
Model order reduction strategies for weakly dispersive waves

Davide Torlo∗† and Mario Ricchiuto‡

November 23, 2022

Abstract

We focus on the numerical modelling of water waves by means of depth averaged models. We
consider in particular PDE systems which consist in a nonlinear hyperbolic model plus a linear dis-
persive perturbation involving an elliptic operator. We propose two strategies to construct reduced
order models for these problems, with the main focus being the control of the overhead related to
the inversion of the elliptic operators, as well as the robustness with respect to variations of the flow
parameters. In a first approach, only a linear reduction strategies is applied only to the elliptic com-
ponent, while the computations of the nonlinear fluxes are still performed explicitly. This hybrid
approach, referred to as pdROM, is compared to a hyper-reduction strategy based on the empirical
interpolation method to reduce also the nonlinear fluxes. We evaluate the two approaches on a variety
of benchmarks involving a generalized variant of the BBM-KdV model with a variable bottom, and
a one-dimensional enhanced weakly dispersive shallow water system. The results show the potential
of both approaches in terms of cost reduction, with a clear advantage for the pdROM in terms of
robustness, and for the EIMROM in terms of cost reduction.

1 Introduction

Water waves equations can be modeled with various strategies [29]. Different models provide reason-
able approximations in different contexts, according to which type of solution we are interested in.
The most complete models consider Euler or Navier–Stokes equations and describe the motion of the
water in each point in the 3 dimensional space. A first approximation level is given by averaging the
water speed on the vertical direction, reducing by one the dimensions and allowing to display only
the water surface as a function of the horizontal variables. The well–known shallow water equations,
Boussinesq equations, Green-Naghdi equations, and other models fall in this category. In this work we
are interested in studying dispersive models, which are able of reproducing dispersion phenomena. In
contrast with other models, as shallow water equations, in these dispersive models shocks are avoided
and instead the dispersion fragments the waves into different waves with different wavelength before
they break. We will consider two dispersive models which approximate water waves at different lev-
els: the Benjamin–Bona–Mahony (BBM) equation [6], in a more general form that it is linked to the
Korteweg–De Vries (KdV) equation [12, 29], and an enhanced Boussinesq (EB) system of equations
[31, 39].

The peculiarity of both models is the combination of hyperbolic systems and dispersive terms.
Numerical solutions of such problems are often obtained using explicit solver for the hyperbolic part,
while the dispersive terms are obtained first solving an elliptic problem, which requires greater com-
putational costs, and then using this solution inside the hyperbolic system [39, 17]. In this work, we
will try to reduce the computational costs of such problems, focusing on the compression of the elliptic
operators, which are responsible of the largest part of the computational time of such methods. In
case of parametric problems, where a fast response is necessary or we have a multi-query task, the
reduction could lead to strong advantages for the computational costs, without degrading the quality
of the solution.

∗Mathematics Area, mathLab, SISSA, via Bonomea 265, I-34136 Trieste, Italy
†Corresponding author: davide.torlo@sissa.it
‡Team CARDAMOM, Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, 33405 Talence, France

1

mailto:davide.torlo@sissa.it

Hyperbolic problems are known for developing shocks and advection dominated solutions. Clas-
sically, they are badly reducible as the Kolmogorov n–width decays very slowly for such problems
[34, 44, 9, 46, 32, 38, 36]. Nevertheless, for dispersive problems there is no shock formations and the
wave traveling is often transformed into a oscillation of the whole domain. Hence, also the advection
character of the solution is less pronounced. Hence, there is room to attempt a reduction with classi-
cal model order reduction (MOR) algorithms coming from the parabolic and elliptic community. In
particular, we will use the proper orthogonal decomposition (POD) [26] to reduce the solution man-
ifold and then we will apply a Galerkin projection to obtain a reduced problem. A further step will
consist of interpolating the nonlinear fluxes with the empirical interpolation method (EIM) [5]. This
will provide a second level of reduction that allows more reduction in the computational costs. Few
works have already performed a model order reduction directly on shallow water equations, inter alia
[42, 43, 40, 41]. Up to our knowledge, there are no other works trying to reduce the computational
costs of dispersive wave equations by the means of model order reduction techniques.

The paper is structured as follows. In Section 3 we introduce the BBM–KdV model, some energy
properties and its classical discretization, i.e., the full order model (FOM), and we introduce few
tests that we will study along the paper. In Section 3.5 we develop the reduction algorithms and
the hyper-reduction steps. In Section 4 we test the presented algorithms on all the presented tests,
showing the power and limits of these reduction techniques. In Section 5 we introduce an enhanced
Boussinesq system of equations, its FOM discretization and some reference tests that we will use. We
introduce then its ROM and its hyper-reduction algorithm. Then we apply the reduced algorithms
for the presented tests in Section 6, where we compare the two reduced methods and the FOM one.
In Section 7 we highlight the major steps of this work and we suggest possible developments and
extensions.

2 Generalities: dispersive wave models and model reduc-
tion

We discuss the general form of the dispersive wave model used in this work, which also allows to
explain the main underlying idea. Weakly dispersive wave models can be often seen as perturbations
of some hyperbolic partial differential system [29], and can be written in general form

∂tu+ ∂xF (u) + S(u)− µ2X t (∂tu+ ∂xG(u)) + µ2Dxu = 0 (1)

where u : R → Rd are the unknowns of the system, F : Rd → Rd is a (nonlinear) flux which de-
scribes the hyperbolic operator, S : Rd → Rd is a source term which might include bathymetry effects,
X t : Rd → Rd is a linear operator that contains second derivative terms, while Dx : Rd → Rd is a linear
operator defined by some dispersion terms with third order derivatives. The first three terms in the
above equation define a hyperbolic balance law, as e.g. the shallow water equations with bathymetry,
and µ2 is a small parameter multiplying the weakly dispersive regularization [29]. Two specific exam-
ples of this general family are used in the paper: the BBM-KdV model [6, 12, 29] and an enhanced
Boussinesq model [31, 39].

The main idea of this work is to exploit the smallness of µ2 to defined a hybrid model, which
enhances the hyperbolic equation with a reduced order approximation of the small terms. To this end,
we follow [17, 10] and recast the system as

(1− µ2X t)(∂tu+ ∂xF (u) + S(u)) + µ2X xu = 0, (2)

having set
X xu := X t(∂xF (u)− ∂xG(u) + S(u)) +Dxu. (3)

The models share the property of being composed of two parts: an elliptic (linear) operator and a
hyperbolic (nonlinear) operator. The two operators are treated very differently in their discretization,
where the hyperbolic part is often discretized in an explicit way, while the elliptic operator is discretized
implicitly. Moreover, the combination of the two operators allows to obtain stable schemes with little
or zero extra numerical viscosity, which is not the case for pure hyperbolic problems. In particular,

2

we can recast the system introducing an auxiliary variable Φ ∈ Rd:
(
1− µ2X t

)
Φ+ µ2X xu = 0,

∂tu+ ∂xF (u) + S(u) = Φ.
(4)

The operator (1−X t) is elliptic (and invertible), and by classical formal arguments we can show the
smallness of Φ simply by noting that (see also [29, 28, 30])

Φ = −µ2 (1− µ2X t)−1 X xu = O(µ2).

Our main idea is to devise an approach where only the term Φ is reduced, possibly benefiting from
the combination of the modelling error (controlled by µ2) and model reduction error. The motivation
for this is discussed in the next section.

2.1 Time and space discretization of the model

As in [17, 10] for all models we use a splitting of the elliptic and hyperbolic operators, as in an IMEX
time discretization. This leads to the semi discrete prototype

(
1−X t

)
Φn+1 + X xun = 0,

un+1 − un

∆t
+ ∂xF (un) + S(un, un+1) = Φn+1.

(5)

Here, we denote with n the time discretization index, and the µ2 factor has been included in the
operators X t and X x to lighten the expressions. As we can see, all the operations are vectorial
except the solution of Φn+1, which requires the solution of a linear system. After a further spatial
discretization the system can be written in the general form

(
MΦ − Xt

)
Φn+1 + Xxun = 0,

Mu u
n+1 − un

∆t
+ F(un) + Sex(un) + Simun+1 = Φn+1,

(6)

where, with an abuse of notation, we use the same symbols u ∈ Rd×Nh and Φ ∈ RNh to refer
to the discretized variables, where Nh is the number of degrees of freedom for each variable. The
discretization can be performed by finite differences (FD) or finite element methods (FEM). Specific
choices used for our simulations are discussed later in the text. Mu and MΦ are mass matrices, Xt

and Xx are the discretizations of X t and X x respectively. Sex is the discretization of the explicit part
of the source function S and Sim is the matrix that discretizes the linear implicit source terms and
F(u) is a discretization of the (nonlinear) flux ∂xF (u), which might include some stabilization terms
as well. In the following, we will denote (6) as full order model (FOM). The time discretization in
(6) is done through an implicit–explicit (IMEX) scheme, where some of the terms are discretized with
implicit Euler (Φn+1) and others with explicit Euler. In practice, we will will use a IMEX Runge–
Kutta (RK) schemes with order matching the spatial discretization orders, but all the discussion can
be easily derived from the first order discretization of (6). Hence, we will keep discussing it, and only
for the specific problems we will go in detail with the IMEX RK discretization. To have stability
of the hyperbolic operator, we need to impose some CFL conditions on the timestep of the type
∆tρ(JF (u)) ≤ CFL∆x, where ρ(JF (u)) is the spectral radius of the Jacobian of F in u and CFL is a
constant smaller than 1.

Typically, the most computationally intensive part is the solution of the linear systems, derived
from the elliptic operator. While in one dimensional cases the linear systems are tridiagonal for simple
discretizations and very efficient algorithms like Thomas algorithm can render very fast the solution
of such systems, this is not the case in general. Even in this very favourable case, we find that the cost
of the solution of these linear systems is still the largest of the problems (between 60% and 90%).This
is also due to the fact that the computation of the explicit flux and source terms can be efficiently
done in parallel. The main goal of this work is to investigate hybrid methods in which we reduce the
cost of the linear system, while keeping the evaluation of the fully nonlinear terms.

3

2.2 Reduction of the general model

In this section, we describe how to perform some reduction techniques on the operators presented in
the FOM. As described above, there are two types of operations in the previous discretized model.
The first ones are the vector based operations constituted of the fluxes, sources and diffusion terms,
of derivatives and of sums of all terms and (sparse) matrix vector multiplications. The second one are
the matrix based operations which include essentially the solution of linear systems. Even if in some
particular cases efficient ad hoc algorithms can be used (e.g. Thomas algorithm for the tridiagonal
matrices), we have in mind more challenging applications, e.g. two–dimensional problems or high
order methods, where such algorithms cannot be used. In those cases, we need to recast to sparse
linear solver methods, which in general allow at best to obtain costs of the order of O(Nh log(Nh)) at
each time step. These systems require greater computational costs to be solved, with respect to the
vector part, and are the ones that mostly weigh on the FOM algorithm.

Our objective here is to perform some model reduction to gain control on the computational costs.
To this end, we introduce different approximations of the model, via reduced basis expansions [22].
We want to find an appropriate set of NRB basis of vectors in RNh , with NRB ≪ Nh, allowing to
express the approximate solutions as

un ≈ V ûn, ûn ∈ RNRB (7)

with the columns of V ∈ R(d×Nh)×NRB containing the basis vectors, and ûn the vector of the reduced
basis coefficients.

A classical way of obtaining a reduced basis method is by projecting onto the reduced space. We
introduce a test matrix W ∈ R(d×Nh)×NRB and then we project the whole equation (27), i.e.,

WT
(
MΦ − Xt

)
V Φ̂n+1 +WTXxV ûn = 0, (8a)

WTMuV
ûn+1 − ûn

∆t
+WTF(V ûn) +WTSex(V ûn) +WTSimV ûn+1 =WTV Φ̂n+1. (8b)

This open the question on which matrix W we should consider. If we choose W = V we obtain a
Galerkin projection, while different choices leads to Petrov–Galerkin projections. There are several
choices that one can take to obtain W , for example controlling the energy of the system [20]. We will
comment in each model what we use as test matrix W .

It should be noted that with the reduction (8), if NRB ≪ Nh, one can get rid of the costs of the
solution of the large systems of equations. If we define, for every matrix A ∈ RNh×Nh , its reduced
version as

Â :=WTAV ∈ RNRB×NRB , (9)

we can reduce the computational costs of (8), obtaining(
M̂Φ − X̂t

)
Φ̂n+1 + X̂xûn = 0, (10a)

M̂u û
n+1 − ûn

∆t
+WTF(V ûn) +WTSex(V ûn) + Ŝimûn+1 = ÎΦ̂n+1, (10b)

where I ∈ RNh×Nh is the identity matrix. In this model, the costs of the linear systems are independent
of Nh, while still some computations (the computations of fluxes and source terms) are still dependent
of Nh. Nevertheless, their implementation can be easily parallelized and their computational costs do
not impact as much as the solver of the full linear system. Still, the computational cost reduction that
one can obtain in this context is limited by these terms.

2.2.1 Choice of the reduced space

The underlying technique used in this work is proper orthogonal decomposition (POD) [26, 22] or
principal component analysis (PCA). It consists in a singular value decomposition (SVD) of the snap-
shot matrix (a simple juxtaposition of the FOM solutions for different parameters and timesteps)
of which we retain the most energetic eigenvectors, ordering the singular values. The retained NRB

eigenvectors form the basis V ∈ RNh×NRB for the reduced order model (ROM).

4

The number of retained modes/eigenvectors can be chosen either directly, or according to a toler-
ance on the discarded energy, i.e.,

NRB := argmax
N

{ ∑N
j=1 σi∑Nmax

j=1 σi

≤ 1− tolPOD

}
, (11)

where Nmax is the minimum between Nh and the number of snapshots considered.
The POD (and the linear ROMs) are based on the superposition ansatz, for which the solutions

can be reasonably represented by a linear combination of few modes u(x) ≈
∑NRB

j=1 vj(x)ûj . This is
not always true, in particular for hyperbolic problems. More sophisticated algorithms exist to obtain
nonlinear ROMs [9, 46, 34, 44, 38, 32], but these will not be considered in this work.

