach. The main idea of this method is to suitably
assign a larger weight to those samples that are more “important”. In this section, we will deal
with problems with random distributed parameters and we will compare the weighted method
to the standard reduced basis method for advection–diffusion problems with high Péclet number.
Moreover, we will also provide an offline/online stabilization approach that can be useful in case
when stabilization involves large computations.

3.1. A brief introduction to weighted reduced basis method. To discuss the weighted
reduced basis method [10], we introduce stochastic partial differential equations. Let Ω be an
open set of Rd with Lipschitz boundary ∂Ω and let H1

0 (Ω) ⊂ X ⊂ H1(Ω) a functional space. Let
(A,F , P ) denote a complete probability space, where A is a set of outcomes ω ∈ A, F is a σ-algebra
of events and P : F → [0, 1] with P (A) = 1 is a probability measure [14]. A real-valued random
variable is defined as a measurable function Y : (A,F) → (R,B), being B the Borel σ-algebra
on R. Let dFY (y) denote the distribution measure, i.e., for all B ⊂ D, P (F ∈ B) =

∫
B
dFY (y).

Provided that dFY (y) is absolutely continuous with respect to the Lebesgue measure dy, which we
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Figure 6. RB error and ∆N error bound varying µ2 range

assume hereafter to be the case, there exists a probability density function ρ : D → R such that
ρ(y)dy = dFY (y). Note that the new measure space (D,B(D), ρ(y)dy) is isometric to (A,F , P )
under the random variable Y .

We define the probability Hilbert space L2(A) := {v : A → R :
∫
A
v2(ω)dP (ω) < ∞} and

L2
ρ(D) := {u : D → R|

∫
D u

2(y)ρ(y)dy <∞}, equipped with the equivalent norms (by noting that
v(ω) = u(y(ω)))

(25) ||v||L2(A) :=

(∫
A

v2(ω)dP (ω)

)1/2

=

(∫
D
u2(y)ρ(y)dy

)1/2

=: ||u||L2
ρ(D).

Let v : Ω × A → R be a real-valued random field, which is a real-valued random variable
defined on A for each x ∈ Ω. We define the Hilbert space S(Ω) := L2(A)

⊗
H1(Ω), equipped with

the inner product

(26) (u, v) =

∫
A

∫
Ω

(uv +∇u · ∇v) dx dP (ω) ∀u, v ∈ S(Ω),

where ∇ is the spatial gradient in Ω. The associated norm is defined as ||v||S(Ω) =
√

(v, v).
Now we can introduce stochastic partial differential equations. Given random vector field

µ : A → Rp, our stochastic advection-diffusion problem will be finding a random field u(x;µ(ω))
such that

(27) − ε(µ(ω))∆u(µ(ω)) + β(µ(ω)) · ∇u(µ(ω)) = f(µ(ω)) in Ω(µ(ω)),

accompanied by suitable boundary conditions.
Now, we want to develop an algorithm that gives more importance to parameters with higher

probability of being chosen. The basic idea is to assign different weights to every values of parameter
µ ∈ D ⊂ Rp according to a prescribed weight function w(µ) > 0, and to use them during
the procedure of construction of the RB space. The motivation is that when the parameter µ
has non constant weight function w(µ), e.g. stochastic problems with random inputs obeying
probability distribution far from uniform type, the weighted approach can considerably attenuate
the computational effort for large scale computational problems. The weighted reduced basis
method consists of the same elements, namely Greedy algorithm, a posteriori error estimate and
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Offline–Online decomposition, as presented in section 2.1. In this section, we only highlight the
new weighted steps.

Let XN be a high-fidelity approximation space of X, equipped with the norm |||.|||µ defined
in section 2.1.2. Moreover, let us define an equivalent weighted norm

(28) ||u(µ)||w = w(µ)||u(µ)||µ ∀u ∈ XN ,∀µ ∈ D,

where w : D → R+ is a weighted function taking positive real values, which we assume to be
continuous and bounded. We will denote by Xw the space X endowed with || · ||w.

