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ABSTRACT
Numerical methods for hyperbolic PDEs require stabilization. For linear acoustics, divergence-free vector fields should remain
stationary, but classical Finite Difference methods add incompatible diffusion that dramatically restricts the set of discrete station-
ary states of the numerical method. Compatible diffusion should vanish on stationary states, e.g., there should be a gradient of the
divergence. Some Finite Element methods allow the natural embedding of this grad-div structure, e.g., the SUPG method or OSS.
We prove here that the particular discretization associated with them still fails to be stationarity preserving. We then introduce a
new framework on Cartesian grids based on surface (volume in 3D) integrated operators inspired by Global Flux quadrature and
related to mimetic approaches. We can construct constraint-compatible stabilization operators (e.g., of SUPG-type) and show that
the resulting methods are stationarity and vorticity preserving. We show that the Global Flux approach is even super-convergent
on stationary states; we characterize the kernels of the discrete operators and provide projections onto them.

1 | Introduction

1.1 | Acoustic Equations

This paper focuses on the discretization of hyperbolic PDEs.
Although we have in mind applications to hyperbolic conser-
vation laws such as the Euler or shallow water equations with
source terms, we will work here in the simpler setting of the lin-
ear wave equations in first-order form, which can be written in
full 2D and vectorial forms as:⎧⎪⎨⎪⎩

𝜕𝑡𝑢 + 𝜕𝑥𝑝 = 0,
𝜕𝑡𝑣 + 𝜕𝑦𝑝 = 0,
𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0,

{
𝜕𝑡v + ∇𝑝 = 0
𝜕𝑡𝑝 + ∇ ⋅ v = 0

(1)
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for 𝑢, 𝑣, 𝑝 ∶ Ω ⊂ ℝ2 → ℝ, and with the notation v = (𝑢, 𝑣). We also
introduce the compact form of the system

𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞 = 0 (2)

with

𝑞 =
⎛⎜⎜⎜⎝
𝑢

𝑣

𝑝

⎞⎟⎟⎟⎠, 𝐽 𝑥 =
⎛⎜⎜⎜⎝
0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎠, 𝐽 𝑦 =
⎛⎜⎜⎜⎝
0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎠ (3)

The system of linear acoustics possesses an involution:

𝜕𝑡(∇ × v) = 0 (4)

Numerical Methods for Partial Differential Equations, 2025; 41:e23167 1 of 31
https://doi.org/10.1002/num.23167

https://doi.org/10.1002/num.23167
https://orcid.org/0000-0002-1679-7339
https://orcid.org/0000-0001-5106-1629
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/num.23167
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnum.23167&domain=pdf&date_stamp=2025-01-21


which is reminiscent of involutions appearing, e.g., in the (vac-
uum) Maxwell equation. The stationary states of linear acoustics
are divergence-free, i.e.,

𝜕𝑡𝑞 ≡ 0 ⇔ ∇ ⋅ v ≡ 0 and 𝑝 ≡ 𝑝0 ∈ ℝ (5)

Both acoustics and Maxwell equations can be seen as toy-models
for more complex systems as the Euler equations, and
magnetohydrodynamics.

1.2 | Structure-Preserving Finite Difference
Methods

Numerical methods for hyperbolic problems require stabiliza-
tion. Appropriately designed discrete operators allow to obtain
𝐿2 stability (or entropy stability in the non-linear case), and/or
to manage discontinuous solutions. One classical way to stabi-
lize is to add numerical dissipation. Many numerical methods
for multi-dimensional hyperbolic problems contain stabilization
initially derived in a one-dimensional setup. For instance, it is
customary to compute the normal flux across an edge (or a face)
by ignoring any signals propagating in the transverse direction,
or emanating from the corners of the cell. This one-dimensional
stabilization applied in different directions has a practical impact
on numerical solutions, e.g., on stationary states characterized
by a balance of contributions from different directions [1]. The
restriction of this datum onto one direction is not stationary,
and unsurprisingly the combined numerical diffusion from the
one-dimensional problems does not generally cancel out. One
observes the datum being diffused away instead of being kept
stationary.

Not every kind of multi-dimensional information, however, leads
to a method with special properties and improved behavior. For
example, the exact solution of the 4-quadrant Riemann problem
has been used [2] to derive a truly multi-dimensional Godunov
method. Although it takes into account all the signals from cor-
ners and generally makes no approximation in the evolution step,
it fails to be stationarity preserving or involution preserving.

In the context of linear acoustics on Cartesian grids, a numerical
method based on one-dimensional Riemann solvers amounts to
the following stabilization

𝜕𝑡𝑢 + 𝜕𝑥𝑝 = 1
2
Δ𝑥𝜕2

𝑥𝑢 + h.o.t.

𝜕𝑡𝑣 + 𝜕𝑦𝑝 = 1
2
Δ𝑦𝜕2

𝑦𝑣 + h.o.t.

𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 1
2
(Δ𝑥𝜕2

𝑥𝑝 + Δ𝑦𝜕2
𝑦𝑝) + h.o.t. (6)

One can show that 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0 no longer remains station-
ary, unless 𝜕𝑥𝑢 = 0, 𝜕𝑦𝑣 = 0 individually. This has a dramatic
impact on simulations, as setups that should remain stationary
are now diffused, which can be understood as the loss of con-
sistency for long-time simulations. Numerical methods whose
stationary states are described by a discretization of ∇ ⋅ v = 0
(without further constraints) are called stationarity preserving [1]
and therefore possess a rich set of stationary states. One can
show that the low Mach number limit of the Euler equations is
related to the long-time limit of linear acoustics [3, 4] and that

stationarity-preserving methods are also involution-preserving.
Preservation of discrete involutions in the context of Maxwell
equations usually is relevant for long-time stability and the cor-
rect coupling to matter.

An obvious approach to deriving a stationarity-preserving
method is to ensure that the numerical diffusion of v is a function
of the divergence. All the methods suggested in [1, 5–9] essen-
tially imply

𝜕𝑡𝑢 + 𝜕𝑥𝑝 = 1
2
Δ𝑥𝜕𝑥(𝜕𝑥𝑢 + 𝜕𝑦𝑣) + h.o.t.

𝜕𝑡𝑣 + 𝜕𝑦𝑝 = 1
2
Δ𝑦𝜕𝑦(𝜕𝑥𝑢 + 𝜕𝑦𝑣) + h.o.t.

𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 1
2
(Δ𝑥𝜕2

𝑥𝑝 + Δ𝑦𝜕2
𝑦𝑝) + h.o.t. (7)

i.e., the choice of ∇(∇ ⋅ v) as the appropriate diffusion for the evo-
lution of v. Observe that ∇𝑝 = 0 and 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 0 now are again
characterizing the stationary states, i.e., the stationary states of
the PDE are exempt from the effect of numerical diffusion.

An interesting dichotomy thus appears to govern the field of
truly multi-dimensional methods. While numerical methods
that perform well are often [10] derived ad-hoc, those with a
first-principles derivation do not generally show improved behav-
ior. For example, a modified idea of how global conservation
is related to local conservation yields [11] a stationarity pre-
serving method, but at one point an explicit choice is made
without providing a fundamental reason for it. This points to
a general lack of understanding of how numerical methods
for multi-dimensional problems should be derived and explains
the interest in structure-preserving numerical methods. Their
improved performance in practice is another reason, of course.
To provide a more general strategy to achieve stationarity preser-
vation for stabilized continuous Finite Element methods is the
aim of this paper.