2.2.2 Hyper-reduction of nonlinear operators

To further alleviate the computational cost one can introduce some linearization of the nonlinear
operator. There are several algorithms for this. The approach selected in this work is the so-called
empirical interpolation method (EIM) [5]. The EIM is a very simple approximate-then-project ap-
proach. It is perhaps not the most advanced technique to handle nonlinearities, however it will serve
as a reference in terms of cost. Using it with different tolerance will allow to have a fair comparison.
The hyper-reduced model will be referred to as EIMROM in the following. We want to mention that
several other techniques have been developed in recent years and more stable algorithms are available
[49, 37, 13, 11, 16]. Still, the focus of this work is not on the hyper-reduction, hence we will stick to a
simple EIM algorithm.

Given a nonlinear flux, the goal of the EIM procedure is to approximate it through an interpolation
into few magic points {zj}NEIM

j=1 , and some basis functions {ψj}NEIM
j=1 ⊂ RNh . We denote by Z ∈

RNEIM the vector of the magic points, and by Ψij := ψj(xi) ∈ RNh×NEIM the matrix of the reduced
basis functions evaluated in the magic points, i.e., the slice of V in the magic points. Given a nonlinear
flux φ{u} : (RNh)d → RNh , we approximate it as

φEIM{u}(x) :=
NEIM∑
j=1

ψj(x)φ{u}(zj), (12)

which, after the projection, reads

φ̂EIM (u) =WTφEIM (u) =

NEIM∑
j=1

WTψj(x)φ{u}(zj) =WTΨφ{u}(Z). (13)

The reduction lies in the computation of the flux φ{u} only in few magic points {zj}NEIM
j=1 , while we

can pre-compute and store the matrix WTΨ ∈ RNRB×NEIM in the offline phase.
The choice of the points and of the number of the EIM basis functions is crucial in order to maintain

a good accuracy of the whole algorithm. Typically, they are chosen in a greedy fashion that minimizes
the ∞-norm of the worst approximated fluxes. All the details can be found in [5, 14]. In practice we
will stop such algorithm when the error gets lower than a certain tolerance set proportionally with the
error of the RB approximation.

Remark 1 (Implementation details). To assemble and solve the systems at each stage we will use
a Python implementation based on numpy [21] and on Numba [27]. These packages allow to perform
a multithread computation of the vector assembly (all the nonlinear terms), while the solution of the
sparse FOM systems will be performed with Thomas algorithm, since the matrices are tridiagonal.
This leads to have the largest cost in the solution of the system O(Nh), while the nonlinear operators
can be assembled at a lower cost, depending on the architecture of the machine. We will compare also
the sparse solver of scipy to emulate the case of a general sparse solver without the a priori knowledge
of the tridiagonality. In that version of the algorithm, the whole computational time, except the fluxes,
will be affected by a non precompiled code. For ROM systems, which are not sparse, we will use the
solve function of the linear algebra package of numpy. The computations all along this work will be
performed on an 8 cores Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz.

5

η(x, t)

h(x, t)

b(x)

h0

L

a0

b0

h̄(x)

(a) Dimensional variables

a0η(x, t)

h0h(x, t)

b0b(x)

h0

L

a0

b0

h0h̄(x)

(b) Dimensionless variables

Figure 1: Water waves: notation

3 BBM-KdV model

As a first exercise, we study the BBM-KdV equations, which provide a scalar one way approximation
of the water wave equations [6, 12, 29]. It is useful to write the scalar partial differential equation in
terms of the dimensionless parameters

µ =
h0

L
, ϵ =

a0
h0
, β =

b0
h0
,

with h0 a characteristic water depth, L the wave length, a0 the wave amplitude, and with b0 a
characteristic bathymetry amplitude, see Figure 1 for both dimensional and non-dimensional notations.
These parameters are classically used to define the different propagation regimes. More precisely, the
dispersive character of the waves is measured by µ, while ε is a measure of their nonlinearity.

For ε = O(µ2), the BBM–KdV equation provides a 1-way O(µ4 + ϵµ2) approximation of the water
equations. Its classical form for constant bathymetry reads

(
1− αpµ

2∂xx
)
∂tη + ∂x

(
η +

3

2
ε
η2

2

)
+ µ2p∂xxxη = 0, p ≤ 1

6
, (14)

having set αp = 1/6− p. For different values of the parameter p we obtain different approximations.
In particular, the KdV equation is obtained for p = 1

6
, while for p = 0 the equation reduces to the

BBM model.
For the purpose of its numerical approximation, we manipulate the model equation following [17],

and recast it as (
1− αpµ

2∂xx
)
(∂tη + ∂xF (η)) +

µ2

6
∂xxxη = −εµ2αp∂xxx

(
3

2

η2

2

)
, (15)

having introduced the short notation for nonlinear flux

F (η) :=

(
η +

3

2
ε
η2

2

)
. (16)

Within the same approximation hypotheses, the BBM-KdV equation is equivalent to(
1− αpµ

2∂xx
)
(∂tη + ∂xF (η)) +

µ2

6
∂xxxη = 0. (17)

which we refer to as the modified BBM-KdV equation. Note that both for (15) and (17), the limit
µ→ 0 corresponds to the hyperbolic conservation law

∂tη + ∂xF (η) = 0. (18)

Equation (17) can be recast into the form of (2) by setting u := η, X x := µ2

6
∂xxx, X t := αpµ

2∂xx
and S(u) := 0.

Remark 2 (Dimensional equations). One can easily recover the dimensional form of the equation,
and more importantly of the variables involved, from the scaling:

x̃ = Lx, t̃ =
L

c0
t, η̃ = ϵh0η, b̃ = βh0b,

˜̄h = h0h̄, h̃ = h0h (19)

with c0 =
√
gh0.

6

3.1 Energy conservation

A property of (14) which we will use in the following is the existence of a certain number of additional
derived conservation laws (see also [2, 1]). In particular, (14) is endowed with an energy-energy flux
pair also verifying a conservation law. This can be shown quite classically by premultiplying by η and
manipulating the resulting expression. Setting Ξ(u) = η2/2 + εη3/2, this leads to

∂tE + ∂xF = 0,

E(η) := η2

2
+ µ2αp

(∂xη)
2

2
,

F(η) := Ξ(η)− µ2αpη∂xtη + µ2pη∂xxη − µ2p
(∂xη)

2

2
.

(20)

From this relation, we know that the energy E(η) is conserved for (14). For the simplified model
(17), this balance is only valid within the O(ϵµ2, µ4) asymptotic error of the model, namely

∂tE + ∂xF = O(ϵµ2, µ4). (21)

Other balance laws may be derived in a similar spirit, see e.g. [2]. In both cases, it is convenient to
consider the scalar product associated to E

⟨η, ρ⟩E :=
1

2

∫
Ω

ηρ+ µ2αp∂xη∂xρ (22)

which is essentially a modified H1 norm scalar product.

3.2 Including the bathymetric effects

Generalizations of the KdV equation and of other dispersive one-wave models are discussed in some
detail in [23, 15, 24]. For our purposes, these generalizations are useful as they allow to broaden the
spectrum of benchmarks. We use here the O(εµ2, µ2β, µ4) approximation obtained from the variable
depth model of [23], still referred to here as to the modified BBM-KdV model, and reading

(1− α∂xx)(∂tη + (γ + δη)∂xη) + ω∂xxxη + νη = 0, (23)

where the coefficient depend now on the bathymetry profile b(x) as (in dimensionless form)

c(x) =
√

1− βb(x), α(x) =αpµ
2, ω(x) =

1

6
µ2c(x)5,

γ(x) = c(x), δ(x) =
3

2
ε, ν(x) =

3

2
c′(x).

(24)

The equation can be rewritten up to an O(βµ2) as

(1− α∂xx)(∂tη + (γ + δη)∂xη + νη) + ω∂xxxη = 0, (25)

to better match (2). We can indeed define S(u) = νη to the previous formulation.
As before, a conservation law for the energy (21) can only be shown within an O(β, ϵµ2, µ4).

3.3 Full order model discretization

We discretize (23) using a finite difference (FD) approach. The resulting discrete model will be
denoted by full order model (FOM). Classically, we consider a discretization of the spatial domain Ω =
∪Nh

i=1[xi, xi+1] into Nh equi-spaced intervals, and define ∆x := xi+1 − xi. The temporal domain [0, T]
is subdivided into K time steps [0, T] = ∪K

k=1[t
k−1, tk],. We denote by uk

i the numerical approximation
of a quantity u in a point xi at time tk, and, with an abuse of notation, we use the same symbol for the
continuous quantity u : R+ × R → R, and for the discrete one: u ∈ RNh×K . For convenience, we use
the following notation for the classical centered finite difference operators D, D2 and D3 : RNh → RNh :

(Du)i =
ui+1 − ui−1

2∆x
, (D2u)i =

ui+1 − 2ui + ui−1

∆x2
, (D3u)i =

ui+2 − 2ui+1 + 2ui−1 − ui−2

2∆x3
. (26)

7

We start by defining the IMEX first order Euler discrete approximation{
(I− αD2)Φ

n+1 + ωD3η
n = 0,

ηn+1−ηn

∆t
+ (γ + δηn)Dηn + νηn + J (ηn, λ) = Φn+1.

(27)

Here, the vector-by-vector multiplication is meant component-wise in ηnDηn. The term J (ηn, λ) is a
high order numerical diffusion term, which depends also on the spectral radius λ, where λi = γ+δ|ηi|.
In this work we have chosen to use to this purpose an operator originated from the continuous interior
penalty (CIP) approach [8] which can be written as

J (v, λ)j := d∆x3 {λj+1(D2v)j+1 − 2λj(D2v)j + λj−1(D2v)j−1} (28)

where d ∈ R+ is a stabilization parameter, which in practice we have set to 1 in all numerical simu-
lations. Also (27) can be reshaped into (6) simply defining MΦ = Mu := I, Xt := αD2, Xx := ωD3,
F(η) := (γ + δη)Dη + J (η, λ) and Sex(η) := νη.

Starting from (27), we build a second order SSPRK(2,2) IMEX approximation. The time-step is
computed from the CFL condition: ∆t ≤ CFL∆x/(maxi λ

n
i), with CFL < 1.

3.4 Benchmarks for the modified BBM-KdV equation

In this section we describe some problems that we will use to test the reduced algorithms.

3.4.1 Propagation of a periodic monochromatic wave

The first one starts with a long wave on the whole domain, i.e., a cosine on a periodic domain. This
cosine deforms and splits into different waves that travel at different speeds. We use in (17) with the
dimensionalized coefficients passed through (19): h0 = 1, g = 9.81, a0 = 0.04, u0 = a0 cos(x/10) on
the domain [0, 20π] and final time is T = 200. The FOM will use Nh = 2000 degrees of freedom and
time step will be set with a CFL number of 0.2. In Figure 2(a) the initial and the final solution are
depicted.

3.4.2 Undular bore propagation

This test emulates a dam break which develops into several waves. The initial condition is

u0 = a0

(
1− 1

1 + e−4(x−5)

)
and the parameters in (14) are h0 = 1, g = 9.81, a0 = 0.04, domain [0, 20π], CFL = 0.1 and final time
T = 20. Initial and final simulations are shown in Figure 2(b).

3.4.3 Solitary waves interacting with a submerged bar

This test consists of a soliton evolving on a ramp bathymetry defined by

b(x) = 0.07

x−45
10

if 45 < x ≤ 55,

1 if 55 < x ≤ 75,

−x−80
5

if 75 < x ≤ 80,

0 else.

The initial condition is defined by u0 = a0 cosh
−1(x−22

5
), final time is T = 60, the parameters are

h0 = 1, g = 9.81, a0 = 0.1, CFL = 0.1 and the domain is [0, 100]. In Figures 2(c) and 2(d) the evolution
of the solution in time is shown.

Now, we compare the computational times of the solution of the linear systems for the three
benchmark problems with respect to other costs in the problem solution. In Table 1 we compare the
costs of the linear systems with respect to the whole simulation, while in Table 2 we see the ratio of
the cost of the solution of the linear systems over the cost of the nonlinear fluxes. Let us focus on
Thomas algorithm first, we notice that boundary conditions make a huge difference. Indeed, periodic

8

0 10 20 30 40 50 60
0.04

0.02

0.00

0.02

0.04

0.06

0.08 initial
final

(a) Propagation of a periodic monochromatic wave

0 10 20 30 40 50 60

1.00

1.01

1.02

1.03

1.04

1.05
T
2T/3
1T/3
0T/3

(b) Undular bore propagation

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

0T/20
1T/20
2T/20
3T/20
4T/20
5T/20
6T/20
7T/20
8T/20
9T/20
bath

(c) Solitary waves interacting with a submerged bar until
T/2

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

10T/20
11T/20
12T/20
13T/20
14T/20
15T/20
16T/20
17T/20
18T/20
19T/20
bath

(d) Solitary waves interacting with a submerged bar from
T/2 to T

Figure 2: Initial and final solution for tests.

Table 1: Estimate percentage of computational time for solving the linear systems for the three benchmark
problems: comparison of the implementation of Thomas algorithm all in numba framework and sparse
solver by scipy with fluxes computed in numba

numba and Thomas scipy and numba

Nh 3.4.1 3.4.2 3.4.3 3.4.1 3.4.2 3.4.3
2000 86.4% 63.4% 85.2% 86.6% 84.4% 86.6%
4000 84.1% 62.4% 83.9% 86.2% 83.5% 88.8%
8000 86.1% 61.5% 85.0% 94.1% 85.3% 91.0%

Table 2: Estimate of ratio of computational time of the linear system over computational time of the non-
linear fluxes for the three benchmark problems: comparison of the implementation of Thomas algorithm
all in numba framework and sparse solver by scipy with fluxes computed in numba

numba and Thomas scipy and numba

Nh 3.4.1 3.4.2 3.4.3 3.4.1 3.4.2 3.4.3
2000 11.2 3.5 11.3 72.4 52.1 71.8
4000 11.8 3.7 11.6 73.4 54.9 74.3
8000 11.2 3.7 12.8 78.4 56.1 75.8

9

boundary conditions imply the solution of Thomas algorithm three times instead of just one and this
increases the costs of the system solver.