The Greedy algorithm is thus modified to take the weighting into account, that is to solve an
optimization problem in L∞(D;Xw): at each step we are seeking a new parameter µN ∈ D such
that

(29) µN = arg sup
µ∈Ξtrain

||uN (µ)− uN (µ)||w,

where again uN is the reduced basis approximation of the truth solution uN . Here, Ξtrain is
the discretized version of the parameter space D. Instead of performing the true error, we use a
weighted a posteriori error estimator ∆w

N such that

(30) ||uN (µ)− uN (µ)||w ≤ ∆w
N (µ).

The choice of the weight function w(µ) is aimed by the desire of minimizing the squared norm
error of the RB approximation in the space L∞(D;Xw), i.e.

E[||uN − uN ||2] =

∫
A

∫
Ω

||uNµ(ω))− uN (µ(ω))||2µdx dP (ω) =

=

∫
D

∫
Ω

||uN (µ)− uN (µ)||2µρ(µ) dx dµ,

(31)

that we can bound with

(32) E
[
||uN − uN ||2

]
≤
∫
D

∆N (µ)2ρ(µ)dµ,

where ∆N is the RB error estimator introduced in section 2.1. This motivates us in the choice
w(µ) =

√
ρ(µ). Finally, we set ∆w

N (µ) := ∆N (µ)
√
ρ(µ) [10].

Another important aspect in the RB algorithm is the choice of the training set Ξtrain. While
in the deterministic case we used Uniform Monte Carlo sampling methods to choose elements from
D, in the stochastic context we can use a Monte Carlo sampling according to the distribution ρ(µ).
We will see in numerical test that this choice is important to improve the convergence of the error.
We refer to [9, 10, 12] for further details on weighted reduced basis methods.

3.2. Stabilized weighted reduced basis methods. In this section we study a variant of
the weighted reduced basis method suited for stochastic advection–diffusion equations with high
Péclet number. In order to do so, we combine the stabilization of advective terms, introduced in
section 2, to the weighting procedure of section 3.1.

As in section 2, for the moment, we need to add SUPG stabilization terms to the weak form
of the problem. This results in the following formulation:

find uN (µ(ω)) ∈ XN s.t.

astab(u
N (µ(ω)), vN ;µ(ω)) = Fstab(v

N ;µ(ω)) vN ∈ XN , ∀ω ∈ A,
(33)

where astab and Fstab are defined in section 2. The most relevant difference with respect to the
previous section is that µ : A→ D is a random vector, instead of being a deterministic parameter.

We test the proposed method with stochastic versions of the previous test cases (PG problem
2.2.1 and PFS problem 2.2.2). In order to do so, we need to prescribe the distribution of µ; this
will be done for each test case in the following sections. For the sake of exposition results are
presented only for the Offline-Online stabilization.
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3.2.1. Numerical test: Poiseuille–Graetz problem. For PG problem, we consider the
range D =

[
101, 106

]
× [0.5, 4] for the parameter µ. To give more importance to parameter with

µ1 ≈ 105, we use X1 ∼ Beta(4, 2) and µ1 ∼ 101+5·X1 , while X2 ∼ Beta(3, 4) and µ2 ∼ 0.5 + 3.5X2.
We choose the Beta distribution because it takes values in a compact set1, resulting in (µ1, µ2) ∈ D.

We compare next the performance of the reduction method for the different choices that we
have discussed in section 3, namely related to using weighted or standard Greedy algorithm, and
the sampling of the training set Ξtrain. We present in figure 7 numerical results for four different
cases:

1. Classical Greedy with Uniform Monte Carlo sampling (black line);
2. Classical Greedy with Beta Monte Carlo sampling (purple line);
3. Weighted Greedy with Uniform Monte Carlo sampling (green line);
4. Weighted Greedy with Beta Monte Carlo sampling (red line).