1.3 | Structure-Preserving Finite Element
Methods and Failure of SUPG

Finite element methods (FEM) are successful in achieving
high-order accuracy and can be used on different types
of computational grids. There exists a vast literature on
structure-preserving FEM, for instance among mixed FEM
[12–14]. Hyperbolic systems of conservation laws, however,
require stabilization. This paper focuses on continuous Galerkin
methods with artificial diffusion and with the same choice of dis-
cretization space for scalars as for vector components. We con-
sider to this end the Streamline-upwind Petrov-Galerkin (SUPG)
[15, 16] and the Orthogonal Subscale Stabilization (OSS) [17–20]
approaches. Both methods allow to introduction of the proper
numerical diffusion structure. To see this for SUPG it is enough
to recall that the method is obtained as the weak form of the mod-
ified equation

𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞 = 𝜕𝑥(𝛼ℎ 𝐽𝑥(𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞))

+ 𝜕𝑦(𝛼ℎ 𝐽𝑦(𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞)) (8)

where ℎ is a characteristic mesh size, and 𝛼 is a stabilization
parameter/matrix, which we consider constant in the following.
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For linear acoustics, when expanding the right-hand side we
obtain the stabilized equations

⎧⎪⎨⎪⎩
𝜕𝑡𝑢 + 𝜕𝑥𝑝 = 𝜕𝑥(𝛼ℎ(𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣))
𝜕𝑡𝑣 + 𝜕𝑦𝑝 = 𝜕𝑦(𝛼ℎ(𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣))
𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 𝜕𝑥(𝛼ℎ(𝜕𝑡𝑢 + 𝜕𝑥𝑝)) + 𝜕𝑦(𝛼ℎ(𝜕𝑡𝑣 + 𝜕𝑦𝑝))

(9)

Besides the time derivatives, the stabilization terms are essen-
tially variational approximations of the grad-div operator for
velocity stabilization, and of a standard Laplacian for the pressure
equation. This approach thus seems to produce, besides some
mixed space-time derivatives, exactly the terms in (7). One might
thus expect that this numerical method will be stationarity pre-
serving and therefore vorticity preserving [1]. However, as we will
show in Section 3 as well as in the numerical tests, this is not the
case. The reason is related to the fact that the implication

𝜕𝑥𝑢 + 𝜕𝑦𝑣 ≡ 0 ⇒ 𝜕2
𝑥𝑢 + 𝜕𝑥𝜕𝑦𝑣 ≡ 0 (10)

is not true in the discrete:

∫ 𝜑(𝜕𝑥𝑢 + 𝜕𝑦𝑣)d𝑥 ≡ 0 ∀𝜑 ∈ 𝑉 𝐾
ℎ ⇏ ∫ 𝜕𝑥𝜑(𝜕𝑥𝑢 + 𝜕𝑦𝑣)d𝑥 = 0 ∀𝜑 ∈ 𝑉 𝐾

ℎ

(11)

where, on a given Cartesian tessellation of the spatial domain, we
denote by 𝑉 𝐾

ℎ
the Kth degree finite element approximation space.

1.4 | Restoring Stationarity Preservation via
Global Flux Quadrature

Flux globalization originates [21, 22] in the context of approxima-
tions of balance laws

𝜕𝑡𝑞 + 𝜕𝑥𝐹 = 𝑆(𝑞, 𝑥)

For the above problem, a relevant aspect is the super-convergent
(or even exact) approximation of non-trivial steady states. To this
end, one can write the source term as a flux 𝑅 which is the prim-
itive of the source term:

𝑅 = 𝑅0 − ∫
𝑥

𝑥0

𝑆(𝑞(𝑠, 𝑡), 𝑠))𝑑𝑠

In this setting, discrete steady equilibria verify the relation

𝜕𝑥(𝐹 +𝑅) = 0 ⇒ 𝐹 +𝑅 = 𝐺0 ∈ ℝ

with 𝐺 = 𝐹 +𝑅 the so-called global flux.

Following [23], we can now construct a finite element approx-
imation 𝑅ℎ of the flux 𝑅 which is, just as 𝑆, in the space 𝑉 𝐾

ℎ
of

polynomials of degree 𝐾 (despite being a primitive of 𝑆), by using
an integral operator 𝐼𝑥 which, in FEM, is local for each cell. This
leads to

𝑅𝛼 = 𝑅0 − ∫
𝑥𝛼

𝑥0

𝑆ℎ(𝑥)d𝑥, ∀𝛼 ⇔ 𝑅 = 𝑅0 − 𝐼𝑥𝑆 (12)

with 𝑅𝛼 the degrees of freedom of 𝑅ℎ and the right notation is a
vectorial version of the left one.

The continuous SEM approximation of the balance law (with
periodic BCs or neglecting BCs) can be succinctly written as

𝑀𝑥

𝑑𝑞

𝑑𝑡
+𝐷𝑥𝐹 −𝐷𝑥𝐼𝑥𝑆 = 0 (13)

where 𝑀𝑥 is the mass matrix, 𝐷𝑥 is a finite element weak
derivative matrix and 𝐼𝑥 is the integrator localized in each cell
(see Section 4.2 for precise definitions of the notation). In this
approach, we have replaced the mass matrix 𝑀𝑥 in front of the
nodal values of the source, with the product matrix 𝐷𝑥𝐼𝑥. This
modification allows to factor of the derivative matrix, so that at a
steady state the scheme reduces to

𝐹 = 𝐹0 + 𝐼𝑥𝑆

The integrator naturally turns out to be the ODE solver associated
with the table 𝐼𝑥 applied to the flux ODE [23]

𝐹 ′ = 𝑆(𝑞(𝐹 ), 𝑥)

This provides a clear characterization of the discrete steady state
and gives a so-called approximate or discrete well balanced prin-
ciple, in the spirit of existing definitions [24, 25]. The integration
table 𝐼𝑥 defines the properties of the ODE solver. For Lagrangian
basis functions on Gauss-Lobatto points, the well-known Lobat-
toIIIA methods arise [26, 27]. This method has nodal consistency
of order ℎ𝐾+2 at internal nodes, and ℎ2𝐾 at end-nodes, thus lead-
ing to a super-convergent method at steady state.

Due to the fully local structure of the method, and to the fact
that it merely involves a particular approximation of the weighted
source integral ∫ 𝜑𝑆, it has been proposed [23] to refer to it as
global flux quadrature (GFq).

The novelty of the present work is a generalization of the above
idea to truly multi-dimensional equilibria, where instead of
source and flux derivative the fluxes in different directions bal-
ance each other. When considering the last equation in (1), we
observe that it can be written in two ways

𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣 = 𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑥

(
∫

𝑥

𝑥0

𝜕𝑦𝑣 d𝑠
)

= 𝜕𝑡𝑝 + 𝜕𝑦𝑣 + 𝜕𝑦

(
∫

𝑦

𝑦0

𝜕𝑥𝑢 d𝑠
)

= 0

We propose to couple the 𝑥 and 𝑦 derivatives by symmetrizing the
two directional global flux quadrature formulations as

𝜕𝑡𝑝 + 𝜕𝑥𝜕𝑦

(
∫

𝑦

𝑦0

𝜕𝑥𝑢 d𝑠 + ∫
𝑥

𝑥0

𝜕𝑦𝑣 d𝑠
)

= 0 (14)

We combine this idea with a high-order grad-div stabilized con-
tinuous Finite Element approximation leading to stable stationar-
ity preserving methods, very much in contrast to standard SUPG
that fails to be stationarity preserving.

The first merit of this work is the extension of Global Flux to
a situation where the stationary solution is not known a priori,
and is given by an underdetermined PDE system rather than an
algebraic relation or an ODE. While some stationarity-preserving
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first-order Finite Volume methods have been known for a long
time, the second merit is to provide a novel strategy to construct
arbitrarily high-order methods in the setting of stabilized Finite
Element methods. To do so we do not require different functional
spaces for different variables and, in principle, the strategy could
be applied to other stabilizations beyond the ones we consider.

1.5 | Overview of the Paper

The paper is structured as follows: Section 2 introduces a differ-
ence/matrix notation for tensor-product FEM spaces on Carte-
sian grids that is used subsequently. In Section 3, we prove that
classical grad-div stabilizations (such as SUPG and OSS) are in
general not constraint preserving: the kernels of the stabilizing
term and of the Galerkin term do not have a sufficiently large
intersection. Global Flux gives rise to a discretization of the diver-
gence different from the one of continuous FEM; it is analyzed in
Section 4, where in particular exact projections in the discrete ker-
nel space, nodal consistency estimates and the super-convergent
behavior are provided (Section 4.3). The Global Flux approach is
applied in Sections 5.1 and 5.2 to construct constraint-compatible
SUPG and OSS stabilizations. In Section 5.3, spurious modes in
the kernels of the discrete operators are studied. In Section 5.4,
curl involutions are characterized using Fourier symbols, and
explicit formulas are provided in the ℚ1 case. The time discretiza-
tion is described in Section 5.5 and numerical results follow in
Section 6.