On the other side, using a general solver for sparse system, like the one provided by scipy, increases
the computational costs of the solver even by a factor of around 10. In particular, the distinction
between different boundary conditions is less evident in this case. This algorithm is more interesting
in perspective of a more general discretization or in case of multidimensional problem, but less efficient.

3.5 Projection based reduction

As said before, the computational operation in (27) that we mainly aim at reducing is the solution of
the linear system, while the flux and source terms are easily parallelized.

As before, we introduce the reduced variable of dimension NRB ≪ Nh so that we approximate

ηn ≈ V η̂n, η̂n ∈ RNRB (29)

with the columns of V ∈ RNh×NRB containing the basis vectors, and η̂n the vector of the reduced
basis coefficients.

Two projection based model order reduction (MOR) strategies exist [20], equivalent under certain
conditions. The first one is the projection with a test matrix W ∈ RNh×NRB and it is obtained by
projecting the whole equation (27), i.e.,

WT (V η̂n+1 − r(V η̂n,Φn(V η̂n))
)
= 0, (30a)

r(η,Φ) = η −∆t ((γ + δη)Dη + J (η, λ)− Φ) . (30b)

This opens the question on which matrix W we should consider. If we choose W = V we obtain a
Galerkin projection, while different choices lead to Petrov-Galerkin projections.

An alternative approach, allowing to answer this question, is to construct the reduced space using
a minimization problem. Using in particular the scalar product (22), we can for example define

η̂n+1 = argmin
x

〈
V x− r(V η̂n,Φn+1(V η̂n), V x− r(V η̂n,Φn(V η̂n)

〉
E . (31)

Using the discrete form of (22) (in dimensional variables), we can introduce the scalar product matrix

Θ := ∆x(I+ αDTD),

where I ∈ RNh×Nh is the identity matrix and D ∈ RNh×Nh is the (first) derivative matrix, and such
that at the discrete level

⟨u, v⟩E = uTΘv.

Then, we can write the minimization (31) as the solution of

2V TΘV η̂n+1 − 2V TΘr(V η̂n,Φn+1(V η̂n)) = 0, (32a)

suggesting that minimizing the energy in the projected space requires testing withW = ΘTV in (30a).

3.5.1 Approximation accuracy of the problems

For the benchmarks involving the modified BBM-KdV equation we have applied the POD on 1000
snapshots in time, with fixed parameters. The FOM dimension is here Nh ≈ 103, which is a repre-
sentative order of magnitude. In practice, we have used 2000 points. Concerning the potential for
reduction, we need to look at the error decay in terms of singular values. For the tests considered here,
the decay has been plotted in Figures 3(a) to 3(c). As we can see, the energy drop is not exceedingly
fast, still being exponential from the very beginning. In particular, for compact travelling waves as in
the last benchmark, the advection dominated regime slows down the convergence of the eigenvalues.
Nevertheless, if we want to keep the error of the order of 10−2 or 10−3 the number of eigenmodes
needed is in between 50 and 70, which is much below the typical mesh size used in the FOM and
can already reduce the computational cost of the linear system (even if full). We remark that the
computational reduction is not proportional to the dimension as the original FOM has a sparse linear
system to be solved, while the ROM has a full linear system.

10

0 250 500 750 1000 1250 1500 1750 2000
Modes

10 16

10 13

10 10

10 7

10 4

10 1
Ei

ge
nv

al
ue

s

0 25 50 75

10 4

10 3

10 2

10 1

(a) Propagation of a periodic
monochromatic wave

0 250 500 750 1000 1250 1500 1750 2000
Modes

10 18

10 15

10 12

10 9

10 6

10 3

100

Ei
ge

nv
al

ue
s

(b) Undular bore propagation

0 250 500 750 1000 1250 1500 1750 2000
Modes

10 17

10 14

10 11

10 8

10 5

10 2

Ei
ge

nv
al

ue
s

(c) Solitary waves interacting with a
submerged bar

Figure 3: Singular values decay

3.5.2 Reduction of the linear operator

We consider here the reduction of the linear system which gives Φ in (27). In general this operation can
scale as an O(Nh

2), unless particularly optimized algorithms are implemented. Indeed, in our FOM
simulations we will use Thomas algorithm which only scales as O(Nh). When the linear operator is
the only one reduced, we still need to assemble the discretization of the nonlinear part of the PDE.
For this reason we will refer to this approach as to a partial discrete reduced order model or pdROM.

The pdROM discrete evolution equation can be written as

WTV η̂n+1 =WTV η̂n −WT∆t ((γ + δV η̂n)DV η̂n + J (V η̂n, λ)) + ∆tWTΦn+1, (33a)

WTΦn+1 = −ωWT (I− αD2)
−1D3V (η̂n + νη̂n). (33b)

Also here, we can see the connection with (8), where all the terms can be matched. In practice, for
NRB sufficiently small, the NRB × NRB matrix ANRB := WT (I − αD2)

−1D3V can be pre-computed
and stored. Denoting with MNRB := WTV ∈ RNRB×NRB , the pdROM update can be effectively
implemented as

Φ̂n+1 = −ωA−1
NRB

(η̂n + νη̂n), (34a)

F̂(η) =WT ((γ + δη)Dη + J (η, λ)) , (34b)

η̂k+1 = η̂n +∆tM−1
NRB

(
−F̂(V η̂n) + Φ̂n+1

)
. (34c)

It is clear that, with this approach, the parameters γ, δ, ω can be easily modified in the online
computations. Also α can be decoupled from the reduction process and used to assemble the linear
reduced system, but in this context α represent the topography parameters and we do not aim to
change it. In the system case we will see how to modify a parameter in the LHS matrix.

Remark 3 (Modification to nondispersive code). It is very important to stress that the computational
results, as well as all conclusions concerning cost reduction can be obtained keeping a classical solver
for nondispersive nonlinear equations, to which we add the reduced dispersive term, i.e.,

ηk+1 = ηn −∆t ((γ + δηn)Dηn + νηn + J (ηn, λ)) + ∆tβV Φ̂n+1, (35a)

Φ̂n+1 := −(WT (I− αD2)V)−1WTD3η
n, (35b)

where BNRB := WT (I − αD2)V ∈ RNRB×NRB can be stored and inverted at low computational cost.
Nevertheless, working on two different spaces contemporary does not guarantee the same accuracy
as in the previously presented algorithm. We have observed that reducing and projecting only the Φ
term leads to much more inaccurate methods. We believe that this is due to spurious modes that the
reconstruction of Φ generates and that are not appropriately damped in the full dimensional space,
while they are in the pdROM approach. In the test section we will show that both algorithms have
comparable computational costs, but (34) provides more stability.

11

Remark 4 (EIMROM stability). As shown in Section 2.2.2, we can reduce the computational costs of
the source and flux terms with a hyper-reduction technique. The extra reduction of the EIM algorithm
does not guarantee anymore the energy minimization (14). This is noticeable when the dimension of the
EIM space NEIM is smaller or close to the dimension of the RB space NRB. In that regime, it is easy to
see instabilities and Runge phenomena. In the simulation section, we will observe in which regime we
should stay with the dimension NEIM . Other works already shown that the dimension of the EIM space
should be larger that the reduced space one to obtain stability of the reduced model [37, 50, 18, 3, 11].
Some novel algorithms have been proposed in recent papers [11, 37] based on different techniques as the
over-collocation method and variants of the Gappy-POD. We will not investigate in deep this behavior
in this work.

Remark 5 (Fully implicit). We want to remark that even for the pdROM simulations, even if the
solution is energy stable up to an O(εµ2, µ4), oscillations may arise due to the under-resolution in
the reduced space. This would not lead to blow ups of the solution, but it might have some unphysical
behaviors. In the case of the EIM algorithm the oscillations might also lead to instabilities and blow
ups when the EIM space does not properly approximate the nonlinear flux manifold. In order to
alleviate this issue, it might be helpful to consider a fully implicit discretization or, even better, an
implicit Euler time discretization. On the other side, this would lead to extra computational costs due
to nonlinear solvers that might heavily slow down the reduced formulation, both in the pdROM and
EIMROM contexts. In particular, the ROM computational costs with respect of the FOM ones, where
the benchmark algorithms are explicit for the hyperbolic equation, might be disadvantageous, at least
for one dimensional simulations.

4 Simulations for KdV-BBM

4.1 Modus operandi

In this section, we will test the pdROM and EIMROM in different regimes, showing their error and
the computational costs with respect to the FOM solutions.

1. We will proceed studying a time-only manifold of solutions, in order to understand which errors
our algorithms can reach with different dimensions of reduced basis spaces. In this first phase,
we will fix the parameters of the problem, we will compute the FOM solution on a mesh with
Nh = 2000 points and we will collect 1000 snapshots in time u(tk) and the respective nonlinear
fluxes F (u(tk)). These snapshots will form the training set used to choose the reduced basis space
and the EIM space, setting either the dimension of the space or the tolerance. Then, different
simulations of the original problem are run with pdROM and EIMROM, recording their errors
and their computational times. We will picture also one significant simulation of the reduced
algorithms for a visual comparison for each test.

2. The second stage will consider a solution manifold generated by time and parameters. In prac-
tice, we will vary h0, on which all the parameters depend in the BBM-KdV problem, see (24).
In particular, we build the training sample using 10 randomly sampled h0 ∈ [hmin, hmax] =
[0.7h̄0, 1.3h̄0], and for each of these parameters, we collect 1000 snapshots at uniform timesteps.
We populate the ROM and EIM spaces using these 10.000 snapshots and their fluxes. Then we
test the reduced algorithms for h̄0 for a larger final time (for every test we will specify which
one), checking again how the reduced procedures perform with different tolerances for EIM and
POD. Finally, we test the methods for a parameter h0 = 0.63 · h̄0 outside the training set and,
when sensible, with a different initial condition (for every test we will specify which one), to
assess the property of the reduced algorithms in the extrapolation regime.

4.2 Propagation of a periodic monochromatic wave

For this test, we use h̄0 = 1 and final time T = 200. This test is fairly simple and it can be well
compressed with few basis functions. Nevertheless, it already shows what can be achieved with and
without EIM. We collect samples for different times of one simulation obtaining a time-only reduction.
In Figure 4(a) the decay of the relative error is exponential with respect to the dimension NRB of
the reduced space (different points correspond to NRB = 10k for k = 1, . . . , 10) and with few basis
functions we can reach a very small error. On the other side, this error could be worsen or even the

12

10 7 10 6 10 5 10 4 10 3 10 2 10 1

POD tolerance

10 7

10 5

10 3

10 1

Er
ro

r

ROM EIM tol 0.01
ROM EIM tol 0.001
ROM EIM tol 0.0001
ROM EIM tol 1e-05
ROM EIM tol 1e-06
pdROM

(a) EIM ROM errors time-only reduc-
tion

10 4 10 3 10 2 10 1

POD tolerance

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

pdROM
EIM tol = 0.03
EIM tol = 0.01
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001

(b) ROM errors time-parameter reduc-
tion on parameter and η0 in the training
set

10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.03
EIM tol = 0.01
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001

(c) ROM errors time-parameter reduc-
tion on parameter and η0 outside the
training set

10 7 10 6 10 5 10 4 10 3 10 2 10 1

POD tolerance

10 1

RO
M

 T
im

e/
FO

M
 T

im
e

(d) EIM ROM computational times
time-only reduction (legend above)

10 4 10 3 10 2 10 1

POD tolerance

10 1

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

(e) ROM computational time time-
parameter reduction on parameter and
η0 in the training set (legend above)

10 4 10 3 10 2 10 1

POD tolerance

10 1

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

(f) ROM computational time time-
parameter reduction on parameter and
η0 outside the training set (legend
above)

0 10 20 30 40 50 60
0.04

0.02

0.00

0.02

0.04

0.06

0.08 FOM
ROM N=10
ROM N=20
ROM N=40
ROM N=60
ROM N=100

(g) ROM solutions time-only reduction

0 10 20 30 40 50 60

0.02

0.00

0.02

0.04

0.06

0.08

Simulations with ROM of dimension 27
fom
EIMROM
pdROM

(h) ROM solutions time-parameter re-
duction with tolPOD = 0.3, NRB = 27
and tolEIM = 0.03, NEIM = 72 on pa-
rameter and η0 in the training set

0 10 20 30 40 50 60

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Simulations with ROM of dimension 27
fom
EIMROM
pdROM

(i) ROM solutions time-parameter re-
duction with NRB = 27 and NEIM =
72 on parameter and η0 outside the
training set

0 10 20 30 40 50 60

0.02

0.00

0.02

0.04

0.06

0.08 FOM
ROM 40
EIM 38 ROM 40
EIM 48 ROM 40
EIM 66 ROM 40

(j) ROM solutions time-only reduction

0 10 20 30 40 50 60

0.02

0.00

0.02

0.04

0.06

0.08

Simulations with ROM of dimension 27
fom
EIMROM
pdROM

(k) ROM solutions time-parameter re-
duction with tolPOD = 0.3, NRB = 27
and tolEIM = 0.0003, NEIM = 119 on
parameter and η0 in the training set

0 10 20 30 40 50 60

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Simulations with ROM of dimension 27
fom
EIMROM
pdROM

(l) ROM solutions time-parameter re-
duction with NRB = 27 and NEIM =
119 and tolEIM = 0.0003, NEIM = 119
on parameter and η0 outside the train-
ing set

Figure 4: Propagation of a periodic monochromatic wave. pdROM and EIM reduction: simulation,
errors and computational time, varying POD and EIM dimensions

13

10 2 10 1

10 2

4 × 10 3

6 × 10 3

2 × 10 2

Log10 of relative error
 PDROM 34, POD tol 0.01

Training

10 2 10 1

10 2

4 × 10 3

6 × 10 3

2 × 10 2

Log10 of relative error
 EIM 93 ROM 34, EIM tol 0.003, POD tol 0.01

Training

6.010

5.790

4.952

4.113

3.274

2.435

1.597

0.758

0.081

6.010

5.790

4.952

4.113

3.274

2.435

1.597

0.758

0.081

Figure 5: Propagation of a periodic monochromatic wave. Error plot varying the parameters a0
and h0 for pdROM NRB = 34 and EIMROM with NEIM = 93

simulation might not run until the final time if we add the EIM algorithm with not enough basis
functions. The error for those methods stagnates around the tolerance of EIM and if NEIM ⪅ NRB

the method becomes unstable.
The computational time for the KdV-BBM pdROM compared to the FOM using Thomas method

is between 20% and 30% in Figure 4(d). The hyper-reduction allows to further reduce the in between
4% and 10% of the original computational time. In Figure 4(g) we see the simulations run with
pdROM with different dimensions of the reduced space. Already with NRB = 20 we obtain an
accurate solution. In Figure 4(j) we see that a minimum amount of EIM basis is necessary not to have
unstable solutions and to be accurate.