0 5 10 15 20
Dimension of Reduced Basis Space

10-5

10-4

10-3

10-2

10-1

Er
ro

r

Errors of Graetz problem: different Greedy algorithms

Greedy, Uniform MC
Greedy, Beta MC
W Greedy, Uniform MC
W Greedy, Beta MC

(a) Error Comparison

0 5 10 15 20
Dimension of Reduced Basis Space

10-4

10-3

10-2

10-1

100

Er
ro

r

∆N  of Graetz problem: different Greedy algorithms

Greedy, Uniform MC
Greedy, Beta MC
W Greedy, Uniform MC
W Greedy, Beta MC

(b) ∆N comparison

Figure 7. Greedy algorithms comparison for Graetz problem

We used 200 samples for Ξtrain in each algorithm during the offline stage. We can see in
figure 7 the comparison between the average errors and the average ∆N between these algorithms
for a test set of size 100, with the same distribution as the training set. The results show that
both weighting and a correct sampling are essential to obtain the best convergence results [48, 49].
Indeed, putting together these two aspects we get the best results, reaching an error that is one
tenth of the error of the classical Greedy algorithm on uniform distribution.

In a similar way, instead of computing the average of the errors on the test set, we can also
compute the mean of the error in a probability sense, i.e.

E[|||uN (µ)− uN (µ)|||µ] =

∫
A
|||uN (µ(ω))− uN (µ(ω))|||µ(ω)dP (ω)(34)

=

∫
D
|||uN (µ)− uN (µ)|||µρ(µ)dµ,(35)

that we can approximate using some quadrature method. In particular, we will use Monte Carlo

1The weighted approach would work as well for an unbounded (e.g. Gaussian) distribution. We use a Beta
distribution in order to be able to present the comparison between a weighted and the classical approach. The
latter would not be possible for Gaussian random variables, unless the parameter domain is cut. Such cut would be
somehow arbitrary, since the classical approach does not exploit the underlying probability distribution.
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method, i.e. we approximate (34) with

(36) E[|||uN (µ)− uN (µ)|||µ] ≈ 1

M

M∑
i=1

|||uN (µi)− uN (µi)|||µi ,

where µi, i = 1, . . . ,M are random parameters in the testing test drawn from a Beta distribution,
while we approximate (35) with

(37) E[|||uN (µ)− uN (µ)|||µ] ≈ 1

M

M∑
j=1

|||uN (µj)− uN (µi)|||µjρ(µj),

where µj , i = 1, . . . ,M are drawn from a Uniform distribution (on the same support) instead.
Results are nevertheless similar to the ones presented in figure 7, and the same conclusions

can be drawn. For instance, the probabilistic mean of the errors in the classical Greedy method
with uniform sampling and the weighted reduced one with Beta sampling are 4.5485 · 10−4 and
1.2807 · 10−4, respectively.

3.2.2. Numerical test: propagating front in a square. We can proceed in the same
way for the PFS problem of section section 2.2.2. In this section, the parameter range D is[
104, 105

]
× [0, 1.5]. Also in this case µ1 and µ2 depend on randomly distributed Beta variables,

i.e. µ1 ∼ 104 + 9 · 104 ·X1 and µ2 ∼ 1.5 ·X2, where X1 ∼ Beta(3, 4) while X2 ∼ Beta(4, 2).
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Figure 8. Greedy algorithms comparison for PFS problem

As for the previous test case we compare the classical Greedy method with Uniform Monte
Carlo to the weighted reduced basis method with Beta Monte Carlo distribution. The comparison,
shown in figure 8, provides results which are very similar to PG problem. Indeed, the weighted
RB method with Beta distribution is converging faster than the classical one. Also the mean
errors in the probabilistic sense of (36) show a similar behavior: for a reduced basis space of
dimension N = 20, the stabilized weighted method with Beta distribution produces a mean error
of 1.7803 · 10−3, while the classical approach gives a mean error of 7.9362 · 10−3.