2 | Cartesian Grids, Tensor Products, and
Discrete Fourier Transform for Finite Elements

2.1 | General Definitions

2.1.1 | One-Dimensional Finite Element Spaces

The study shall be restricted to Cartesian grids. We con-
sider two one-dimensional domains Ω𝑥,Ω𝑦 ⊂ ℝ and their prod-
uct Ω ∶= Ω𝑥 × Ω𝑦. We define a uniform tessellation of each
one-dimensional domainΩ𝑥

Δ𝑥 = ∪𝑁𝑥−1
𝑖=0 𝐸𝑥

𝑖 ,Ω𝑦
Δ𝑦 = ∪𝑁𝑦−1

𝑗=0 𝐸𝑦
𝑗 , of ele-

ments 𝐸𝑥
𝑖 = [𝑥𝑖, 𝑥𝑖+1], 𝐸

𝑦
𝑗 = [𝑦𝑗 , 𝑦𝑗+1] with |𝐸𝑥

𝑖 | = Δ𝑥 and |𝐸𝑦
𝑗 | =

Δ𝑦 for all 𝑖, 𝑗.

To define the continuous Finite Element spaces, we introduce
𝐾 + 1 points in each one-dimensional cell

𝑥𝑖,𝑝 = 𝑥̂𝑝Δ𝑥 + 𝑥𝑖 ∈ 𝐸𝑥
𝑖 , for 𝑝 = 0, . . . , 𝐾, and

𝑦𝑗,𝓁 = 𝑥̂𝓁Δ𝑦 + 𝑦𝑗 ∈ 𝐸𝑦
𝑗 , for 𝓁 = 0, . . . , 𝐾

that we will use to define the Lagrangian basis functions. In par-
ticular, here we will consider points {𝑥̂𝑝}𝐾𝑝=0 ⊂ [0, 1] with 𝑥̂0 =
0 < . . . < 𝑥𝑖 < . . . < 𝑥̂𝐾 = 1, e.g., those of Gauss–Lobatto, such
that 𝑥𝑖,0 = 𝑥𝑖−1,𝐾 for 𝑖 = 1, . . . , 𝑁𝑥 − 1 and similarly for 𝑦.

We also introduce a global numbering for the point 𝑝 in cell 𝑖 with
a Greek alphabet index 𝛼 ∶= 𝑖𝐾 + 𝑝 ∈ [0, 𝑁𝑥𝐾], 𝑝 ∈ [0, 𝐾 − 1],
so that we will refer uniquely to point 𝑥𝛼 = 𝑥𝑖,𝑝. Let us define by
𝑀𝑥 + 1 = 𝑁𝑥𝐾 + 1 and 𝑀𝑦 + 1 = 𝑁𝑦𝐾 + 1 the number of points
in each direction. We will switch between these two notations
(local and global) according to our needs.

Note that each cell contains𝐾 + 1 points, two of which are shared
with neighboring cells. In the periodic case, relevant for Fourier
analysis, this gives periodic blocks of 𝐾 points per cell.

We can now introduce the continuous Finite Element spaces of
degree 𝐾 over one/two-dimensional domains as

𝑉Δ𝑥 ∶= 𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥

)

∶=
{
𝑞 ∈ 0(Ω𝑥

Δ𝑥) ∶ 𝑞|𝐸 ∈ ℙ𝐾 (𝐸),∀𝐸 ∈ Ω𝑥
Δ𝑥

}
(15a)

𝑉Δ𝑦 ∶= 𝑉 𝐾
Δ𝑦(Ω

𝑦
Δ𝑦
)

∶=
{
𝑞 ∈ 0(Ω𝑦

Δ𝑦
) ∶ 𝑞|𝐸 ∈ ℙ𝐾 (𝐸),∀𝐸 ∈ Ω𝑦

Δ𝑦

}
(15b)

where we denote by ℙ𝐾 the space of univariate polynomials of
degree at most 𝐾 and by ℚ𝐾 the space of multivariate polynomi-
als of degree at most 𝐾 in each variable.

In particular, we choose as the basis of these spaces the high-order
hat functions that interpolate the points defined above. In each
one-dimensional cell 𝐸𝑥

𝑖 , we consider 𝜑𝑥
𝑖,𝑝(𝑥) ∈ 𝑉Δ𝑥 such that

𝜑𝑥
𝑖,𝑝|𝐸𝑥

𝑖
(𝑥) ∈ ℙ𝐾 (𝐸𝑥

𝑖 ) and 𝜑𝑥
𝑖,𝑝(𝑥𝑖,𝓁) = 𝛿𝑗,𝓁 for all 𝓁, 𝑝 = 0, . . . , 𝐾 ,

with 𝛿 the Kronecker delta. Moreover, since 𝜑 must be contin-
uous, we have

supp(𝜑𝑥
𝑖,𝑝) = 𝐸𝑥

𝑖 for 𝑝 = 1, . . . , 𝐾 − 1, supp(𝜑𝑥
𝑖,0) = 𝐸𝑥

𝑖−1 ∪ 𝐸𝑥
𝑖 and

supp(𝜑𝑥
𝑖,𝐾 ) = 𝐸𝑥

𝑖 ∪ 𝐸𝑥
𝑖+1

recalling that𝜑𝑥
𝑖−1,𝐾 = 𝜑𝑥

𝑖,0. The same holds for the basis functions
of the 𝑦 space. Moreover, 𝑉 𝐾

Δ𝑥(Ω
𝑥
Δ𝑥) = span{𝜑𝑥

𝛼}
𝑀𝑥

𝛼=0 with 𝜑𝑥
𝛼(𝑥) ≡

𝜑𝑥
𝑖,𝑝(𝑥) for 𝛼 = 𝑖𝐾 + 𝑝. We use the same spaces to discretize vector

components as those we use for scalars.

2.1.2 | Tensor-Product Finite Element Spaces

We define the two-dimensional tessellation of Ω as

Ωℎ=
𝑁𝑥−1,𝑁𝑦−1⋃

𝑖,𝑗=0
𝐸𝑖𝑗 (16)

with ℎ = min{Δ𝑥,Δ𝑦} and 𝐸𝑖𝑗 ∶= 𝐸𝑥
𝑖 × 𝐸𝑦

𝑗 .

This leads to the definition of 𝑉ℎ as a tensor product of the func-
tional spaces

𝑉ℎ ∶= 𝑉 𝐾
ℎ (Ωℎ) ∶=

{
𝑞 ∈ 0(Ωℎ) ∶ 𝑞|𝐸 ∈ ℚ𝐾 (𝐸),∀𝐸 ∈ Ωℎ

}
(17)

which is evident in its basis {𝜑𝛼;𝛽}
𝑀𝑥,𝑀𝑦

𝛼,𝛽=0 with 𝜑𝛼;𝛽(𝑥, 𝑦) ∶=
𝜑𝑥

𝛼(𝑥)𝜑
𝑦
𝛽
(𝑦). Finally, we will describe a function 𝑞 ∈ 𝑉Δ𝑥 as

𝑞ℎ(𝑥) =
𝑀𝑥∑
𝛼=0

𝑞𝛼𝜑
𝑥
𝛼(𝑥) =

𝑁𝑥−1∑
𝑖=0

𝐾∑
𝑝=0

𝑞𝑖,𝑝 𝜑𝑖,𝑝|𝐸𝑥
𝑖
(𝑥) (18)

and a function 𝑞 ∈ 𝑉ℎ as

𝑞ℎ(𝑥, 𝑦) =
𝑀𝑥 ;𝑀𝑦∑
𝛼=0;𝛽=0

𝑞𝛼;𝛽𝜑𝛼;𝛽 (𝑥, 𝑦)

=
𝑁𝑥 ;𝑁𝑦∑
𝑖=0;𝑗=0

𝐾;𝐾∑
𝑝=0;𝓁=0

𝑞𝑖,𝑝;𝑗,𝓁 𝜑𝑥
𝑖,𝑝|𝐸𝑥

𝑖
(𝑥) 𝜑𝑦

𝑗,𝓁|𝐸𝑦
𝑗
(𝑦) (19)
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FIGURE 1 | Notation of the degrees of freedom for a function 𝑞ℎ in
element 𝐸𝑖𝑗 for ℚ4 elements.