For the second phase, we introduce the reduction in the parameter space. For Figures 4(b), 4(e),
4(h) and 4(k), we test the obtained reduced spaces and the respective algorithms onto the parameter
h̄0 = 1 and for final time T = 250. The error decay in Figure 4(b) is similar to the one of the time-only
reduced case. The largest differences stays in the differences of the number of basis functions needed
to reach a certain tolerance. In the example in Figure 4(h), with NRB = 27 we reach a tolerance of
0.3. With time-only reduction NRB = 10 are enough to reach the same tolerance, though not reaching
the same accuracy in the simulation see Figure 4(a). The same holds for the EIM algorithm. This
is noticeable in the computational times, that increase for all algorithms given certain thresholds, see
Figures 4(d) and 4(e), this is a measure of the increased difficulty of the problem. In Figure 4(h) a
representative simulation is shown, where we see that with NRB = 27 basis function we get an already
accurate approximation with pdROM, while NEIM = 72 is still not enough to obtain a good accuracy
for EIMROM. Increasing NEIM = 119 in Figure 4(k), we can obtain an accurate solution also for
EIMROM. This is accordance with the observations made in [37, 50, 18, 3, 11]. In this case, the
computational time of EIMROM is 3 times faster than the pdROM, and decreasing tolEIM we can
achieve even smaller errors. A particular attention must be observed in choosing the tolerance of EIM
small enough with respect to tolPOD, as one can see in Figure 4(b) that the EIMROM simulations
can explode if tolEIM is not small enough.

In Figures 4(c), 4(f), 4(i) and 4(l) we test the algorithms with h0 = 0.63 /∈ [hmin, hmax], a0 = 0.05
instead of 0.04 and initial conditions u0(x) = −1.2a0 cos(

4
10
π(x−2))+ a0

10
cos(8

10
πx). Similar conclusion

can be drawn also in this case. The main difference is a larger error, due to the higher wave amplitude
of the solution.

In Figure 5 we can see the relative error of pdROM NRB = 34 and EIMROM with NEIM = 93
varying a0 and h0 in the initial conditions and the problem settings. We plot the error as a function
of ε and µ, in order to understand how the nonlinearity and the dispersion affect the solutions. We
know that as h0 gets smaller or a0 gets bigger (ε larger), the nonlinearity of the problem becomes
more pronounced, hence leading to more oscillations and steeper gradients. In the strongly nonlinear
regime (ε = a0/h0 ⪆ 10−1) the hypothesis of having small ε are not valid anymore and the error
increases rapidly. On the other side, the dispersion coefficient µ = h2

0/L
2 does not affect much the

error for a fixed ε, in Figure 5. Overall we can see that, as long as nonlinearity does not become

14

predominant, the pdROM provides lower errors over the parameter space showing potential for a
more robust approximation outside the training set.

4.3 Undular bore propagation

This is a very complex test for model reduction. We start by choosing h̄0 = 1, a0 = 0.04 and final
time T = 20. In order to take into account the non homogeneous Dirichlet boundary condition at the
left boundary, we subtract from the method the residual equation computed on a lift solution ulift

that verify the Dirichlet boundary conditions. In this way, the resulting scheme can be applied with
homogeneous Dirichlet boundary condition on the left.

This tests is way more challenging than the previous one, in particular because flat zones and
oscillating ones coexist and move around the domain. In particular, the EIM method easily fails in
capturing this behavior without falling into Gibbs phenomena in the flat area. Indeed, in Figure 6(a)
we see the error decay for only-time reduction both for EIMROM and pdROM and the former become
very oscillatory when too many POD bases are used. The pdROM uses between 10% and 20% of the
FOM computational time, while the EIMROM, in the few situations where it does not explode, uses
around 5% of the FOM time, see Figure 6(d). In Figure 6(g) we see for different POD basis functions
how we approach the exact solution, while in Figure 6(j) we fix the number of POD basis functions
very low and we change the EIM ones. In this stable situation as the EIM bases increase we slowly
converge towards the pdROM solution, even if the right part of the solution struggles with obtaining
the right behavior.

When exploring the parameter domain in the training set h0 ∈ [0.7, 1.3], we observe a similar
situation. The decay of the error on a parameter inside the training domain computed at time
T = 15 for pdROM decays exponentially in Figure 6(b), while EIMROM is affected by oscillations
and struggles with obtaining reasonable results. The computational time of the pdROM is between
the 15% and the 25% of the FOM computational time as shown in Figure 6(e), while the EIMROM,
when the simulation is reasonable for few basis functions, needs only around the 5% of the FOM
computational time. In Figure 6(h) we see for a tolerance of the POD of 3·10−2 we need NRB = 33 and
the pdROM is quite close to the FOM solution, while EIMROM with same tolerance and NEIM = 52
start oscillating around the original position of the dam. In Figure 6(k) the situation worsen for the
EIMROM which becomes very oscillatory for NRB = 62 and NEIM = 77 and this explains why the
error is so large.

Taking the parameter out of the training set, considering h0 = 0.63 and a0 = 0.03, the EIMROM
becomes even more oscillatory and its error often explodes, but also the pdROM suffer of the larger
flat zone in the part of the domain, leading to instabilities. The error decay is indeed affected by this
and when too many POD bases are considered the error grows, see Figure 6(c) and the simulation
in Figure 6(l). Computational times stays similar to the previous case Figure 6(f), and, if properly
choosing the number of basis functions, both pdROM and EIMROM gives decent solutions, though
the EIMROM oscillates around the flat area, see Figure 6(i).

Clearly this test case is pushing over the limit of the method as the advection dominated part
is leading the computations and the contrast between flat and oscillating region leads very easily to
Gibbs phenomena. Hence, it is important to stay close to the training set area for this case and not
to introduce extra interpolation error with the EIM.

In Figure 7 we see how the error of the pdROM with NRB = 46 varies with respect to a0 and h0.
We can see a strong gradient when h0 and a0 increase in the area of unstable solutions. Again, the
main factor here is the relevance of nonlinearity. As long as the waves remain dispersive and we are
far from very shallow bores, we observe an error plateau which seems to indicate a certain robustness
with respect to the variation of parameters. It must be remarked however, that outside this area, the
error grows relatively fast also for pdROM. Some improved treatment of nonlinearity is necessary to
handle this kind of problems when getting close the the shallow/highly nonlinear range.

4.4 Solitary waves interacting with a submerged bar

For this test, we use h̄0 = 1, final time T = 60 and a0 = 0.1. This test has similar results to the
Propagation of a periodic monochromatic wave. Its advection dominated character is more
pronounced than in the Propagation of a periodic monochromatic wave, but the error decays
quickly enough as we can see in Figure 8(a). The pdROM solution with NRB = 40 basis function is
indistinguishable from the FOM one in Figure 8(g) and, adding the EIM approximation, we can see

15

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

POD tolerance

10 3

10 2

10 1

Er
ro

r

ROM EIM tol 0.01
ROM EIM tol 0.001
ROM EIM tol 0.0001
ROM EIM tol 1e-05
ROM EIM tol 1e-06
pdROM

(a) EIM ROM errors time-only reduc-
tion

10 4 10 3 10 2 10 1

POD tolerance

10 4

10 3

10 2

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.1
EIM tol = 0.03
EIM tol = 0.01
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003

(b) ROM errors time-parameter reduc-
tion on parameter and η0 in the training
set

10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.1
EIM tol = 0.03
EIM tol = 0.01
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003

(c) ROM errors time-parameter reduc-
tion on parameter and η0 outside the
training set

10 8 10 7 10 6 10 5 10 4 10 3 10 2 10 1

POD tolerance

10 1

4 × 10 2

6 × 10 2

2 × 10 1

RO
M

 T
im

e/
FO

M
 T

im
e

(d) EIM ROM computational times
time-only reduction (legend above)

10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100
Co

m
pu

ta
tio

na
l t

im
e

ra
tio

(e) ROM computational time time-
parameter reduction on parameter and
η0 in the training set (legend above)

10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

(f) ROM computational time time-
parameter reduction on parameter and
η0 outside the training set (legend
above)

0 10 20 30 40 50 60
0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

FOM
ROM N=10
ROM N=20
ROM N=40
ROM N=60
ROM N=100

(g) ROM solutions time-only reduction

0 10 20 30 40 50 60
0.00

0.01

0.02

0.03

0.04

0.05

Simulations with ROM of dimension 33

fom
EIMROM
pdROM

(h) ROM solutions time-parameter re-
duction with tolPOD = 0.03, NRB = 33
and tolEIM = 0.03, NEIM = 52 on pa-
rameter and η0 in the training set

0 10 20 30 40 50 60

0.00

0.01

0.02

0.03

0.04

Simulations with ROM of dimension 33
fom
EIMROM
pdROM

(i) ROM solutions time-parameter re-
duction with tolPOD = 0.03, NRB = 33
and tolEIM = 0.03, NEIM = 52 on pa-
rameter and η0 outside the training set

0 10 20 30 40 50 60

0.00

0.01

0.02

0.03

0.04

0.05

FOM
ROM 29
EIM 23 ROM 29
EIM 27 ROM 29
EIM 45 ROM 29
EIM 54 ROM 29
EIM 68 ROM 29

(j) EIMROM solutions time-only reduc-
tion

0 10 20 30 40 50 60

0.00

0.01

0.02

0.03

0.04

0.05

Simulations with ROM of dimension 62

fom
EIMROM
pdROM

(k) ROM solutions time-parameter re-
duction with tolPOD = 0.003, NRB =
62 and tolEIM = 0.01, NEIM = 77 on
parameter and η0 in the training set

0 10 20 30 40 50 60

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Simulations with ROM of dimension 103

fom
EIMROM
pdROM

(l) ROM solutions time-parameter re-
duction with tolPOD = 0.0001, NRB =
103 on parameter and η0 outside the
training set

Figure 6: Undular bore propagation. pdROM and EIM reduction: simulation, errors and computa-
tional time, varying POD and EIM dimensions

16

0.02 0.03 0.04 0.05 0.06 0.07 0.08
asurf

0.4

0.6

0.8

1.0

1.2

1.4

h 0

Log10 of relative error
 PDROM 46, POD tol 0.01

Training

0.02 0.03 0.04 0.05 0.06 0.07 0.08
asurf

0.4

0.6

0.8

1.0

1.2

1.4

h 0

Log10 of relative error
 EIM 103 ROM 46, EIM tol 0.003, POD tol 0.01

Training

2.501

2.413

2.065

1.716

1.368

1.019

0.671

0.323

0.026

2.501

2.413

2.065

1.716

1.368

1.019

0.671

0.323

0.026

Figure 7: Undular bore propagation. Error plot varying the parameters a0 and h0 for pdROM
NRB = 46

different results. In Figure 8(j) for the EIMROM simulation with NRB = 42 and NEIM = 65 we still
do not have enough accuracy and the solution oscillates, with NEIM = 75 the solution is much more
stable, but we can still see differences in the peak of the wave, finally for NEIM = 118 observe a very
accurate solution. Similarly to before, the computational costs scale between 15% and 30% of FOM
for pdROM and between 5% and 25% for EIMROM, see Figure 8(d).

In the second phase, we consider also here 10 simulations for randomly chosen h0 ∈ [0.7h̄0, 1.3h̄0]
and we use them to compute the reduced space with the POD. The error decay with respect to the
POD tolerance in Figure 8(b) is similar to the first phase, but the dimension of the spaces are larger
as we notice in the computational time plot in Figure 8(e) up to a 40% of the FOM computational
time for pdROM. In Figures 8(h) and 8(k) we see accurate pdROM simulations with NRB = 72 for
a POD tolerance of 0.01 and a computational time of around 25% of the FOM time, while we need
NEIM = 259 to get very accurate EIMROM solutions for computational costs around 20% of the
FOM ones. Again, the EIM space should be very large in order to obtain accurate and stable results
[37, 50, 18, 3, 11].

When testing on a parameter outside the training domain, i.e., a0 = 0.15 and h0 = 0.63, we have
that the exact solution is more oscillatory, see Figures 8(i) and 8(l), and to catch properly the solution
we need more basis functions in both spaces. Indeed, the errors are larger in Figure 8(c), while the
computational times stays similar.

In Figure 9 we see how the error varies for pdROM withNRB = 72 and EIMROM withNEIM = 227
for different parameters h0 and a0, plotting the error with respect to ε and µ. As before we see that
nonlinearity really plays a major role, with the shallow water/hyperbolic limit being poorly handled
by both approaches. Away from this limit (left part of the figures) the EIMROM error is larger than
the pdROM one.

We remark that the computational cost of the linear system is the largest one in the FOM and,
while doing a pdROM, we obtain already a great reduction. In Appendix B we compare the pdROM
costs with the reduction of only the linear system for Φ (evolving the full FOM) as suggested in
Remark 3. Essentially, the cost of the two methods are identical. Moreover, changing the linear solver
into something more generic results in an even stronger reduction of the computational costs. We
compare the costs of the Thomas algorithm and of a generic sparse solver in Appendix B.