3.3. Selective online stabilization of weighted reduced basis approach. In this section
we want to optimize computational costs in the Online phase of RB method. Indeed, stabilization
procedure can lead to an increase in the number Qa and/or Qf of affine terms, which in turn may
lead to larger online times required for the assembly of the linear system or for the evaluation of the
error estimator. In this section we propose a procedure to selectively enable online stabilization
only when required. In the whole section we keep the reduced basis produced in the previous
section for N = 20.
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3.3.1. Numerical test: Poiseuille–Graetz problem. Let us consider first the PG exam-
ple, with Beta distribution over parameter µ, similarly to section 3.2.1. In what follows, we assume
that µ1 ∈ [10, 106], µ1 ∼ 101+5·X1 where X1 ∼ Beta(5, 3). To simplify the discussion of the results
we further assume that µ2 ≡ 1.
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Figure 9. Error and density of Uniform Monte Carlo test set

While carrying out the online stage of the proposed stabilized weighted reduced basis method,
we can choose whether to apply online stabilization or not. Figure 9(b) shows the resulting error on
a test set (that we have taken with a Uniform Monte Carlo sampling), sorted by increasing values
of µ1, considering both options. We can observe that for low Péclet number (µ1 ≤ 102), Offline-
Online stabilization and Offline only stabilization produce very similar results. Thus, we would
prefer the less expensive Offline only stabilization procedure. There the error is high, because
the samples selected from the weighted Greedy in the Offline phase are all concentrated where
the density of probability is higher (high Péclet). For this reason the low Péclet number zone
is bad represented. Moreover, in the regions where the density of µ is very small, even a large
error would be less relevant in terms of the probabilistic mean error (34). So, we should consider
the idea of enabling the more expensive online stabilization only for parameters with high density
(which would affect more the mean error) or parameters with large Péclet numbers (were the more
expensive assembly is fully justified by the convection dominated regime).

Let us start considering the case where we want to stabilize Online solutions depending on
Péclet numbers. First, we establish a threshold at a certain Péclet number µ̃1. For parameters
µ1 > µ̃1 we will use both Online and Offline stabilization, while for parameter µ1 ≤ µ̃1 we will
use only Offline stabilization. See figure 10 for a graphical representation for µ̃1 = 103.
For different thresholds µ̃1 we can compute the error in sense of (34), as we can see in the following
table.

Threshold µ̃1 Error Percentage non-stabilized
101 7.9673 · 10−4 0%

101.5 8.0704 · 10−4 10%
102 10.0060 · 10−4 20%

102.5 18.2806 · 10−4 33%
103 33.4593 · 10−4 45%
106 0.021128 100%

Considering that the best attainable error was of 7.967 · 10−4, we can say that until µ̃1 = 102 we
are not worsening considerably the error (less than an order of magnitude). At the same time, we
can save online time on the assembly of terms related to stabilization coefficient for 20% of our
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Figure 10. Péclet discriminant, black line is the Péclet threshold

test set (that was uniformly distributed).
The other natural gauge to decide whether to stabilize Online, or not, is the density ρ(µ). Let

ν̃ be a prescribed tolerance; we will not stabilize parameters µ on the tail I of the distribution
such that

(38)

∫
I

ρ(µ)dµ = ν̃,

where I is a set {µ : ρ(µ) ≤ ρ̃} for some suitable ρ̃ which can be easily found numerically as a
function of ν̃. In figure 11 we can see an example for ν̃ = 10%.
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Figure 11. Density discriminant, black line is the density threshold

In the following table, we summarize some results for different thresholds ν̃ (and, corre-
spondigly, ρ̃).

Threshold ν̃ Threshold ρ̃ Error Percentage non-stabilized
0 0 7.9673 · 10−4 0%

0.001 0.02233 9.3222 · 10−4 15%
0.002 0.04423 9.6456 · 10−4 17%
0.005 0.09094 14.7861 · 10−4 21%
0.01 0.13877 15.9482 · 10−4 25%
0.02 0.21433 25.6017 · 10−4 30%
0.05 0.38244 49.1931 · 10−4 38%
0.1 0.89068 66.7488 · 10−4 45%
1 ∞ 0.021128 100%
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We have that errors computed using density discriminant are less accurate than ones computed
with Péclet discriminant. Indeed, for the same percentage of non-stabilized solution (for example
45%) we have bigger errors in density discriminant approach (66 · 10−4 instead of 33 · 10−4). This
is due to the enormous difference between Online stabilized and Online non–stabilized solution for
high Péclet numbers (figure 9(b)), with the latter resulting in considerably larger errors.