See Figure 1 for a graphical representation of degrees of freedom
(DoFs) 𝑞𝑖,𝑝;𝑗,𝓁 in a cell 𝐸𝑖𝑗 for 𝐾 = 4.

In the following, we will give a more Finite Difference flavored
description of classical FEM operators, in order to introduce
Fourier symbols.

2.2 | Bridging Finite Element
and Uni-Directional Difference Formulae

We start with a definition that allows us to mapℙ1 FEM and finite
differences onto each other. We assume periodic boundary con-
ditions for simplicity.

Definition 1 (Finite differences). Consider a one-
dimensional equidistant grid with values (𝑞𝑖)𝑖∈ℤ and a linear
unidirectional finite difference formula

(𝐷𝑞)𝑖 =
∑
𝑘∈ℤ

𝛼𝑘𝑞𝑖+𝑘 (20)

• Define 𝑘max ∈ ℕ0 as the smallest value for which the sum can
be restricted

(𝐷𝑞)𝑖 ≡
𝑘max∑

𝑘=−𝑘max

𝛼𝑘𝑞𝑖+𝑘 (21)

• We call 𝐷 ∶ ℝℤ → ℝℤ whose action on 𝑞 at 𝑖 is defined by
(20) the finite difference operator.

• We call a finite difference formula compact if supp 𝛼 ⊂ ℤ is
finite, i.e., if the sum in (20) is finite. We shall also call the cor-
responding finite difference operator compact in this case.

• The characteristic polynomial 𝔽𝑡𝑥 (𝐷) of 𝐷 is the univariate
Laurent polynomial

∑
𝑘∈ℤ 𝛼𝑘𝑡

𝑘
𝑥 in 𝑡𝑥.

Up to prefactors, the discrete Fourier transform (i.e., inserting
𝑞𝑖 ∶= exp(𝕚𝑘𝑥𝑖Δ𝑥)) of (𝐷𝑞)𝑖 lets appear precisely its characteristic

polynomial if one defines [1] 𝑡𝑥 = exp(𝕚𝑘𝑥Δ𝑥), where 𝕚 is the imag-
inary unit.

Throughout the paper, we use arbitrarily high-order methods,
discussed now. In the context of Galerkin methods, for 𝐾 > 1,
different degrees of freedom are involved.

Example 2.1. The following derivative operator evaluated in
the DoF 𝛽 = (𝑖, 𝑠) reads

(𝐷𝑥𝑞)𝑖,𝑠 = ∫ 𝜑𝑥
𝑖,𝑠(𝑥)𝜕𝑥𝑞ℎ(𝑥)d𝑥 =

𝑁𝑥−1∑
𝑗=0 ∫𝐸𝑥

𝑗

𝜑𝑥
𝑖,𝑠(𝑥)

∑
𝑝=0,𝐾

𝜕𝑥𝜑
𝑥
𝑗,𝑝(𝑥)𝑞𝑗,𝑝

(22)

≡ ∑
𝑘∈{−1,0,1}

𝐾−1∑
𝑝=0

𝑞𝑖+𝑘,𝑝 ∫𝐸𝑥
𝑖+𝑘

𝜑𝑥
𝑖,𝑠(𝑥)𝜕𝑥𝜑

𝑥
𝑖+𝑘,𝑝(𝑥)d𝑥 (23)

Due to translation invariance, the right-hand side integral is
going to depend only on 𝑘, 𝑠, and 𝑝, not on 𝑖.

This motivates the following

Definition 2 (High-order differences). On a one-
dimensional equidistant grid, embedding repeated sets of not
necessarily equidistant collocation points, consider a linear,
high-order unidirectional difference formula

(𝐷𝑞)𝑖,𝑠 =
∑
𝑘∈ℤ

𝐾∑
𝑝=1

𝛼𝑠
𝑘,𝑝𝑞𝑖+𝑘,𝑝 (24)

The fact that the collocation points are repeated implies transla-
tional invariance, which allows one to choose 𝛼 without a depen-
dence on 𝑖. Here, 𝑞𝑖+𝑘,𝑝 are the same as in (18).

• We call 𝐷 ∶ ℝℤ × [1, 𝐾] → ℝℤ × [1, 𝐾] the high-order differ-
ence operator. Observe that the operator has 𝐾 components
(in the function of which basis element the expression is
tested against).

• Define 𝑘max ∈ ℕ0 to be the smallest integer for which one
can restrict the summation:

(𝐷𝑞)𝑖,𝑠 ≡
𝑘max∑

𝑘=−𝑘max

𝐾∑
𝑝=1

𝛼𝑠
𝑘,𝑝𝑞𝑖+𝑘,𝑝 (25)

As is obvious from (23), for the usual operators appearing in
FEM, 𝑘max = 1.

• The characteristic polynomial 𝔽𝑡𝑥 (𝐷) of 𝐷 is the matrix of
univariate Laurent polynomials in 𝑡𝑥

𝔽𝑡𝑥 (𝐷) ∶=

⎛⎜⎜⎜⎜⎜⎝

∑
𝑘∈ℤ

𝛼1
𝑘,1𝑡

𝑘
𝑥 · · ·

∑
𝑘∈ℤ

𝛼1
𝑘,𝐾

𝑡𝑘𝑥

⋮ ⋱ ⋮∑
𝑘∈ℤ

𝛼𝐾
𝑘,1𝑡

𝑘
𝑥 · · ·

∑
𝑘∈ℤ

𝛼𝐾
𝑘,𝐾

𝑡𝑘𝑥

⎞⎟⎟⎟⎟⎟⎠
i.e., 𝔽𝑡𝑥 (𝐷)𝑠,𝑝 =

∑
𝑘∈ℤ

𝛼𝑠
𝑘,𝑝𝑡

𝑘
𝑥

(26)

(We still call this matrix a “polynomial” because it can be
considered a polynomial in 𝑡𝑥 with matrix-valued coeffi-
cients.)
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An additional example of high-order differences in the context of
Finite Elements is given in Appendix A.

Definition 3 (Composition in the high-order case).
Given two high-order unidirectional difference formulas on a
one-dimensional grid

(𝐴𝑞)𝑖,𝑟 =
∑
𝑘∈ℤ

𝐾∑
𝑠=1

𝛼𝑟
𝑘,𝑠𝑞𝑖+𝑘,𝑠 (𝐵𝑞)𝑖,𝑟 =

∑
𝑘∈ℤ

𝐾∑
𝑠=1

𝛽𝑟
𝑘,𝑠𝑞𝑖+𝑘,𝑠 (27)

we define the composition 𝐴𝐵 of the high-order difference oper-
ators 𝐴 and 𝐵 by

((𝐴𝐵)𝑞)𝑖,𝑟 ∶=
∑
𝑘∈ℤ

𝐾∑
𝑠=1

𝛼𝑟
𝑘,𝑠(𝐵𝑞)𝑖+𝑘,𝑠

=
∑
𝑘∈ℤ

𝐾∑
𝑠=1

∑
𝑘′∈ℤ

𝐾∑
𝑠′=1

𝛼𝑟
𝑘,𝑠𝛽

𝑠
𝑘′ ,𝑠′𝑞𝑖+𝑘+𝑘′ ,𝑠′ (28)

Proposition 1. The characteristic polynomial (𝔽𝑡𝑥 (𝑅𝑆))𝑟,𝑠 of
the composition of two high-order difference operators 𝑅 and 𝑆 is
the (matrix) product

∑𝐾
𝑝=1(𝔽𝑡𝑥 (𝑅))𝑟,𝑝(𝔽𝑡𝑥 (𝑆))𝑝,𝑠. of their characteris-

tic polynomials.