17

10 4 10 3 10 2 10 1

POD tolerance

10 3

10 2

10 1

Er
ro

r

ROM EIM tol 0.01
ROM EIM tol 0.001
ROM EIM tol 0.0001
ROM EIM tol 1e-05
ROM EIM tol 1e-06
pdROM

(a) EIM ROM errors time-only reduc-
tion

10 4 10 3 10 2 10 1

POD tolerance

10 4

10 3

10 2

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.3
EIM tol = 0.1
EIM tol = 0.03
EIM tol = 0.01
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003

(b) ROM errors time-parameter reduc-
tion on parameter and η0 in the training
set

10 4 10 3 10 2 10 1

POD tolerance

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.3
EIM tol = 0.1
EIM tol = 0.03
EIM tol = 0.01
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003

(c) ROM errors time-parameter reduc-
tion on parameter and η0 outside the
training set

10 4 10 3 10 2 10 1

POD tolerance

10 1

4 × 10 2

6 × 10 2

2 × 10 1

3 × 10 1

RO
M

 T
im

e/
FO

M
 T

im
e

(d) EIM ROM computational times
time-only reduction (legend above)

10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

(e) ROM computational time time-
parameter reduction on parameter and
η0 in the training set (legend above)

10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

(f) ROM computational time time-
parameter reduction on parameter and
η0 outside the training set (legend
above)

0 20 40 60 80 100
1.0

0.8

0.6

0.4

0.2

0.0

FOM
ROM N=10
ROM N=20
ROM N=40
ROM N=60
ROM N=100
bath

(g) ROM solutions time-only reduction

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Simulations with ROM of dimension 72

fom
EIMROM
pdROM

(h) ROM solutions time-parameter re-
duction with tolPOD = 0.01, NRB = 72
and tolEIM = 0.03, NEIM = 152 on
parameter and η0 in the training set

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

Simulations with ROM of dimension 72
fom
EIMROM
pdROM

(i) ROM solutions time-parameter re-
duction with tolPOD = 0.01, NRB = 72
and tolEIM = 0.03, NEIM = 152 on pa-
rameter and η0 outside the training set

0 20 40 60 80 100
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 FOM
ROM 42
EIM 65 ROM 42
EIM 75 ROM 42
EIM 118 ROM 42

(j) EIMROM solutions time-only reduc-
tion

0 20 40 60 80 100

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Simulations with ROM of dimension 119

fom
EIMROM
pdROM

(k) ROM solutions time-parameter re-
duction with tolPOD = 0.001, NRB =
119 and tolEIM = 0.001, NEIM = 259
on parameter and η0 in the training set

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

Simulations with ROM of dimension 119
fom
EIMROM
pdROM

(l) ROM solutions time-parameter re-
duction with tolPOD = 0.001, NRB =
119 and tolEIM = 0.001, NEIM = 259
on parameter and η0 outside the train-
ing set

Figure 8: Solitary waves interacting with a submerged bar. pdROM and EIM reduction: simula-
tion, errors and computational time, varying POD and EIM dimensions

18

10 2 10 1

10 2

6 × 10 3

2 × 10 2

3 × 10 2
2

Log10 of relative error
 PDROM 72, POD tol 0.01

Training

10 2 10 1

10 2

6 × 10 3

2 × 10 2

3 × 10 2

2

Log10 of relative error
 EIM 227 ROM 72, EIM tol 0.003, POD tol 0.01

Training

3.510

3.381

2.903

2.426

1.948

1.471

0.994

0.516

0.039

3.510

3.381

2.903

2.426

1.948

1.471

0.994

0.516

0.039

Figure 9: Solitary waves interacting with a submerged bar. Error plot varying the parameters a0
and h0 for pdROM NRB = 72 and EIMROM with NEIM = 227

5 An extension to a Boussinesq system

We propose in this section a possible extension to well known dispersive shallow water model by
Madsen and Sørensen [31]. In the dimensional form the model equations read [31, 39]{

∂tη + ∂xq = 0,

∂tq − T t[∂tq] + ∂x(qu) + gh∂xη − T x[η] = 0,

with T t[·] := B1h̄
2∂xx[·] +

1

3
h̄∂xh̄∂x[·] and T x[·] := gB2h̄

2 (2∂xh̄+ h̄∂x
)
∂xx[·],

(36)

where, with the notation of Figure 1, η(x, t) is the water level variation from the reference value,
q(x, t) is the discharge, b0b(x) is the bathymetry profile, h0 is the reference value for water height,
h̄(x) = h0 − b0b(x) is the water height at rest, h(x, t) = η(x, t)+ h̄(x) is the water height, u(x, t) is the
depth averaged speed and it is linked to q by q(x, t) = h(x, t)u(x, t). System (36) provides a O(εµ2, µ4)
approximation of the full nonlinear wave equations. It contains the nonlinear terms belonging also to
shallow water equations, and they are the only nonlinear terms of the model. Similarly to Boussinesq
equation and to the previous scalar model there are other linear dispersion terms which scale with con-
stants B1 and B2. The model constants B1 and B2 are set to B2 = 1/15 and B1 = B2+1/3 to optimize
the linear characteristics of the model (phase and shoaling) with respect to the full Euler equations [31].

As before, we manipulate the equations for the purpose of their numerical solution. First we recast
the model in dimensionless form:{

∂tη + ∂xq = 0,

∂tq − µ2T t[∂tq] + ε∂x(qu) + h∂xη − µ2T x[η] = 0,

with T t[·] := B1h̄
2∂xx[·] +

1

3
h̄∂xh̄∂x[·] and T x[·] := B2h̄

2 (2∂xh̄+ h̄∂x
)
∂xx[·].

(37)

We then isolate the nonlinear hyperbolic operator and write the system as{
∂tη + ∂xq = 0,

(1− µ2T t)[∂tq + ε∂x(qu) + h∂xη] + µ2T t[ε∂x(qu) + h∂xη]− µ2T x[η] = 0.
(38)

In this case we do not neglect any of the small order terms to keep the original model, often used in
literature (see e.g. [7, 39, 4]) and references therein. The final model can be written as a system of 3
equations, given by

∂tη + ∂xq = 0,

(1− µ2T t)[ψ] = µ2
{
T x[η]− T t[ε∂x(qu) + h∂xη]

}
,

∂tq + ε∂x(qu) + h∂xη = ψ.

(39)

19

Also for this model, we show the analogy with the model defined in (2). Indeed, if we consider

u := (η, q)T , ∂xF (u) := (∂xq, ε∂x(qu) + h∂xη)
T , S(u) = 0,

X x(u) :=
(
0,−µ2 {T x[η]− T t[ε∂x(qu) + h∂xη]

})T
, X t(u) :=

(
0, µ2T t)T ,

one obtains (39). For this model, one cannot show an exact conservation for a total energy. For
other dispersive nonlinear systems one can show the conservation of an energy of the form E =
gh2

2
+ hu2

2
+ h3(ux)2

6
[29]. Differently from the BBM-KdV equation, the relation between this energy

and the main unknowns is nonquadratic, and it is not straightforward to use it to build the reduced
basis and the test reduced space as the one studied before. Based on regularity requirements, we will
instead investigate a formal extension of the method proposed in the scalar case.

5.1 Wave generation and boundary conditions

We will consider two families of solutions: solitary waves, monochromatic periodic waves. Exact
solitary waves for (36) can be obtained assuming η = η(x− Ct), and q = Cη, which allows to obtain
an ODE from the second equation in (36). The solution is uniquely defined given amplitude and depth
at rest (a0, h0). In particular, setting C2

0 = gh0, the celerity C verifies the consistency condition

C2

C2
0

=
a20
2h2

0

1 + a0
3h0

a0
h0

− log(1 + a0
h0

)
(40)

Details can be found in [39, 35]. The ODE is integrated here with a built-in solver in scipy.

To generate monochromatic waves, we have included an internal wave generator. Different defini-
tions exist in literature [45, 33, 47, 48]. Following [47, 48], we add to the η equation a compact forcing
term with periodic variation in time:

∂t(η + hiwg) + ∂xq = 0, (41)

where the internal generator is defined by

hiwg(x, t) := Aiwgfiwg(x) sin(ωt), (42)

with ω = 2π/T the frequency of the signal and T the period, fiwg the spatial damping function

fiwg(x) = Γiwge
−(x−xiwg)

2/d2iwg . (43)

We refer to [39, 48] for the tuning of the parameters and we will use the following ones

Γiwg = 0.185
√
g/h0T, d2iwg =

gα2
iwgh0T

2

80
, T = 2.525, αiwg = 4, (44)

and xiwg the center of the generator and αiwg ∈ [0, 4] is a parameter controlling the amplitude of the
wave and βiwg is just a rescaling factor. Also Aiwg is a rescaling factor that will be changed along the
simulations to test the problem for different parameters.

Finally, outflow conditions are imposed through sponge layers. Following [39] these terms are
written as diffusion operators which will be discretized implicitly and added to the mass matrix. At
the continuous level they have the form

S(v) = −ν∂xxv, ν(x) :=

n1
1−e

n2
x−Xs1

Xs2−Xs1

1−e
, Xs1 ≤ x ≤ Xs2,

0, else.
(45)

Here n1 and n2 are two coefficients that should be tuned with the problem, we will use the values
n1 = 10−3 and n2 = 10 as suggested in [39]. The points Xs1 and Xs2 are fixed close to the boundary
and Xs2 will coincide with the boundary itself. Also here, both these linear source terms can be added
in the formulation to match (2) defining Sim accordingly.

20

5.2 Full order discrete model

The approach used to discretize (36) is similar to the one used in the scalar case. We combine a linear
continuous Galerkin method (see [39] and references therein) with an SSPRK(2,2) time integrator [19].
To introduce a little dissipation we again make use of a continuous interior penalty operator (CIP)
[8]. The resulting discrete equations can be written as

M

(
(η + hiwg)

(s)−
s−1∑
r=0

ρsr(η + hiwg)
(r)

)
+∆tSη(s)=−∆t

s−1∑
r=0

θsr

(
N η(η(r), q(r)) + J (η(r), λ(r))

)
(46a)

(M− Tt)ψ = −
s−1∑
r=0

θsr

(
TtM−1N q(η(r), q(r)) + Txη(r)

)
(46b)

M

(
q(s) −

s−1∑
r=0

ρsrq
(r)

)
+∆tSq(s) = ∆tMψ −∆t

s−1∑
r=0

θsr

(
N q(η(r), q(r)) + J (q(r), λ(r))

)
(46c)

where the index in bracket notation is to denote the Runge–Kutta stages, i.e., {η(s), q(s)}s=1,2, and
ρsr, θ

s
r are the Runge–Kutta coefficients in the Shu–Osher formulation as in the previous sections. The

matrix M ∈ RN×N is the usual P1 mass matrix Mij = ∆x(1 + 3δij)/6, while the nonlinear operators
N η and N q are given by[

N η

N q

]
j

= ∆xD
[

q
q2/h

]
j

+
g

6

[
0

(2hj + hj+1)(ηj+1 − ηj)− (2hj + hj−1)(ηj − ηj−1)

]
.

The CIP stabilization J is defined exactly as in (28), with λj = uj +
√
ghj . The operators Tt and

Tx are the finite element approximation of the corresponding T operators appearing in (36), while S
is the linear diffusion operator obtained from the discretization of the sponge layer terms. These are
reported in A for completeness.

Also for this discrete model we can see the matching with (6), with few differences in the dis-

cretization. The mass matrices can be rewritten as Mu = MΦ :=

(
M 0
0 M

)
, the dispersion terms and

the fluxes can be defined as

Xt :=

(
0 0
0 Tt

)
, Xxu :=

(
0, −µ2

{
Txη − TtM−1N q(η, q)

})T
, F(u) :=

[
N η + J (η, λ)
N q + J (q, λ)

]
(47)

and the source terms can be written as

Sim =

(
S 0
0 S

)
, Sex(u) =

[
∂thiwg

0

]
. (48)

The main difference with the KdV-BBM model is that here the explicit dispersive terms are nonlinear
as they contain a flux term. For more details on the discretization of the spatial operators we refer to
[39].

5.3 Benchmarks for weakly dispersive free surface waves

5.3.1 Solitary waves interacting with a submerged bar

We consider the simulation of solitary waves propagating over a trapezoidal bar, defined as in Sec-
tion 3.4.3, but with maximal height equal to b0 = 0.2 and points of change of slope equal to
{11, 17, 19, 22}. We choose periodic boundary conditions on the domain Ω = [−20, 30] and we center
the initial solitary wave at the initial condition in x = 5. Even though this is a traveling solution, the
shape of the soliton is smooth and large enough not to encounter problems in the reduction due to
the advection character of the solution. We use the following parameters a0 = 0.2, h0 = 1, g = 9.81,
CFL = 0.5, T = 18. Simulations at various times are displayed in Figures 10(a) and 10(c).

21

20 10 0 10 20
1.0

0.8

0.6

0.4

0.2

0.0

0.2 initial
end

(a) Solitary waves interacting with a submerged
bar

16 18 20 22 24 26 28 30 32
0.5

0.4

0.3

0.2

0.1

0.0

initial
end

(b) Periodic waves over a submerged bar

20 10 0 10 20

0.00

0.05

0.10

0.15

0.20

h
t=0.00
t=3.59
t=7.17
t=10.76
t=14.34
t=17.93

20 10 0 10 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

q
t= 0.00
t= 3.59
t= 7.17
t= 10.76
t= 14.34
t= 17.93

Solution snapshots

(c) Solitary waves interacting with a submerged
bar: η at different timesteps

16 18 20 22 24 26 28 30 32

0.06

0.04

0.02

0.00

0.02

0.04

0.06

h
t=0.00
t=7.97
t=15.94
t=23.90
t=31.87
t=39.84

16 18 20 22 24 26 28 30 32

0.06

0.04

0.02

0.00

0.02

0.04

0.06

q

t= 0.00
t= 7.97
t= 15.94
t= 23.90
t= 31.87
t= 39.84

Solution snapshots

(d) Periodic waves over a submerged bar: η at dif-
ferent timesteps

Figure 10: Full order model solutions for EB system tests.