3.3.2. Numerical test: propagating front in a square. Let us now consider the PFS
problem with fixed µ1 ≡ 105, while µ2 ∼ 0.5 + 3.5X2 ∈ [0, 1.5] where X2 ∼ Beta(4, 2). We have
decided to fix the Péclet number since results in section 2.2.2 show that the solution is most sensible
to the parameter µ2, which represents the angle of the propagating front.
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Figure 12. (a) Errors with stabilization Offline and Offline-Online; (b) angle discriminant, black line is the
angle threshold; (c) density discriminant, black line is the density threshold

Errors for Online stabilized and Online not stabilized solutions over a Uniform Monte Carlo
test set of 200 elements are provided in figure 12(a), for increasing values of µ2. We can notice that
Offline–Online stabilized errors of solutions with small angles (figure 12(a), µ2 . 0.2) are bigger
than Offline–only stabilized errors. This is due to the fact that the density of that region of the
parameter range is very small and thus the weighted Greedy algorithm picks very few parameters in
that region. In a similar way, we also notice that solutions for µ2 ≈ 1.5 are not well approximated.
Indeed, in the Offline only stabilized case the lack of stabilization is badly affecting the reduced
order solution for any µ2 & 0.2, while in the Offline-Online stabilized case the low density of
µ2 & 1.4 leads the weighted reduced basis selection to choose few parameters µ2 ≈ 1.5 during the
offline stage.
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Thus, in a similar way to the previous test case, we propose selective online stabilization
criteria, either depending on a threshold on the parameter (the angle µ2 in this case, rather than
the Péclet number) or on the probability distribution. Let us start from a discussion of the former
choice, leading to online stabilize for angles greater than a certain threshold µ̃2 (see e.g. figure
12(b)). The error for different thresholds µ̃2 is tabulated as follows:

Threshold µ̃2 Error Percentage non-stabilized
0 0.01416 0%

0.1 0.01400 6%
0.2 0.01506 16%
0.3 0.04056 23%
0.4 0.11810 30%
0.5 0.20365 37%
1.5 0.82998 100%

We can observe that at the beginning the error is decreasing as the threshold increases, while it
slowly increases after a critical angle between 0.1 and 0.2. Due to this, we consider a threshold
µ̃2 = 0.2 to be optimal in order not to increase the error and save 16% of online stabilization
computations.

As for PG example, we can also test a criterion based on a density threshold (see e.g. figure
12(c)). In the following table, we are showing different errors for different density thresholds.

Threshold ν̃ Threshold ρ̃ Error Percentage non-stabilized
0 0 0.01416 0%

0.001 0.02271 0.01400 13%
0.002 0.04600 0.01506 16%
0.005 0.10237 0.02269 20%
0.01 0.13598 0.04658 25%
0.02 0.26309 0.11158 30%
0.05 0.51855 0.20613 38%
0.1 0.72557 0.32034 46%
1 ∞ 0.82998 100%

In this case, a negligible increase of the error is obtained for ν̃ = 0.002, allowing to save more
than 15% of stabilized Online computations. Further computational savings can be obtained for
ν̃ = 0.01, up to 25%, at the expense of a larger error. We notice that in this case both criteria give
similar results: this is due to the fact that errors are large for both Offline only and Offline-Online
stabilization methods when µ2 is large or where density ρ is small.

Remark 3.1. Let I be the region of the parameter space where Offline only stabilized solution
is selected, and let D \ I denote the complement region in which the Offline-Online stabilized
method is queried. Let uIN (µ) denote the corresponding reduced order solution for µ ∈ I, and

similarly u
D\I
N (µ) for µ ∈ D \ I. To ease the notation, we will denote the online solution by uN (µ)

when no confusion arises.
The selective procedure for online stabilization can be automatically tuned according to a

prescribed tolerance on the probabilistic mean error E
[
|||uN (µ)− uN (µ)|||µ

]
. In order to estimate

the mean error, we recall the standard error estimation (10) for µ ∈ D \ I, and the following error
estimation

|||uIN (µ)− uN (µ)|||µ ≤∆I
N (µ) := hmax(µ)C(µ)||β · ∇uN (µ)||L2(Ωp(µ))+

+ (1 + hmax(µ)C(µ)2||β||L∞(Ωp(µ)))ε
∗.