The proof is given in Appendix A. In the high-order case, the com-
position is not commutative, as can easily be seen from the fact
that the associated operation on the characteristic polynomials is
a matrix product.

2.3 | Tensor Products and Multidirectional
Difference Formulae

Consider now a 2-dimensional Cartesian grid as described in
Section 2 with 𝑞ℎ ∈ 𝑉 𝐾

ℎ
. Obviously, tensor-based FEM allows

to factor one-dimensional operators. For example for the mass
matrix one has

∬ 𝜑𝑥
𝑖,𝑠(𝑥)𝜑

𝑦
𝑗,𝑝(𝑦)𝑞ℎ(𝑥, 𝑦)d𝑥d𝑦

=
∑

𝐸𝑘𝓁∈Ωℎ

𝐾∑
𝑟,𝑡=0

(
∬𝐸𝑘𝓁

𝜑𝑥
𝑖,𝑠(𝑥)𝜑

𝑦
𝑗,𝑝(𝑦)𝜑

𝑥
𝑘,𝑟(𝑥)𝜑

𝑦
𝓁,𝑡(𝑦)d𝑥d𝑦

)
𝑞𝑘,𝑟;𝓁,𝑡

=
∑

𝐸𝑥
𝑘
∈Ω𝑥

Δ𝑥

𝐾∑
𝑟,𝑡=0

(
∫𝐸𝑥

𝑘

𝜑𝑥
𝑖,𝑠(𝑥)𝜑

𝑥
𝑘,𝑟(𝑥)d𝑥

)

×
∑

𝐸𝑦
𝓁∈Ω

𝑦
Δ𝑦

(
∫𝐸𝑦

𝓁

𝜑𝑦
𝑗,𝑝(𝑦)𝜑

𝑦
𝓁,𝑡(𝑦)d𝑦

)
𝑞𝑘,𝑟;𝓁,𝑡

=
𝑁𝑥−1∑
𝑘=0

𝑁𝑦−1∑
𝓁=0

𝐾∑
𝑠,𝑝=0

𝑞𝑖+𝑘,𝑠;𝑗+𝓁,𝑝 ∫𝐸𝑥
𝑘

𝜑𝑥
𝑖,𝑟(𝑥)𝜑

𝑥
𝑖+𝑘,𝑠(𝑥)d𝑥

× ∫𝐸𝑦
𝓁

𝜑𝑦
𝑗,𝑡(𝑦)𝜑

𝑦
𝑗+𝓁,𝑝(𝑦)d𝑦

We thus consider the following generalized high-order finite dif-
ferences in this context.

Definition 4 (Tensor-product high-order operators).
Consider two high-order unidirectional difference formulas on
1-dimensional Cartesian grids

(𝐴𝑢)𝑖,𝑟 =
∑
𝑘∈ℤ

𝐾∑
𝑠=1

𝛼𝑟
𝑘,𝑠𝑢𝑖+𝑘,𝑠 (𝐵𝑣)𝑗,𝑡 =

∑
𝓁∈ℤ

𝐾∑
𝑝=1

𝛽𝑡
𝓁,𝑝𝑣𝑗+𝓁,𝑝 (29)

• Then, the linear bidirectional high-order difference formula
applied on 𝑞 ∈ 𝑉 𝐾

ℎ

((𝐴⊗ 𝐵)𝑞)𝑖,𝑟;𝑗,𝑡 ∶=
∑

(𝑘,𝓁)∈ℤ2

𝐾∑
𝑠,𝑝=1

𝛼𝑟
𝑘,𝑠𝛽

𝑡
𝓁,𝑝𝑞𝑖+𝑘,𝑠;𝑗+𝓁,𝑝 (30)

is said to be the difference formula associated to the tensor
product 𝐴⊗ 𝐵 of the difference operators 𝐴 and 𝐵.

• The characteristic polynomial 𝔽𝑡𝑥,𝑡𝑦 (𝐴⊗ 𝐵) of a high-order
difference operator𝐴⊗ 𝐵 is the following matrix of bivariate
Laurent polynomials in 𝑡𝑥, 𝑡𝑦

(𝔽𝑡𝑥,𝑡𝑦 (𝐴⊗ 𝐵))𝑟,𝑡 ∶=
∑

(𝑘,𝓁)∈ℤ2

𝐾∑
𝑠,𝑝=1

𝛼𝑟
𝑘,𝑠𝛽

𝑡
𝓁,𝑝𝑡

𝑘
𝑥𝑡

𝓁
𝑦 (31)

• The composition of two tensor-product high-order operators
𝑅 ∶= 𝐴⊗ 𝐵, 𝑆 ∶= 𝐶 ⊗𝐷 is defined as

(𝑅𝑆)𝑞 ∶= 𝑅(𝑆𝑞) (32)

We mention here that

𝔽𝑡𝑥,𝑡𝑦 (𝐴⊗ 𝐵) = 𝔽𝑡𝑥 (𝐴)⊗ 𝔽𝑡𝑦 (𝐵) (33)

(𝐴𝑥 ⊗ 𝐴𝑦)(𝐵𝑥 ⊗ 𝐵𝑦) = (𝐴𝑥𝐵𝑥)⊗ (𝐴𝑦𝐵𝑦) (34)

details and proofs of which are given in Appendix A.

In the paper, we use several operators which are listed hereafter
for completeness:

(𝑀𝑥)𝛼,𝛽 ∶= ∫ℝ
𝜑𝑥

𝛼(𝑥)𝜑
𝑥
𝛽 (𝑥)d𝑥

(1𝑥)𝛼,𝛽 = 𝛿𝛼,𝛽 (35a)

(𝐷𝑥)𝛼,𝛽 ∶= ∫ℝ
𝜑𝑥

𝛼(𝑥)𝜕𝑥𝜑
𝑥
𝛽 (𝑥)d𝑥

(𝐷𝑥)𝛼,𝛽 ∶= ∫ℝ
𝜕𝑥𝜑

𝑥
𝛼(𝑥)𝜑

𝑥
𝛽 (𝑥)d𝑥

(𝐷𝑥
𝑥)𝛼,𝛽 ∶= ∫ℝ

𝜕𝑥𝜑
𝑥
𝛼(𝑥)𝜕𝑥𝜑

𝑥
𝛽 (𝑥)d𝑥 (35b)

3 | Failure of Standard Grad-Div Stabilizations
for Acoustics

3.1 | SUPG Stabilization

The stabilized variational form of the SUPG method by Hughes
and collaborators [15, 16] can be written as

∫ 𝜑(𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑥𝜕𝑦𝑞)𝑑𝑥

+ ∫ 𝛼ℎ(𝐽𝑥𝜕𝑥𝜑 + 𝐽𝑦𝜕𝑦𝜑)(𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞) = 𝐵.𝐶.𝑠

(36)
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with 𝛼 a stabilization constant/matrix and ℎ a reference mesh
size. Replacing the test function 𝜑 by 𝑞 + 𝛼ℎ 𝜕𝑡𝑞 for constant 𝛼,
(neglecting boundary condition terms [28]), one obtains a bound
on the variation of the natural energy norm of SUPG

𝜕𝑡𝐸SUPG

= −∫ 𝛼 ℎ(𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑥𝜕𝑦𝑞)𝑇 (𝜕𝑡𝑞 + 𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞)𝑑𝑥 ≤ 0

where

𝐸SUPG

∶= ∫
{

𝑞𝑇 𝑞

2
+ (𝛼 ℎ)2(𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞)𝑇 (𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑦𝜕𝑦𝑞)

}
𝑑𝑥

As said in Section 1, the method naturally includes a grad-div
structure in the stabilization. It thus seems to fit exactly the
framework of stationarity preserving methods. However, it actu-
ally fails to retain such a property. To show this we exploit
the finite element/differences bridge presented in the previous
sections, and follow a spectral analysis [1].