22

Table 3: Estimate percentage of computational time for solving the linear systems for the three benchmark
problems: comparison of the implementation of Thomas algorithm all in numba framework and sparse
solver by scipy with fluxes computed in numba

numba and Thomas numba and scipy

Nh 5.3.1 5.3.2 5.3.1 5.3.2
2000 75.8% 39.1% 74.3% 77.7%
4000 72.1% 32.8% 87.4% 80.8%
8000 69.1% 27.7% 94.5% 81.1%

Table 4: Estimate of ratio of computational time of the linear system over computational time of the non-
linear fluxes for the three benchmark problems: comparison of the implementation of Thomas algorithm
all in numba framework and sparse solver by scipy with fluxes computed in numba

numba and Thomas numba and scipy

Nh 5.3.1 5.3.2 5.3.1 5.3.2
2000 6.8 2.25 39.8 31.5
4000 6.7 2.18 41.1 31.5
8000 6.9 2.15 39.0 32.1

5.3.2 Periodic waves over a submerged bar

We consider monochromatic waves propagating in the domain Ω = [0, 35] on a trapezoidal submerged
bar of maximum height 0.3. An internal wave generator is positioned at xiwg = 10. Sponge layers are
set on both ends of the domain. The wave parameters a0 and h0 will be changed along the simulations.
For the first test we use a0 = 0.027, as in [39] and h0 = 0.5 (original was h0 = 0.4 that we will leave
for the final simulations). As before, g = 9.81 and CFL = 0.5, while we set T = 40. FOM simulations
for different times are depicted in Figures 10(b) and 10(d). This test is particularly complicated to be
reduced, as one can heuristically see from the simulations. Indeed, the gradients get steep after the
trapezoid and travels all along the right domain.

Here, we compare as for the BBM-KdV benchmarks the computational cost of the system solution
with respect to the whole simulation. As before, we observe that the cost of the system is a large
part of the simulation. In Table 1 we list the time percentage devoted to the solution of the linear
system, while in Table 2 we show the ratio between the solver time and the flux evaluation. For the
very optimized Thomas algorithm in numba we observe that the linear solver is not so expensive as in
the previous cases, in particular for the non periodic boundary condition case. On the other side, for
a generic sparse solver the computational costs of the linear solver are huge with respect to the other
operations and it is noticeable comparing it with the cost of the explicit flux evaluation.

5.4 Reduction of the enhanced Boussinesq model

For the reduction of the FOM we proceed analogously to the scalar case. The main difference is that,
in absence of a clear energy statement allowing a linear reduction, each variable has its own reduced
basis associated to the minimization of the L2 norm as in classical Galerkin projection methods. We
discuss the reduction main steps hereafter.

5.4.1 Projection on reduced spaces and linear reduction

We consider two reduced spaces for the two variables: V η ∈ RNh×NRB
η

and V q ∈ RNh×NRB
q

. The
spaces are obtained again with the POD algorithm, using the same tolerance on both variables. Then,

23

we project the equations (46) onto these spaces, obtaining

W η,T (M+∆tS)V ηη̂(s) =W η,TM

(
s−1∑
r=0

ρsr(V
ηη̂(r) + h

(r)
iwg)− h

(s)
iwg

)

−∆t

s−1∑
r=0

θsrW
η,T
(
N η

(
V ηη̂(r), V qq̂(r)

)
+ J (V ηη̂(r), λ(r))

)
W q,T (M− Tt)V qψ̂ =−

s−1∑
r=0

θsrW
q,T
(
TtM−1N q(V ηη̂(r), V qq̂(r)) + TxV ηη̂(r)

)
W q,T (M+∆tS)V qq̂(s) =W q,TMV q

s−1∑
r=0

ρsrq̂
(r) +∆tW q,TMqV qψ̂

−∆t

s−1∑
r=0

θsrW
q,T
(
N q(V ηη̂(r), V qq̂(r)) + J (V qq̂(r), λ(r))

)

(49)

for every stage s of SSPRK2. The reduced variables are denoted with the ·̂ symbol. As already
remarked several times, we have no energy allowing to define a minimization problem leading to an
efficient linear reduction strategy. Hence we will make use here of classical L2 projection arguments,
and consider Θ to be the identity, and W = V .

Similarly to the scalar case, we can precompute the projected operators and use them in the reduced
simulation to save computational time. In this first stage, we obtain the pdROM algorithm. Let us
define M̂η := W η,TMV η, M̂q := W q,TMV q, T̂t := W q,TTtV q, T̂x := W q,TTxV η, Ŝη := W η,TSV η,
Ŝq := W q,TSV q, recalling that hiwg = µiwg(t, a0)fiwg, we also define f̂iwg := W η,T fiwg. We obtain
substituting in (49)

(M̂η +∆tŜη)η̂(s) =M̂η
s−1∑
r=0

ρsrη̂
(r) −

(
µ
(s)
iwg −

s−1∑
r=0

ρsrµ
(r)
iwg

)
M̂η f̂iwg −∆t

s−1∑
r=0

θsrN̂ η,(r), (50a)

(M̂q − T̂t)ψ̂ =−
s−1∑
r=0

θsr

(
T̂tM̂q,−1N̂ q,(r) + T̂xη̂(r)

)
, (50b)

(M̂q +∆tŜq)q̂(s) = M̂q
s−1∑
r=0

ρsrq̂
(r) +∆tM̂qψ̂ −∆t

s−1∑
r=0

θsrN̂ q,(r), (50c)

where the reduced nonlinear fluxes are defined as

N̂ η,(r) :=W η,T
(
N η

(
V ηη̂(r), V qq̂(r)

)
+ J (V ηη̂(r), λ(r))

)
,

N̂ q,(r) :=W q,T
(
N q(V ηη̂(r), V qq̂(r)) + J (V qq̂(r), λ(r))

)
.

(51)

Notice that there has been a further projection inside the matrix multiplication

W q,TTtM−1N q ≈W q,TTtV qV q,TM−1W qW q,TN q = T̂tM̂q,−1N̂ q, (52)

in order to have an efficient implementation of the operations without the need of too many operators.
Hence, all the matricial operations are reduced and only the nonlinear fluxes have computational costs
that scale as an O(Nh). The solution of the reduced system can be done after the simple assembly of
the reduced mass and sponge matrices, with dimension NRB . As before, this method will be denoted
with pdROM in the benchmarks section and all the terms can be matched with (8) following the same
definitions of the FOM discretization.

Remark 6 (A more efficient implementation). All of the above manipulations retain the structure of
a perturbation of the nonlinear shallow water solver via the use of the auxiliary variable ψ. This is
very interesting from the practical point of view for several reasons as in perspective it could be used
to enhance an existing shallow water solver. It also allows to more easily embed certain wave breaking
closures (see e.g. [17, 25]). However, this reduced model can be more efficiently implemented using

24

20 10 0 10 20

1.0

0.8

0.6

0.4

0.2

0.0

0.2

FOM
ROM N=10
ROM N=20
ROM N=40
ROM N=60
ROM N=100

20 10 0 10 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
q

Reduced solutions at final time

(a) ROM solutions time-only reduction

10 20 30 40 50 60 70
Dimension reduced basis

10 5

10 4

10 3

10 2

10 1

100

Er
ro

r

ROM EIM tol 0.0003
ROM EIM tol 0.0001
ROM EIM tol 3e-05
ROM EIM tol 1e-05
ROM EIM tol 3e-06
ROM EIM tol 1e-06
pdROM

(b) EIM ROM errors time-only reduc-
tion

10 20 30 40 50 60 70
Dimension reduced basis

10 1

100

RO
M

 T
im

e/
FO

M
 T

im
e

ROM EIM tol 0.0003
ROM EIM tol 0.0001
ROM EIM tol 3e-05
ROM EIM tol 1e-05
ROM EIM tol 3e-06
ROM EIM tol 1e-06
pdROM

(c) EIM ROM computational times
time-only reduction

Figure 11: Solitary waves over a submerged bar. pdROM and EIM (time-only) reduction: simulation,
errors and computational time, varying POD and EIM dimensions

a global form that does not isolate the shallow water equations. In particular, instead of (50c) and
(50b) we could use the following

(M̂q − T̂t +∆tŜq)q̂(s) − (M̂q − T̂t)

s−1∑
r=0

ρsrq̂
(r) +

s−1∑
r=0

θsr∆t
(
N̂ q,(r) + T̂xη̂(r)

)
= 0. (53)

Avoiding the explicit evaluation of ψ allows to avoid several projections and reduce the online cost.

5.4.2 Hyper-reduction

The final reduction that can be applied is the EIM on the nonlinear fluxes N η, N q. The same proce-
dures presented in the scalar case can be applied in this case, obtaining an extra level of approximation
which allows to get rid of all the computations that scale as an O(Nh). Same caveats hold for this
problem: the tuning of the tolerance of the EIM algorithm must be done accordingly to the POD one
otherwise instabilities and Runge phenomena might appear, see [37, 50, 18, 3, 11].

6 Simulations for enhanced Boussinesq

In this section we study the simulations for the EB model. We follow the modus operandi of Section 4.1
We will show results mainly for the variable η, omitting the ones for q for brevity. In the second stage
we will let not only h0 vary to form the training set, but also a0, we will specify their range in the
different tests. To make a comparison with a reasonable solver, being the problem more complicated,
we will use a sparse scipy solver for the FOM, where the tridiagonal structure of the matrices is not
exploited a priori.

6.1 Solitary waves over a submerged bar

For this test we set a0 = 0.2 and h̄0 = 1. For the first phase we just compress the solutions for a
simulation until T = 25 with the POD. The problem is relatively simple and the wave does not show
much dispersion. We can see with different choices of NRB

η = NRB
q the behavior of the pdROM

approximated solutions in Figure 11(a). Adding also the EIM to the algorithm we obtain expected
results as we can see both in the error behavior in Figure 11(b), and in computational times of
Figure 11(c), where we can achieve around 4% to 10% of FOM computational time for pdROM and
between 1% and 8% for EIMROM. In this case, the system of the FOM requires more computational
time than the scalar case one, as it is composed of more terms.

Now, we consider 10 snapshots with randomly chosen parameters h0 ∈ [0.8, 1.2] and a0 ∈ [0.16, 0.24].
This training set is used to compute the POD and EIM basis functions. Simulating pdROM and EIM-
ROM for a0 = 0.2 and h0 = 1, with relatively few basis functions the error is already low, see
Figure 12(a) and the computational costs stay in the same range between 1% and 10% of FOM com-
putational times, see Figure 12(b). In Figure 12(c) we see that with only NRB

η = 20, NRB
q = 20

25

10 5 10 4 10 3 10 2 10 1

POD tolerance

10 4

10 3

10 2

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

10 5 10 4 10 3 10 2 10 1

POD tolerance

10 4

10 3

10 2

10 1

100

101

Er
ro

r

q

pdROM
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

Errors

(a) ROM errors time-parameter reduction on
parameter in the training set

10 5 10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

pdROM
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

(b) ROM computational time time-
parameter reduction on parameter and u0

in the training set

20 10 0 10 20
1.0

0.8

0.6

0.4

0.2

0.0

0.2

FOM
EIMROM
pdROM
bathymetry

20 10 0 10 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
q

FOM
EIMROM
pdROM

Simulations with ROM

(c) ROM solutions time-
parameter reduction in the
training set

Figure 12: Solitary waves over a submerged bar. pdROM and EIM (time-parameter) reduction:
simulation, errors and computational time, varying POD and EIM dimensions. Parameter inside the
training domain.

10 5 10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

Er
ro

r

pdROM
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

10 5 10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

100

Er
ro

r

q

pdROM
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

Errors

(a) ROM errors time-parameter reduction on
parameter and u0 outside the training set

10 5 10 4 10 3 10 2 10 1

POD tolerance

10 2

10 1

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

pdROM
EIM tol = 0.003
EIM tol = 0.001
EIM tol = 0.0003
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

(b) ROM computational time time-
parameter reduction on parameter and u0

outside the training set

20 10 0 10 20
0.8

0.6

0.4

0.2

0.0

0.2

FOM
EIMROM
pdROM
bathymetry

20 10 0 10 20

0.0

0.2

0.4

0.6

0.8
q

FOM
EIMROM
pdROM

Simulations with ROM

(c) pdROM and EIMROM solu-
tions time-parameter reduction
outside the training set

Figure 13: Solitary waves over a submerged bar. pdROM and EIM (time-parameter) reduction:
simulation, errors and computational time, varying POD and EIM dimensions. Parameter outside the
training domain.

26

0.10 0.15 0.20 0.25 0.30 0.35 0.40
asurf

0.4

0.6

0.8

1.0

1.2

1.4
h 0

Log10 of relative error
 PDROM 28 28, POD tol 0.01

Training

0.10 0.15 0.20 0.25 0.30 0.35 0.40
asurf

0.4

0.6

0.8

1.0

1.2

1.4

h 0

Log10 of relative error
 EIM 44 50 ROM 28 28, EIM tol 0.001, POD tol 0.01

Training

3.377

2.887

2.397

1.906

1.416

0.926

0.435

0.055

3.377

2.887

2.397

1.906

1.416

0.926

0.435

0.055

Figure 14: Solitary waves over a submerged bar. Error plot varying the parameters a0 and h0 for
pdROM NRB

η = 31 and NRB
q = 30 and EIMROM with NEIM

η = 40 and NEIM
q = 51

for 0.03 POD tolerance the pdROM already approximates very well the solution and adding the EIM
with NEIM

η = 47 and NEIM
q = 60 for 0.0003 EIM tolerance results in an accurate approximation of

the FOM in just 7% of the FOM computational time.
Considering h0 = 0.76 and a0 = 0.252 slightly outside the training set we can already see larger

errors (one order of magnitude) in Figure 13(a) and comparable computational times in Figure 13(b).
In Figure 13(c) we see that the FOM is a bit more oscillating than in the previous case and that
the pdROM and EIMROM, for the same parameters used above, struggle more with approximating
accurately the solution, still being not too far from the FOM solution.

For NRB
η = 28, NRB

q = 28 relative to a POD tolerance of 0.01 and NEIM
η = 44, NEIM

q = 50
for EIM tolerance of 0.001, we see in Figure 14 how the parameters a0 and h0 influence the relative
error of the pdROM and EIMROM approximations. The structure is similar to the scalar case, where
increasing the nonlinearity of the problem the oscillations rise and the error follows. Again, we see that
the EIMROM do not obtain such an accurate solution as pdROM for problems close to the training
set, though using much less computational time (around 3 times faster than pdROM).