(39)

for µ ∈ I [37], where C(µ) is the constant of the equivalence between H1 and ||| · |||µ norms, hmax
is the maximum mesh size, while ε∗ is the tolerance of the Greedy algorithm [37].
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Thus, combining these two error estimators, we get that

(40) E
[
|||uN (µ)− uN |||µ

]
≤ (1− ν̃) max

µ∈D\I
∆N (µ) + ν̃max

µ∈I
∆I
N (µ).

which, for a given tolerance ẽ on the mean error, allows us to compute ν̃ such that

(1− ν̃) max
µ∈D\I

∆N (µ) + ν̃max
µ∈I

∆I
N (µ) < ẽ.

Remark 3.2. We remark that this selective approach for online stabilization is peculiar of
stochastic problems. Indeed, it is the density distribution and the relative importance of each
sample in the computation of the probabilistic mean that drives the selection process. Such a
weighting is lacking in a deterministic setting, being all samples equally probable during the online
stage.

4. Stabilized weighted reduced basis method for stochastic parabolic equations. In
this section we extend our investigation to stochastic time dependent advection–diffusion equations.
Stabilization of advection diffusion parabolic equations with high Péclet number have been studied
in several works with different stabilization methods [7]. We will adapt SUPG stabilization for FE
methods on parabolic equations to RB method, as suggested in [36, 37, 38, 39]. The reduction will
employ a POD-Greedy procedure [19, 35, 40] during the offline stage. We refer to [45, 46] for very
recent weighted RB variants for stochastic heat equations.

Like for stochastic elliptic equations, we define a parameter domain D as a closed subset of
Rp and we call µ a random field with values in D. Again, let Ω be a bounded open subset of
Rd (d = 1, 2, 3) with regular boundary ∂Ω and let X be a functional space such that H1

0 (Ω) ⊂
X ⊂ H1(Ω). For each outcome ω ∈ A, and corresponding realization µ(ω) ∈ D, we define the
continuous, coercive bilinear form a and the continuous, bilinear, symmetric form m such that
satisfy the affinity assumption like (4) and a linear form F which satisfies the affine assumption
(5). Let us finally denote the time domain as I = [0, T ], where T is the final time.

We can now define the weak form of the continuous stochastic problem:

find u(t;µ(ω)) ∈ X, ∀t ∈ I, ∀ω ∈ A, continuous in t s.t.

m(∂tu(t;µ(ω)), v) + a(u(t;µ(ω)), v;µ(ω)) = g(t)F (v;µ(ω)) ∀v ∈ X, ∀t ∈ I, ∀ω ∈ A
given the initial value u(0;µ(ω)) = u0 ∈ L2(Ω)

(41)

where g : I → R is a control function such that g ∈ L2(I). We choose a right hand side of
the form g(t)F (v;µ), as usual in the RB framework [18, 40], in order to ease the Offline–Online
computational decoupling.

4.1. Discretization and RB formulation. To discretize the time–dependent problem (41)
we follow the approach used in [18, 20, 34, 40], that is to use finite differences in time and FE in
space discretization [41]. We start by discretizing the spatial part of the problem (resulting in a
mesh denoted by Th) and the temporal part (resulting in discrete time steps {tj = j ·∆t}Jj=0). We

thus define the FE truth approximation space XN and we denote its basis with {φi}Ni=1. The fully
discretized problem reads

for each 1 ≤ j ≤ J, find uNj (µ(ω)) ∈ XN s.t.

1

∆t
m(uNj (µ(ω))− uNj−1(µ(ω)), vN ;µ(ω)) + a(uNj (µ(ω)), vN ;µ(ω)) =

g(tj)F (vN ;µ(ω)) ∀vN ∈ XN , ∀ω ∈ A,
given the initial condition uN0 s.t.

(uN0 , v
N )L2(Ω) = (u0, v

N )L2(Ω) ∀vN ∈ XN .