Recall the notation of difference operators in (35) and that 𝐷𝑥 =
−𝐷𝑥 up to boundary conditions. We can now write (36) as

⎛⎜⎜⎜⎝
𝑀𝑥 ⊗𝑀𝑦 0 𝛼 ℎ𝐷𝑥 ⊗𝑀𝑦

0 𝑀𝑥 ⊗𝑀𝑦 𝛼 ℎ𝑀𝑥 ⊗𝐷𝑦

𝛼 ℎ𝐷𝑥 ⊗𝑀𝑦 𝛼 ℎ𝑀𝑥 ⊗𝐷𝑦 𝑀𝑥 ⊗𝑀𝑦

⎞⎟⎟⎟⎠
d
d𝑡

⎛⎜⎜⎜⎝
𝑢

𝑣

𝑝

⎞⎟⎟⎟⎠ + 𝑆𝑈𝑃𝐺

⎛⎜⎜⎜⎝
𝑢

𝑣

𝑝

⎞⎟⎟⎟⎠ = 0

(37)

having introduced the evolution operator

SUPG ∶=⎛⎜⎜⎜⎝
𝛼 ℎ𝐷𝑥

𝑥 ⊗𝑀𝑦 𝛼 ℎ𝐷𝑥 ⊗ 𝐷𝑦 𝐷𝑥 ⊗𝑀𝑦

𝛼 ℎ𝐷𝑥 ⊗ 𝐷𝑦 𝛼 ℎ𝑀𝑥 ⊗𝐷𝑦
𝑦 𝑀𝑥 ⊗𝐷𝑦

𝐷𝑥 ⊗𝑀𝑦 𝑀𝑥 ⊗𝐷𝑦 𝛼 ℎ𝐷𝑥
𝑥 ⊗𝑀𝑦 + 𝛼 ℎ𝑀𝑥 ⊗𝐷𝑦

𝑦

⎞⎟⎟⎟⎠
(38)

Let us split the matrices defined above into the central discretiza-
tion and the stabilization (streamline upwinding), denoted by
SUPG ∶= 𝐶 +SU the matrix in front of the time derivative
term, with

𝐶 ∶=
⎛⎜⎜⎜⎝
𝑀𝑥 ⊗𝑀𝑦 0 0

0 𝑀𝑥 ⊗𝑀𝑦 0
0 0 𝑀𝑥 ⊗𝑀𝑦

⎞⎟⎟⎟⎠
SU ∶= 𝛼 ℎ

⎛⎜⎜⎜⎝
0 0 𝐷𝑥 ⊗𝑀𝑦

0 0 𝑀𝑥 ⊗𝐷𝑦

𝐷𝑥 ⊗𝑀𝑦 𝑀𝑥 ⊗𝐷𝑦 0

⎞⎟⎟⎟⎠ (39a)

as well as the matrix SUPG = 𝐶 + SU with

𝐶 ∶=
⎛⎜⎜⎜⎝

0 0 𝐷𝑥 ⊗𝑀𝑦

0 0 𝑀𝑥 ⊗𝐷𝑦

𝐷𝑥 ⊗𝑀𝑦 𝑀𝑥 ⊗𝐷𝑦 0

⎞⎟⎟⎟⎠
SU ∶= 𝛼 ℎ

⎛⎜⎜⎜⎝
𝐷𝑥

𝑥 ⊗𝑀𝑦 𝐷𝑥 ⊗ 𝐷𝑦 0
𝐷𝑥 ⊗𝐷𝑦 𝑀𝑥 ⊗𝐷𝑦

𝑦 0
0 0 𝐷𝑥

𝑥 ⊗𝑀𝑦 +𝑀𝑥 ⊗𝐷𝑦
𝑦

⎞⎟⎟⎟⎠ (39b)

This way, (37) can be rewritten for 𝑞 = (𝑢, 𝑣, 𝑝)𝑇 as

0 = SUPG
d
d𝑡

𝑞 + SUPG𝑞 = (𝐶 +SU)
d
d𝑡

𝑞 + (𝐶 + SU)𝑞
(39c)

Observe that 𝐶 and 𝑆𝑈 are symmetric positive (semi-)definite,
while 𝑆𝑈 and 𝐶 are anti-symmetric matrices.

Consider now the lowest-order SUPG with ℚ1 basis functions. As
there is only one degree of freedom per cell, SUPG can be immedi-
ately interpreted as a finite difference method, and its properties
can be analyzed using existing techniques [1]. Assuming for sim-
plicity that Δ𝑥 = Δ𝑦 = ℎ and recalling that the quadrature for-
mula and the Lagrangian basis functions are defined with the
same Gauss-Lobatto points, we have

𝔽𝑡𝑥 (𝑀𝑥) = 1, 𝔽𝑡𝑥 (𝐷𝑥) = −𝔽𝑡𝑥 (𝐷
𝑥) =

𝑡2𝑥 − 1
2𝑡𝑥 ℎ

𝔽𝑡𝑥 (𝐷
𝑥
𝑥) = −

(𝑡𝑥 − 1)2

𝑡𝑥 ℎ2 (40)

Then,

𝔽𝑡𝑥,𝑡𝑦 (SUPG) =

⎛⎜⎜⎜⎜⎝
− 𝛼

(𝑡𝑥−1)2

ℎ𝑡𝑥
−𝛼 𝑡2𝑥−1

2𝑡𝑥

𝑡2𝑦−1
2ℎ𝑡𝑦

𝑡2𝑥−1
2ℎ𝑡𝑥

− 𝛼
𝑡2𝑥−1
2ℎ𝑡𝑥

𝑡2𝑦−1
2𝑡𝑦

−𝛼 (𝑡𝑦−1)2

ℎ𝑡𝑦

𝑡2𝑦−1
2ℎ𝑡𝑦

𝑡2𝑥−1
2ℎ𝑡𝑥

𝑡2𝑦−1
2ℎ𝑡𝑦

−𝛼 (𝑡𝑥−1)2

ℎ𝑡𝑥
− 𝛼

(𝑡𝑦−1)2

ℎ𝑡𝑦

⎞⎟⎟⎟⎟⎠
(41)

As is known [1], all non-trivial stationary states are given as the
right kernel of  for unconstrained 𝑡𝑥, 𝑡𝑦, while its left kernel gives
the corresponding involutions (if any). However, note now that

det 𝔽𝑡𝑥,𝑡𝑦 (SUPG) = 𝛼(𝑡𝑥 − 1)2(𝑡𝑦 − 1)2( . . . ) ≠ 0 (42)

i.e., its kernel is trivial unless 𝑡𝑥 = 1 or 𝑡𝑦 = 1 (functions are con-
stant in 𝑥 or 𝑦) or 𝛼 = 0 (no stabilization). This method does not
have non-trivial stationary states, and for the same reason also no
discrete involutions. The same result holds for theℚ2 case, but we
omit the proof for brevity and is also observed in practice when
higher polynomial degrees are used.