6.2 Monochromatic waves on a submerged bar

The last test is very challenging as its solutions are very close to show steep gradients and transport
phenomena. Moreover, the water level is often close to the bathymetry and, if not well represented,
the approximation can result into invalid values. Fortunately, the steep gradients are all close to the
end of the trapezoid and with not so many basis functions it is possible to approximate them. We
take a0 = 0.027, h̄0 = 0.5 and final time T = 40. Taken the POD over the time evolution of this
FOM, we approximate in Figure 15(a) with pdROM the same evolution for different NRB

η = NRB
q

of the same problem. We see that with 40 basis functions the pdROM approximation is close to the
FOM one, but only for 60 basis functions we do not observe any large deformation. In Figure 15(b)
we see more precisely the error decay for different NRB and different EIM tolerances. The error is
quite large, and the decay with the EIM approximation is very slow. It must be noticed that in many
of these EIMROM simulations, the water height reaches negative values and stop at an earlier time,
in those cases the error is not reported or it is larger than the scale. We see for an EIM tolerances of
10−4, 3 · 10−5 and 10−6 in Figure 15(d) how the error for the first one is very large, but also for the
other two cases the error does not decrease a lot in particular in the area after the trapezoid, where
the steepest part of the solutions are located. The computational costs for this problem range between
4% and 30% for pdROM and between 1% and 30% for EIMROM as shown in Figure 15(c).

Introducing more parameters in the training set, with h0 ∈ [0.4, 0.6] and a0 ∈ [0.0216, 0.0324],
leads to a much more rich manifold of solutions. This implies that the eigenvalue decay of the
POD gets slower. For the test parameter h̄0 and a0 = 0.027, we observe in Figure 16(b) that the
computational costs for pdROM and EIMROM are very similar and they are around the 5% of
the FOM computational time to obtain an error of 10−1, around 15% of the time for an error of

27

16 18 20 22 24 26 28 30 32

0.5

0.4

0.3

0.2

0.1

0.0

FOM
ROM N=10
ROM N=20
ROM N=40
ROM N=60
ROM N=100

16 18 20 22 24 26 28 30 32

0.06

0.04

0.02

0.00

0.02

0.04

0.06

q
Reduced solutions at final time

(a) ROM solutions time-only reduction

20 40 60 80 100 120 140
Dimension reduced basis

10 4

10 3

10 2

10 1

100

101

Er
ro

r

ROM EIM tol 0.0003
ROM EIM tol 0.0001
ROM EIM tol 3e-05
ROM EIM tol 1e-05
ROM EIM tol 3e-06
ROM EIM tol 1e-06
pdROM

(b) EIM ROM errors time-only reduc-
tion

20 40 60 80 100 120 140
Dimension reduced basis

10 1

RO
M

 T
im

e/
FO

M
 T

im
e

ROM EIM tol 0.0003
ROM EIM tol 0.0001
ROM EIM tol 3e-05
ROM EIM tol 1e-05
ROM EIM tol 3e-06
ROM EIM tol 1e-06
pdROM

(c) EIM ROM computational times
time-only reduction

16 18 20 22 24 26 28 30 32

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08 FOM
pdROM 50 50
EIM 71 125 ROM 50 50

16 18 20 22 24 26 28 30 32

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05 FOM
pdROM 50 50
EIM 100 161 ROM 50 50

16 18 20 22 24 26 28 30 32

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05 FOM
pdROM 50 50
EIM 170 231 ROM 50 50

(d) EIM ROM simulation time-only reduction with NRB
η = NRB

q = 50 and tolEIM = 10−4, 3 · 10−5, 10−6 respectively
from left to right

Figure 15: Monochromatic waves on a submerged bar. pdROM and EIM (time-only) reduction:
simulation, errors and computational time, varying POD and EIM dimensions

10 3 10 2 10 1

POD tolerance

10 2

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.01
EIM tol = 0.005
EIM tol = 0.001
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

10 3 10 2 10 1

POD tolerance

10 3

10 2

10 1

100

101

Er
ro

r

q

pdROM
EIM tol = 0.01
EIM tol = 0.005
EIM tol = 0.001
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

Errors

(a) ROM errors time-parameter reduction on
parameter in the training set

10 3 10 2 10 1

POD tolerance

10 2

10 1

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

pdROM
EIM tol = 0.01
EIM tol = 0.005
EIM tol = 0.001
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

(b) ROM computational time time-
parameter reduction on parameter in the
training set

15.0 17.5 20.0 22.5 25.0 27.5 30.0
0.5

0.4

0.3

0.2

0.1

0.0

FOM
EIMROM
pdROM
bathymetry

15.0 17.5 20.0 22.5 25.0 27.5 30.0

0.04

0.02

0.00

0.02

0.04

q

FOM
EIMROM
pdROM

Simulations with ROM

(c) pdROM and EIMROM solu-
tions time-parameter reduction

Figure 16: Monochromatic waves on a submerged bar. pdROM and EIM (time-parameter) reduc-
tion: simulation, errors and computational time, varying POD and EIM dimensions. Parameter inside
the training domain.

28

10 3 10 2 10 1

POD tolerance

10 1

100

101

Er
ro

r

pdROM
EIM tol = 0.01
EIM tol = 0.005
EIM tol = 0.001
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

10 3 10 2 10 1

POD tolerance

10 1

100

101

Er
ro

r

q

pdROM
EIM tol = 0.01
EIM tol = 0.005
EIM tol = 0.001
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

Errors

(a) ROM errors time-parameter reduction on
parameter outside the training set

10 3 10 2 10 1

POD tolerance

10 2

10 1

Co
m

pu
ta

tio
na

l t
im

e
ra

tio

pdROM
EIM tol = 0.01
EIM tol = 0.005
EIM tol = 0.001
EIM tol = 0.0001
EIM tol = 3e-05
EIM tol = 1e-05

(b) ROM computational time time-
parameter reduction on parameter and
u0 outside the training set

15.0 17.5 20.0 22.5 25.0 27.5 30.0
0.4

0.3

0.2

0.1

0.0

FOM
EIMROM
pdROM
bathymetry

15.0 17.5 20.0 22.5 25.0 27.5 30.0

0.06

0.04

0.02

0.00

0.02

0.04

0.06

q

FOM
EIMROM
pdROM

Simulations with ROM

(c) pdROM and EIMROM solu-
tions time-parameter reduction

Figure 17: Monochromatic waves on a submerged bar. pdROM and EIM (time-parameter) reduc-
tion: simulation, errors and computational time, varying POD and EIM dimensions. Parameter outside
the training domain.

0.02 0.03 0.04 0.05 0.06 0.07 0.08
asurf

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

h 0

Log10 of relative error
 PDROM 61 57, POD tol 0.01

Training

0.02 0.03 0.04 0.05 0.06 0.07 0.08
asurf

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

h 0

Log10 of relative error
 EIM 171 223 ROM 61 57, EIM tol 0.0001, POD tol 0.01

Training

2.258

1.935

1.613

1.290

0.968

0.645

0.323

0.000

2.258

1.935

1.613

1.290

0.968

0.645

0.323

0.000

4 × 10 2 5 × 10 2 6 × 10 2 7 × 10 2 8 × 10 2

7 × 10 3

8 × 10 3

9 × 10 3

2

Log10 of relative error
 PDROM 61 57, POD tol 0.01

Training

4 × 10 2 5 × 10 2 6 × 10 2 7 × 10 2 8 × 10 2

7 × 10 3

8 × 10 3

9 × 10 3

2

Log10 of relative error
 EIM 171 223 ROM 61 57, EIM tol 0.0001, POD tol 0.01

Training

2.258

1.935

1.613

1.290

0.968

0.645

0.323

0.000

2.258

1.935

1.613

1.290

0.968

0.645

0.323

0.000

Figure 18: Monochromatic waves on a submerged bar. Error plot varying the parameters a0 and
h0 for pdROM tolPOD = 10−2 NRB

η = 61 and NRB
q = 57 and EIMROM with tolEIM = 10−4 and

NEIM
η = 121 and NEIM

q = 235

29

10−2 and around 30% for an error of 10−3. For very accurate results with error lower than 10−4 a
computational time of more of the 30% of the FOM computational time may be required. The pdROM
simulation in Figure 16(a) shows the accurate result for tolPOD = 0.001, NRB

η = 99, NRB
η = 92

and tolEIM = 0.00003, NEIM
η = 213 NEIM

q = 291. The number of EIM basis functions is large in
order to obtain a good approximation of the solution and almost not gaining anything in terms of
computational time with respect to the pdROM. This number must be large in order to avoid the
simulation to oscillate so much that it hits negative values and it crashes the simulation. Again, this
behavior has been observed in many other works [37, 50, 18, 3, 11] and we do not aim at finding better
hyper reduction algorithm in this work.

For the parameter outside the training set, we chose a0 = 0.027 and h0 = 0.4, which correspond to
the test case in [39] which was validated with experimental data. This simulation is quite challenging
also for pdROM and when it is not enough resolved it can have oscillations in h going below 0. This
happens for example for tolPOD = 5 · 10−2, as shown from the incomplete curves in Figure 17(a).
Increasing the dimension of the reduced space we overcome this issue. Computational costs are
similar to the ones discussed above. In Figure 17(c) we plot the simulation for tolPOD = 0.005,
NRB

η = 99, NRB
η = 92 and tolEIM = 0.00003, NEIM

η = 213 NEIM
q = 291. Here it is the EIMROM

simulation with the largest tolerance that does not crashes along the simulation. The computational
time reduction due to the EIM at this stage is almost negligible with respect to the pdROM and
the approximation is very similar. Both simulations oscillate more than the original FOM after the
trapezoid at this resolution, though using only 15% of the computational time of the FOM. To reach
errors of the order of 10−1 we need computational costs of around the 25% of the FOM ones as one
can observe comparing Figure 17(a) and Figure 17(b) for tolPOD = 2 · 10−3.

In Figure 18 we see the strong influence that h0 and a0 have on these simulations. In this case, it is
crucial the level of h0. When this level is too low, we fall in another regime and all the hypotheses made
on the dispersive equations are not valid anymore. Moreover, the simulations risk to hit negative values
and break in this regime. Above this regime, for pdROM we can simply say that as the oscillations
and the nonlinearity increase, the error increases. On the other side, the dispersion term is actually
helping in reducing the error in the reduced space. For EIMROM we observe more areas where the
algorithm struggles with obtaining good results, also for not too small h0 values.

7 Conclusion

In this work we have proposed some strategies for model order reduction for dispersive waves equations.
Applications have been shown to a BBM-KdV type model, and to the enhanced Boussinesq equations
of Madsen and Sørensen. Both models contain hyperbolic and dispersive terms that can be decoupled
in the numerical solver. The dispersive terms can be obtained solving an elliptic and linear problem,
which is well suited to be reduced with standard projection based reduction techniques after the choice
of a reduced basis space. We apply the proper orthogonal decomposition on some snapshots obtained
for different times and parameters to obtain a reduced space. When the gradients of the solutions
are not so steep and the nonlinear character is not the dominant one, we can obtain large reduction
with the pdROM in computational times, up to 20 times less, and still obtain a reliable solution.
Introducing a second level of approximation with the empirical interpolation method, this factor can
increase up to 100, but stability issues may arise. Hence, it is not always obvious how to choose how
many interpolation functions are needed. There are some clear bounds that cannot be overtaken when
using these simple reduction techniques: the nonlinearity cannot be too pronounced and the water
level must be far enough from zero. Nevertheless, the results are encouraging in particular knowing
that already for one dimensional problems we can can obtain good reduction.

This idea can be easily applied to a pre-existent hyperbolic algorithm, as a shallow water code,
with a cheap additional term which takes into account of the dispersive effect. This can, in fact, be
used without the burden of having to solve a large linear system. In the future, we aim to apply
this algorithm to more complicated two dimensional problems, where we expect larger reduction in
computational times (as the FOM will become more expensive), and to selectively switch on and off
the dispersive term into a shallow water code, in order to allow to pass between different regimes,
according to the solution shape.

To our knowledge this is the first work in this direction, and the initial results are quite promis-
ing. Several future improvements and developments are foreseen both involving improved reduction
strategies, and more complex wave dynamics and models. Notable the extension to multiple space

30

dimensions, as well as breaking waves are under investigation.

Acknowledgments

D. T. has been funded by an Inria Postdoc in Team Cardamom and by a SISSA Mathematical
Fellowship. M. R. is a permanent member of Inria Team Cardamom.

Declarations of interest: none.

A P1 finite elements for the MS model: full expressions

We report here the expressions of the finite element approximations of some of the operators arising
in the Madsen and Sørensen model. The first is Tt ∈ RN×N , representing the matrix discretization of
the terms T t. It can be split into two matrices. The first one is simply defined as a tridiagonal matrix
with entries for the jth row Bh̄2

j [1 − 2 1], while the second one has the following entries for the jth
row

− 1

18

 (h̄j − h̄j−1)(2h̄j + h̄j−1)
−(h̄j − h̄j−1)(2h̄j + h̄j−1) + (h̄j+1 − h̄j)(2h̄j + h̄j+1)

−(h̄j+1 − h̄j)(2h̄j + h̄j+1)

T

. (54)

The sum of the two defines the dispersion matrix Tt ∈ RN×N . The term T x[η] directly depends on

∂xxη, is discretized using an auxiliary variable w ≈ ∂xxη with the definition wj =
ηj−1−2ηj+ηj+1

∆x2 . The
operator can be approximated by a matrix Tx with the multiplication Txη. It can be conveniently
written with two matrices Tx,1 and Tx,2 such that Txη = Tx,1w+Tx,2w, where Tx,1 has the following
3 entries on the j-th row in the 3 main diagonals

−βg
3

[
− (h̄j+h̄j−1)

3

4
− h̄3

j ,
(h̄j+h̄j−1)

3

4
− (h̄j+h̄j+1)

3

4
,

(h̄j+h̄j+1)
3

4
+ h̄3

j

]
, (55)

and where Tx,2 has the following 3 entries on the j-th row in the 3 main diagonals

−βg
6

 (h̄j − h̄j−1)(h̄
2
jwj +

1
4
(h̄j + h̄j−1)

2)
(h̄j − h̄j−1)(h̄

2
jwj +

1
4
(h̄j + h̄j−1)

2) + (h̄j+1 − h̄j)(h̄
2
jwj +

1
4
(h̄j + h̄j+1)

2)
(h̄j+1 − h̄j)(h̄

2
jwj +

1
4
(h̄j + h̄j+1)

2)

T

. (56)

Finally, the discretization of this sponge layer term leads to an operator S which is a tridiagonal matrix
with entries for the jth row

Sj,j−1 = −νj + νj−1

8∆x
, Sj,j =

νj−1 + 2νj + νj+1

8∆x
, Sj,j+1 = −νj + νj+1

8∆x
. (57)

B Computational costs of different solvers

We compare here the computational costs of different sparse linear solvers and different strategies for
the reduction. We will refer to the KdV-BBM problem (14), similar results can be drawn from the
enhanced Boussinesq system (46).