(42)
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The latter problem uses the Backward Euler-Galerkin discretization, but we can resort to other
theta-methods (e.g. Crank-Nicholson) or to high order method (e.g. Runge–Kutta) [41].

The RB formulation of the problem (42) is based on hierarchical RB space, as we did for the
steady case, employing a POD reduction over the time trajectory and a greedy selection over the
parameter space [19, 35]. The algorithm can be seen as a Greedy algorithm in the parameter space
with a further compression by POD for the space trajectory.

At each step of the Greedy algorithm we search the parameter µ∗ which maximizes, over the
training set Ξtrain, an error estimator for the following quantity:

(43) |||eNN (µ)|||t−dep =

m(eNN,J(µ), eNN,J(µ);µ) +

J∑
j=1

a(eNN,j(µ), eNN,j(µ);µ)∆t

 1
2

,

where eNN,j(µ) = uNj (µ)− uNN,j(µ). We remark that, as in section 2.1, an inexpensive a posteriori
error bound for (43) can be derived (see [18]), which in particular does not require anyN -dependent
computation (e.g. it does not require the time trajectory to be computed for every µ in the training
set). We will continue denoting by ∆N the resulting error estimator, even though its expression is
different from the one in section 2.1; we refer to [18] for more details.

Once the parameter is chosen, we project the time evolution of the solution of this parameter
on the orthogonal space of the current reduced basis space XNN . This projection ensures that, at
each Greedy iteration, only new information is added to the reduced basis. To set the notation,
denote by PN : XN → XNN the projection onto the current reduced basis XNN . We then define
u⊥j (µ∗) = uj(µ

∗)− PN (uj(µ
∗)), for j = 1, . . . , J .

As a further compression of the resulting time trajectory, we compute a POD on {u⊥j (µ∗)}Jj=1,

and collect the first few POD modes (up to a prescribed tolerance) into a space denoted by Y NN .
The resulting reduced basis space to be used at the (N + 1)-th Greedy iteration is then defined as
XNN+1 = XNN ⊕ Y NN .

The RB formulation of the problem can be obtained by substituting the reduced basis space
XNN to XN in (42).

4.2. SUPG stabilization method for parabolic problems. In this section we briefly
introduce the SUPG method for time-dependent problems [7, 28]. The idea is the same of the
steady case: we have to add terms to bilinear forms in order to improve stability. The stabilization
term is almost the same than in the steady case, but now we have to consider also the time
dependency to guarantee the strong consistency. We thus set

(44) s(wN (t), vN ) =
∑
K∈Th

δK

(
∂tw

N (t) + LwN (t),
hk

|β(µ(ω))|
LSSv

N
)
K

where wN (t) ∈ XN for each t ∈ I, vN ∈ XN and (·, ·)K is the usual L2 scalar product, restricted to
the element K. Here L is the steady advection–diffusion operator and LSS is its skew–symmetric
part.

Thus, we can define the Backward Euler–SUPG formulation of the problem by substituting
the forms m, a and F in (42) with:

mstab(w
N , vN ;µ(ω)) = m(wN , vN ;µ(ω)) +

∑
K∈Th

δK

(
wN ,

hK
|β(µ(ω))|

LSSv
N
)
K

astab(w
N , vN ;µ(ω)) = a(wN , vN ;µ(ω)) +

∑
K∈Th

δK

(
LwN ,

hK
|β(µ(ω))|

LSSv
N
)
K

Fstab(v
N ;µ(ω)) = F (vN ;µ(ω)) +

∑
K∈Th

δK

(
f,

hK
|β(µ(ω))|

LSSv
N
)
K

(45)
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(a) t = 0 sec (b) t = 1 sec

(c) t = 2 sec (d) t = 7 sec

Figure 13. Plot of FE solution for parabolic PG problem at different times at µ1 = 1 and µ2 = 1 · 104

(a) t = 0 sec (b) t = 0.64 sec (c) t = 1.28 sec

Figure 14. Plot of FE solution for parabolic PFS problem at different times, µ1 = 2 · 104, µ2 = 0.8

where K are the elements which form the mesh Th and f can be a source term of the advection–
diffusion equation or a lifting of the Dirichlet boundary data. For the analysis of stability and
convergence of the method we refer to [26].