A more general characterization, still for the ℚ1-case, can be
obtained observing that

det 𝔽𝑡𝑥,𝑡𝑦 (SUPG) = 𝛼3ℎ3
(
𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑥 (𝑀𝑥) + 𝔽𝑡𝑥 (𝐷

𝑥
𝑥)𝔽𝑡𝑦 (𝑀𝑦)

)
×
(
𝔽𝑡𝑥 (𝐷

𝑥
𝑥)𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑥 (𝑀𝑥)𝔽𝑡𝑦 (𝑀𝑦) − 𝔽𝑡𝑥 (𝐷𝑥)2𝔽𝑡𝑦 (𝐷𝑦)2

)
− 𝛼ℎ𝔽𝑡𝑥 (𝑀𝑥)𝔽𝑡𝑦 (𝑀𝑦)

((
𝔽𝑡𝑥 (𝐷

𝑥
𝑥)𝔽𝑡𝑥 (𝑀𝑥) + 𝔽𝑡𝑥 (𝐷𝑥)2)𝔽𝑡𝑦 (𝐷𝑦)2

+
(
𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑦 (𝑀𝑦) + 𝔽𝑡𝑦 (𝐷𝑦)2

)
𝔽𝑡𝑥 (𝐷𝑥)2

)
(43)

which vanishes if

𝔽𝑡𝑥 (𝐷
𝑥
𝑥)𝔽𝑡𝑥 (𝑀𝑥) = −𝔽𝑡𝑥 (𝐷𝑥)2 and 𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑦 (𝑀𝑦) = −𝔽𝑡𝑦 (𝐷𝑦)2

(44)

i.e.,

𝐷𝑥
𝑥𝑀𝑥 = −𝐷2

𝑥 and 𝐷𝑦
𝑦𝑀𝑦 = −𝐷2

𝑦 (45)
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Note that for ℚ1 FEM discussed here, the composition of differ-
ence operators is commutative. For general FEM, we have the
following result.

Proposition 2. Define the two operators

𝜕𝑥DIVv ∶= −(𝐷𝑥
𝑥 ⊗𝑀𝑦)𝑢 − (𝐷𝑥 ⊗𝐷𝑦)𝑣

DIVv ∶= (𝐷𝑥 ⊗𝑀𝑦)𝑢 + (𝑀𝑥 ⊗𝐷𝑦)𝑣 (46)

Then the following two statements are equivalent:

1.

𝐷𝑥
𝑥 = 𝐷𝑥𝑀−1

𝑥 𝐷𝑥 (47)

2. For all 𝑢, 𝑣 such that DIVv ≡ 0, 𝜕𝑥DIVv = 0 holds.

Proof. Assume first (47) and DIVv = 0:

𝜕𝑥DIVv = −(𝐷𝑥
𝑥 ⊗𝑀𝑦)𝑢 − (𝐷𝑥 ⊗𝐷𝑦)𝑣

= −(𝐷𝑥𝑀−1
𝑥 𝐷𝑥

⏟⏞⏞⏟⏞⏞⏟
𝐷𝑥

𝑥

⊗𝑀𝑦)𝑢 − (𝐷𝑥𝑀−1
𝑥 𝑀𝑥

⏟⏟⏟
1

⊗𝐷𝑦)𝑣

= −(𝐷𝑥𝑀−1
𝑥 ⊗ 1𝑦)

(
(𝐷𝑥 ⊗𝑀𝑦)𝑢 + (𝑀𝑥 ⊗𝐷𝑦)𝑣

)
= 0

Conversely,

0 = 𝜕𝑥DIVv = −(𝐷𝑥
𝑥 ⊗𝑀𝑦)𝑢 − (𝐷𝑥 ⊗𝐷𝑦)𝑣 (48)

= −(𝐷𝑥
𝑥 ⊗𝑀𝑦)𝑢 − (𝐷𝑥 ⊗𝐷𝑦)𝑣 + (𝐷𝑥𝑀−1

𝑥 ⊗ 1𝑦)

×
(
(𝐷𝑥 ⊗𝑀𝑦)𝑢 + (𝑀𝑥 ⊗𝐷𝑦)𝑣

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=DIVv=0

(49)

= −(𝐷𝑥
𝑥 ⊗𝑀𝑦)𝑢 − (𝐷𝑥 ⊗𝐷𝑦)𝑣 + (𝐷𝑥𝑀−1

𝑥 𝐷𝑥 ⊗𝑀𝑦)𝑢

+ (𝐷𝑥 ⊗𝐷𝑦)𝑣 (50)

= −(𝐷𝑥
𝑥 ⊗𝑀𝑦)𝑢 + (𝐷𝑥𝑀−1

𝑥 𝐷𝑥 ⊗𝑀𝑦)𝑢 (51)

The set of (𝑢, 𝑣) that satisfies DIV(𝑢, 𝑣) = 0 is very large, e.g., 𝑢 can
be considered unconstrained. As (51) shall be true for all those 𝑢
one concludes 𝐷𝑥

𝑥 = 𝐷𝑥𝑀−1
𝑥 𝐷𝑥. ◽

Proposition 3. The stabilization terms of standard SUPG do
not vanish when the Galerkin approximation of the divergence van-
ishes, because for ℚ𝑘 FEM (47) is never true.

Proof. We show the proof for the Gauss-Lobatto basis
functions with the Gauss–Lobatto quadrature that we will
use in the numerical section. In this configuration the
mass matrix is diagonal and all diagonal terms are different
from zero.

Now, we want to show that at least one element of 𝐷𝑥𝑀−1
𝑥 𝐷𝑥 is

different from the one of 𝐷𝑥
𝑥. We consider the entry (𝑖 − 1, 0; 𝑖, 𝐾)

for any 𝑖 and we show that this entry is 0 in 𝐷𝑥
𝑥 but not in the other

matrix.

(𝐷𝑥(𝑀𝑥)−1𝐷𝑥)𝑖−1,0;𝑖,𝐾

∶=
∑

𝑗∈ℤ,𝑟∈[0,𝐾−1]
∫ 𝜑′

𝑖−1,0𝜑𝑗,𝑟d𝑥
1

(𝑀𝑥)𝑗,𝑟;𝑗,𝑟 ∫ 𝜑𝑗,𝑟𝜑
′
𝑖,𝐾d𝑥 (52a)

= 1
(𝑀𝑥)𝑖,0;𝑖,0 ∫ 𝜑′

𝑖−1,0𝜑𝑖,0d𝑥∫ 𝜑𝑖,0𝜑
′
𝑖,𝐾d𝑥 (52b)

= 1
(𝑀𝑥)𝑖,0;𝑖,0 ∫ 𝜑′

𝑖−1,0𝜑𝑖−1,𝐾𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≠0

∫ 𝜑𝑖,0𝜑
′
𝑖,𝐾𝑑𝑥

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
≠0

≠ 0 (52c)

(𝐷𝑥
𝑥)𝑖−1,0;𝑖,𝐾 ∶= ∫ 𝜑′

𝑖−1,0𝜑
′
𝑖,𝐾d𝑥 = 0 (52d)

In (52b), we have used the fact the only basis function that
has supported both on the support of 𝜑𝑖−1,0 and 𝜑𝑖,𝐾−1 is 𝜑𝑖,0 =
𝜑𝑖−1,𝐾 . Then, explicitly using the quadrature formula, we observe
that ∫𝐸𝑥

𝑖
𝜑′

𝑖,𝑠𝜑𝑖,𝑟d𝑥 = Δ𝑥𝑤𝑟𝜑
′
𝑖,𝑠(𝑥𝑖,𝑟), with𝑤𝑟 = 1∕Δ𝑥 ∫𝐸𝑥

𝑖
𝜑𝑖,𝑟 being

the rth quadrature weight of the Gauss–Lobatto formula. Now,
𝜑′

𝑖,𝑠(𝑥𝑖,𝑟) ≠ 0 for 𝑟 ≠ 𝑠 otherwise 𝑥𝑖,𝑟 would have been both a zero
of 𝜑𝑖,𝑠 and a local extremum. In this case, this zero of 𝜑𝑖,𝑠 would
have a multiplicity higher than one, but, by definition, it has a
multiplicity of one. Hence, it must be different from 0. On the
other hand, in (52d) 𝜑′

𝑖−1,0 has support only in 𝐸𝑥
𝑖−2 and 𝐸𝑥

𝑖−1 and
𝜑𝑖,𝐾 has support only in 𝐸𝑥

𝑖 and 𝐸𝑥
𝑖+1, so the integral is zero. This

concludes the proof. ◽

This Proposition does not allow us to conclude that SUPG fails
to be stationarity preserving because it might have some other
non-trivial discrete stationary states, which are not governed
by the Galerkin approximation DIVv of the divergence. How-
ever, at least for ℚ1 (Equation (42)) and ℚ2 (without proof)
SUPG does not possess non-trivial discrete stationary states. The
approach proposed later in the paper allows us to side-step the
limitations highlighted here without imposing the constraints
of Theorem 2.