First of all, let us compare different sparse linear solvers for the FOM. We have used Thomas
algorithm in the previously proposed examples. This linear solver very optimized and tailored towards
the problem we are solving. As soon as the discretization gets more involved or as soon as we move to
more dimensions, we would lose the tridiagonal structure of the system matrices and it would become
impossible to apply Thomas algorithm. In order to have a fairer comparison, in Figure 19(a) we
show the ROM computational costs over the FOM computational costs when the FOM uses Thomas
algorithm implemented in numba and when the FOM uses the sparse solver of scipy. We observe a
huge difference between the two solvers of a factor between 4 and 6. This would make the pdROM
computational costs even more appealing for a general sparse solver implementation in the FOM,
passing from 20% of the computational time to only 4%!

Secondly, we want to prove again that the main computational cost of the FOM is given by
the linear system and that the advantage obtained with the pdROM is focused on this step of the
algorithm. Indeed, we can compare the performance of the pdROM with the scheme given by the

31

20 40 60 80 100

10−1

100

NRB

R
O
M

ti
m
e/
F
O
M

ti
m
e

Test 3.4.1 FOM numba

Test 3.4.1 FOM scipy

Test 3.4.2 FOM numba

Test 3.4.2 FOM scipy

Test 3.4.3 FOM numba

Test 3.4.3 FOM scipy

(a) Ratio between computational time of pdROM with
respect to FOM computed either with Thomas solver in
numba or with the sparse solver of scipy

20 40 60 80 100

0.9

1

1.1

NRB

C
om

p
u
ta
ti
o
n
a
l
ti
m
e
ra
ti
os

Test 3.4.1
Test 3.4.2
Test 3.4.3

(b) Ratio between computational time of ROM with re-
duction only on Φ and pdROM

Figure 19: Computational costs for different algorithms: different FOMs (left), only projection of Φ for
ROM (right)

reduction only of the Φ equation, as suggested in Remark 3. In that algorithm, Φ is computed by
projecting the RHS of its equation onto the reduced basis space, then solving the reduced system and,
finally, reconstructing the full Φ. Its computational costs are comparable to the one of the pdROM.
In Figure 19(b) we plot the ratio of these costs for some NRB for all the previous tests. We can see
that they are very close to one and the fluctuations around that are probably due to the low precision
in measuring the times. We remind that the ROM where only Φ is reduced has larger errors than
the pdROM. This is maybe due to a mismatch of the spaces along the computations that allows the
propagation of spurious modes. We are still investigating the phenomenon. Hence, in general, we
would recommend a fully projected approach.

References

[1] A. Ali and H. Kalisch, Mechanical Balance Laws for Boussinesq Models of Surface Water
Waves, J. Nonlinear Sci., 22 (2012), pp. 371–398.

[2] , On the Formulation of Mass, Momentum and Energy Conservation in the KdV Equation,
Acta Appl. Math., (2014), pp. 113–131.

[3] J. Argaud, B. Bouriquet, H. Gong, Y. Maday, and O. Mula, Stabilization of (G) EIM
in presence of measurement noise: application to nuclear reactor physics, in Spectral and High
Order Methods for Partial Differential Equations ICOSAHOM 2016, Springer, 2017, pp. 133–145.

[4] P. Bacigaluppi, M. Ricchiuto, and P. Bonneton, Implementation and Evaluation of Break-
ing Detection Criteria for a Hybrid Boussinesq Model, Water Waves, 2 (2020), pp. 207–241.

[5] M. Barrault, Y. Maday, N. Nguyen, and A. Patera, An empirical interpolation method: ap-
plication to efficient reduced-basis discretization of partial differential equations, Comptes Rendus
de l’Academie des Sciences Paris, 339 (2004), pp. 667–672.

[6] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model Equations for Long Waves in Nonlinear
Dispersive Systems, Philosophical Transactions of the Royal Society of London Series A, 272
(1972), pp. 47–78.

[7] M. Brocchini, A reasoned overview on Boussinesq-type models: the interplay between physics,
mathematics and numerics, Proc. R. Soc. A, 469 (2013).

[8] E. Burman and P. Hansbo, The edge stabilization method for finite elements in CFD, in Nu-
merical mathematics and advanced applications, Springer, 2004, pp. 196–203.

32

[9] N. Cagniart, Y. Maday, and B. Stamm, Model Order Reduction for Problems with Large
Convection Effects, Springer International Publishing, Cham, 2019, pp. 131–150.

[10] A. Cauquis, M. Ricchiuto, and P. Heinrich, Lax–Wendroff Schemes with Polynomial Ex-
trapolation and Simplified Lax–Wendroff Schemes for Dispersive Waves: A Comparative Study,
Water Waves, (2022).

[11] Y. Chen, S. Gottlieb, L. Ji, and Y. Maday, An EIM-degradation free reduced basis method via
over collocation and residual hyper reduction-based error estimation, Journal of Computational
Physics, 444 (2021), p. 110545.

[12] M. W. Dingemans, Water wave propagation over uneven bottoms: Linear wave propagation,
vol. 13, World Scientific, 1997.

[13] Z. Drmac and S. Gugercin, A new selection operator for the discrete empirical interpolation
method—improved a priori error bound and extensions, SIAM Journal on Scientific Computing,
38 (2016), pp. A631–A648.

[14] M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced basis approximation for nonlinear
parametrized evolution equations based on empirical operator interpolation, SIAM Journal on
Scientific Computing, 34 (2012), pp. A937–A969.

[15] M. Duruflé and S. Israwi, A numerical study of variable depth KdV equations and generaliza-
tions of Camassa–Holm-like equations, Journal of computational and applied mathematics, 236
(2012), pp. 4149–4165.

[16] C. Farhat, T. Chapman, and P. Avery, Structure-preserving, stability, and accuracy properties
of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite
element dynamic models, International journal for numerical methods in engineering, 102 (2015),
pp. 1077–1110.

[17] A. G. Filippini, M. Kazolea, and M. Ricchiuto, A flexible genuinely nonlinear approach for
nonlinear wave propagation, breaking and run-up, Journal of Computational Physics, 310 (2016),
pp. 381–417.

[18] F. Ghavamian, P. Tiso, and A. Simone, POD–DEIM model order reduction for strain-softening
viscoplasticity, Computer Methods in Applied Mechanics and Engineering, 317 (2017), pp. 458–
479.

[19] S. Gottlieb and C.-W. Shu, Total variation diminishing Runge-Kutta schemes, Mathematics
of Computation, 67 (1998), pp. 73–85.

[20] S. Grimberg, C. Farhat, and N. Youkilis, On the stability of projection-based model order re-
duction for convection-dominated laminar and turbulent flows, Journal of Computational Physics,
419 (2020), p. 109681.

[21] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, Array programming with NumPy, Nature, 585 (2020), pp. 357–362.

[22] J. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized
Partial Differential Equations, Springer, 2016.

[23] S. Israwi, Variable depth kdv equations and generalizations to more nonlinear regimes, ESAIM:
Mathematical Modelling and Numerical Analysis, 44 (2010), pp. 347–370.

[24] A. Karczewska and P. Rozmej, Can simple KdV-type equations be derived for shallow water
problem with bottom bathymetry?, Communications in Nonlinear Science and Numerical Simula-
tion, 82 (2020), p. 105073.

[25] M. Kazolea and M. Ricchiuto, On wave breaking for Boussinesq-type models, Ocean Mod-
elling, 123C (2018), pp. 16–39. [pdf].

[26] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic
problems, Numer. Math., 90 (2001), pp. 117–148.

[27] S. K. Lam, A. Pitrou, and S. Seibert, Numba: A llvm-based python jit compiler, in Proceedings
of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 2015, pp. 1–6.

33

https://www.math.u-bordeaux.fr/~mricchiu/kr18.pdf

[28] D. Lannes, The Water Waves Problem: Mathematical Analysis and Asymptotics, American
Mathematical Society, Providence, Rhode Island, 2013.

[29] D. Lannes, Modeling shallow water waves, Nonlinearity, 33 (2020), p. R1.

[30] D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equa-
tions for surface water wave propagation, Phys. Fluids, 21 (2009).

[31] P. A. Madsen and O. R. Sørensen, A new form of the Boussinesq equations with improved
linear dispersion characteristics. Part 2. A slowly-varying bathymetry, Coastal Engineering, 18
(1992), pp. 183–204.

[32] R. Mojgani and M. Balajewicz, Lagrangian basis method for dimensionality reduction of
convection dominated nonlinear flows, arXiv e-prints, arXiv:1701.04343, (2017).

[33] O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation, Journal of
waterway, port, coastal, and ocean engineering, 119 (1993), pp. 618–638.

[34] M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parameterized evolution
equations via the method of freezing, Comptes Rendus Mathematique, 351 (2013), pp. 901 – 906.

[35] J. Orszaghova, A. G. Borthwick, and P. H. Taylor, From the paddle to the beach–A
Boussinesq shallow water numerical wave tank based on Madsen and Sørensen’s equations, Journal
of Computational Physics, 231 (2012), pp. 328–344.

[36] B. Peherstorfer, Model reduction for transport-dominated problems via online adaptive bases
and adaptive sampling, SIAM Journal on Scientific Computing, 42 (2020), pp. A2803–A2836.

[37] B. Peherstorfer, Z. Drmac, and S. Gugercin, Stability of discrete empirical interpolation
and gappy proper orthogonal decomposition with randomized and deterministic sampling points,
SIAM Journal on Scientific Computing, 42 (2020), pp. A2837–A2864.

[38] J. Reiss, P. Schulze, J. Sesterhenn, and V. Mehrmann, The shifted proper orthogonal de-
composition: A mode decomposition for multiple transport phenomena, SIAM Journal on Scientific
Computing, 40 (2018), pp. A1322–A1344.

[39] M. Ricchiuto and A. G. Filippini, Upwind residual discretization of enhanced Boussinesq
equations for wave propagation over complex bathymetries, Journal of Computational Physics,
271 (2014), pp. 306–341.

[40] R. Stefanescu and I. M. Navon, POD/DEIM nonlinear model order reduction of an ADI
implicit shallow water equations model, Journal of Computational Physics, 237 (2013), pp. 95–
114.

[41] R. Stefanescu, A. Sandu, and I. M. Navon, Comparison of POD reduced order strategies
for the nonlinear 2D shallow water equations, International Journal for Numerical Methods in
Fluids, 76 (2014), pp. 497–521.

[42] M. Strazzullo, F. Ballarin, R. Mosetti, and G. Rozza, Model reduction for parametrized
optimal control problems in environmental marine sciences and engineering, SIAM Journal on
Scientific Computing, 40 (2018), pp. B1055–B1079.

[43] M. Strazzullo, F. Ballarin, and G. Rozza, POD-Galerkin model order reduction for
parametrized nonlinear time dependent optimal flow control: an application to Shallow Water
Equations, Journal of Numerical Mathematics, (2021).

[44] T. Taddei, A registration method for model order reduction: data compression and geometry
reduction, SIAM Journal on Scientific Computing, 42 (2020), pp. A997–A1027.

[45] M. Tonelli and M. Petti, Hybrid finite volume–finite difference scheme for 2DH improved
Boussinesq equations, Coastal Engineering, 56 (2009), pp. 609–620.

[46] D. Torlo, Model reduction for advection dominated hyperbolic problems in an ALE framework:
Offline and online phases, arXiv preprint arXiv:2003.13735, (2020).

[47] M. A. Walkley, A numerical method for extended Boussinesq shallow-water wave equations,
PhD thesis, University of Leeds, 1999.

[48] G. Wei, J. T. Kirby, and A. Sinha, Generation of waves in Boussinesq models using a source
function method, Coastal Engineering, 36 (1999), pp. 271–299.

34

[49] M. Yano, Discontinuous Galerkin reduced basis empirical quadrature procedure for model reduc-
tion of parametrized nonlinear conservation laws, Advances in Computational Mathematics, 45
(2019), pp. 2287–2320.

[50] R. Zimmermann, B. Peherstorfer, and K. Willcox, Geometric subspace updates with ap-
plications to online adaptive nonlinear model reduction, SIAM Journal on Matrix Analysis and
Applications, 39 (2018), pp. 234–261.

35

	Introduction
	Generalities: dispersive wave models and model reduction
	Time and space discretization of the model
	Reduction of the general model
	Choice of the reduced space
	Hyper-reduction of nonlinear operators

	BBM-KdV model
	Energy conservation
	Including the bathymetric effects
	Full order model discretization
	Benchmarks for the modified BBM-KdV equation
	Propagation of a periodic monochromatic wave
	Undular bore propagation
	Solitary waves interacting with a submerged bar

	Projection based reduction
	Approximation accuracy of the problems
	Reduction of the linear operator

	Simulations for KdV-BBM
	Modus operandi
	Propagation of a periodic monochromatic wave
	Undular bore propagation
	Solitary waves interacting with a submerged bar

	An extension to a Boussinesq system
	Wave generation and boundary conditions
	Full order discrete model
	Benchmarks for weakly dispersive free surface waves
	Solitary waves interacting with a submerged bar
	Periodic waves over a submerged bar

	Reduction of the enhanced Boussinesq model
	Projection on reduced spaces and linear reduction
	Hyper-reduction

	Simulations for enhanced Boussinesq
	Solitary waves over a submerged bar
	Monochromatic waves on a submerged bar

	Conclusion
	P1 finite elements for the MS model: full expressions
	Computational costs of different solvers