4.3. Numerical tests for stochastic parabolic problems. We are now showing some
numerical results of the stabilized RB method for stochastic parabolic PDEs, extending to the time
dependent case the problems in sections 3.2.1 and 3.2.2. For the sake of exposition we will show
the results only for the Offline-Online stabilization. Few representative FE solutions are provided
in figure 13 for the parabolic PG problem and figure 14 for the parabolic front propagation test.

We show in figures 15 and 16 the average error on a test set, for both the parabolic PG problem
(left) and the parabolic front propagation test (right), respectively in deterministic and stochastic
case. The error is the one defined in (43), while the error estimator ∆N is as in [18]. We compare
in figure 16 the classical reduced basis algorithm (with uniform Monte Carlo sampling) and the
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Figure 15. Greedy algorithms comparison for parabolic problems
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Figure 16. Greedy algorithms comparison for parabolic problems

weighted reduced basis one (with sampling according to the distribution of µ). The comparison
shows that, also for parabolic problem, proper weighting and suitable sampling allows to improve
the accuracy of the resulting reduced order model (especially in the case of the parabolic front
problem) and the reliability of the error estimator (in both test cases).

Similar results hold for the probabilistic mean indicator introduced in (34), which we extend
to the unsteady case as

(46) E[||uN − uNN ||2] :=

J∑
j=1

∫
D
||uNj (µ)− uNN,j(µ)||2µρ(µ)dµ

and approximate with Monte Carlo quadrature procedure. By doing this we obtain for PG problem
with a reduced basis space of dimension 20 an error of 8.3248 · 10−2 for classic Greedy algorithm
and 7.6318 · 10−2 for weighted reduced basis algorithm, respectively. For PFS problem we have
that the classic Greedy algorithm produce an error of 0.3196 while the weighted algorithm gets
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0.2343.
A small remark on computational times in parabolic must be done. In PG problem for one true

parabolic solution we need 132.382 seconds, while for the RB one with N = 20 basis functions we
need only 0.356224 seconds. For a PFS true solution we need 17.2846 seconds and only 0.125266
seconds for RB solution with N = 20 basis functions. These results justify all the computational
costs of the Offline phase.

5. Conclusions. In this work we have dealt with stabilization techniques for the approxima-
tion of advection dominated problems using a reduced basis approach into a stochastic framework,
both in steady and unsteady case. To perform a stabilization in the reduced basis algorithm, we
have studied the SUPG [42] stabilization for FE method and introduced two reduced basis stabi-
lization algorithms. The Online–Offline stabilization, which uses SUPG stabilized forms in both
stages (Offline and Online) and the Offline–only stabilization, which uses the original (not stabi-
lized) forms for the Online stage. The underlying idea was to obtain a stable RB approximation,
from the stable FE approximation, with reasonable computational times and, at the same time, a
very good accuracy.

We then introduced stochastic equations and weighted reduced basis method [10]. We formu-
lated a stabilized weighted reduced basis method for advection-diffusion problems with random
input parameters. Numerical test cases clearly highlight the importance of the weighting pro-
cedure, as well as the necessity of a proper sampling of the parameter space, according to the
probability distribution of µ. Moreover, we introduced a procedure to selectively enable online
stabilization when required. This allows to reduce the number of terms to be assembled in the
affine expansion, with a negligible worsening of the error, which remains of the same order as the
one for the previous strategies.

Finally, we have generalized these methods to parabolic problems producing a stabilized RB
approach for unsteady cases [19, 37], starting from SUPG stabilized parabolic FE methods [7, 28].

Possible further developments of this topic could be the application of these methods to more
complex geometries, e.g. non–affinely parametrized ones, requiring some empirical interpolation
preprocessing [6, 29]. Moreover, the method could be tested on larger dimension parameter spaces
D, using Monte Carlo or quasi–Monte Carlo strategies and on other types of probability distribu-
tions.
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