3.2 | Grad-Div Orthogonal Subscale
Stabilization (OSS)

The Orthogonal Subscale Stabilization (OSS) is a stabiliza-
tion technique introduced originally for Stokes equations
[17] and then extended for other problems, including
convection–diffusion–reaction problems [18, 19]. For hyperbolic
equations, its fully discrete Fourier stability has been studied
[20, 29] when coupled with explicit time integration methods.
The OSS stabilization technique allows to use of any dissipative
operator by introducing a penalization term composed by the
variational approximation of the dissipative operator minus the
same quantity evaluated using an 𝐿2(Ω) projection of the appro-
priate operator. For a Laplacian stabilization, for example, this
gives a term of the form ∫Ω 𝜑(∇𝑞 −𝑤) = 0 with 𝑤 the projection
of the gradient on the global approximation space.

For the acoustic system, we aim to construct a grad-div-based
operator. We thus propose to study the following stabilized vari-
ational form
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∫ 𝜑(𝜕𝑡𝑢 + 𝜕𝑥𝑝)𝑑𝑥 + ∫ 𝛼 ℎ𝜕𝑥𝜑(∇ ⋅ u −𝑤∇⋅u)𝑑𝑥 = 0

∫ 𝜑(𝜕𝑡𝑣 + 𝜕𝑦𝑝)𝑑𝑥 + ∫ 𝛼 ℎ𝜕𝑦𝜑(∇ ⋅ u −𝑤∇⋅u)𝑑𝑥 = 0

∫ 𝜑(𝜕𝑡𝑝 + 𝜕𝑥𝑢 + 𝜕𝑦𝑣)𝑑𝑥

+ ∫ 𝛼 ℎ𝜕𝑥𝜑(𝜕𝑥𝑝 −𝑤𝑝
𝑥)𝑑𝑥 + ∫ 𝛼 ℎ𝜕𝑦𝜑(𝜕𝑦𝑝 −𝑤𝑝

𝑦)𝑑𝑥 = 0

(53)

with the projections 𝑤∇⋅u, 𝑤𝑝
𝑥 and 𝑤𝑝

𝑦 defined by

⎧⎪⎨⎪⎩
∫ 𝜑

(
∇ ⋅ u −𝑤∇⋅u)𝑑𝑥 = 0, ∀𝜑 ∈ 𝑉ℎ

∫ 𝜑
(
𝜕𝑥𝑝 −𝑤𝑝

𝑥

)
𝑑𝑥 = 0, ∀𝜑 ∈ 𝑉ℎ

∫ 𝜑
(
𝜕𝑦𝑝 −𝑤𝑝

𝑦

)
𝑑𝑥 = 0, ∀𝜑 ∈ 𝑉ℎ

(54)

The stability of the scheme is characterized by (neglecting bound-
ary conditions, see also [19, 20, 29])

𝜕𝑡 ∫
𝑞𝑇 𝑞

2
𝑑𝑥

= −∫ 𝛼 ℎ(𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑥𝜕𝑦𝑞 − 𝑤̃)𝑇 (𝐽𝑥𝜕𝑥𝑞 + 𝐽𝑥𝜕𝑦𝑞 − 𝑤̃)𝑑𝑥 ≤ 0

which is shown classically by replacing 𝜑 with the veloci-
ties and pressure in the main system, testing projections with
𝛼 ℎ(𝑤∇⋅u, 𝑤𝑝

𝑥, 𝑤𝑝
𝑦)𝑇 , and combining the resulting expressions.

The above-stabilized formulation seems a good candidate for sta-
tionary preserving, as it involves the approximation of the proper
differential terms, namely the grad-div Laplacian for the velocity
equations. Unfortunately, as for SUPG, a standard discretization
of the operators involved fails to be stationarity preserving. To
show this, we proceed as done in the previous subsection and
consider the semi-discrete version of the scheme. Skipping some
details that are reported in Appendix B, defining the matrices
𝑍𝑥 ∶= 𝐷𝑥

𝑥 −𝐷𝑥𝑀−1
𝑥 𝐷𝑥 and 𝑍𝑦 ∶= 𝐷𝑦

𝑦 −𝐷𝑦𝑀−1
𝑦 𝐷𝑦, the OSS sta-

bilization matrix can be written as

OSS ∶= 𝛼ℎ

⎛⎜⎜⎜⎝
𝑍𝑥 ⊗𝑀𝑦 0 0

0 𝑀𝑥 ⊗𝑍𝑦 0
0 0 𝑍𝑥 ⊗𝑀𝑦 +𝑀𝑥 ⊗𝑍𝑦

⎞⎟⎟⎟⎠ (55)

and the OSS formulation can be succinctly written as

 d
d𝑡

q + q = 0, with  = 𝐶 ,  = 𝐶 + OSS (56)

Similarly to SUPG, we observe that

𝔽𝑡𝑥,𝑡𝑦 () =
⎛⎜⎜⎜⎜⎝
𝛼ℎ𝐹𝑡𝑥

(𝑍𝑥) 0 𝑡2𝑥−1
2ℎ𝑡𝑥

0 𝛼ℎ𝐹𝑡𝑦
(𝑍𝑦)

𝑡2𝑦−1
2ℎ𝑡𝑦

𝑡2𝑥−1
2ℎ𝑡𝑥

𝑡2𝑦−1
2ℎ𝑡𝑦

𝐹𝑡𝑥
(𝑍𝑥) + 𝐹𝑡𝑦

(𝑍𝑦)

⎞⎟⎟⎟⎟⎠
with 𝐹𝑡𝑥

(𝑍𝑥) = −
(𝑡𝑥 − 1)2

𝑡𝑥ℎ
2 +

(𝑡2𝑥 − 1)2

4𝑡2𝑥ℎ2 (57)

As 𝐹𝑡𝑥
(𝑍𝑥) factors out a (𝑡𝑥 − 1)2 term and 𝐹𝑡𝑦

(𝑍𝑦) factors out a
(𝑡𝑦 − 1)2 term,

det 𝔽𝑡𝑥,𝑡𝑦 () = 𝛼(𝑡𝑥 − 1)2(𝑡𝑦 − 1)2( . . . ) (58)

This means that the kernel is only non-trivial (det 𝔽𝑡𝑥,𝑡𝑦 () = 0)
when 𝑡𝑥 = 1 or 𝑡𝑦 = 1 (functions constant in 𝑥 or 𝑦), i.e., the
method is not stationarity preserving.

4 | Global Flux Quadrature and Continuous
Finite Elements

4.1 | Global Flux Quadrature in Multi-D: The
Gfq Divergence Operator

The classical Galerkin approximation of the divergence
∫ 𝜑(𝜕𝑥𝑢ℎ + 𝜕𝑦𝑢ℎ)d𝑥d𝑦 gives

DIVv = 𝐷𝑥 ⊗𝑀𝑦𝑢 +𝑀𝑥 ⊗𝐷𝑦𝑣 (59)

with the discrete operators defined in (35). To generalize the 1D
Global Flux idea to multiple dimensions, we use the symmetric
approximation (14), introducing the new notion of divergence

𝜕𝑥𝑢 + 𝜕𝑦𝑣 ≡ 𝜕𝑥𝑦(𝑈 + 𝑉 ) (60)

where

𝑈 ∶= 𝑈0 + ∫
𝑦

𝑦0

𝑢d𝑦 ⇔ 𝜕𝑦𝑈 = 𝑢

𝑉 ∶= 𝑉0 + ∫
𝑥

𝑥0

𝑣d𝑥 ⇔ 𝜕𝑥𝑉 = 𝑣 (61)

As in one dimension, we construct discrete approximations of 𝑈ℎ

and 𝑉ℎ in the same polynomial space of 𝑢ℎ and 𝑣ℎ. To achieve this,
we provide a line-by-line definition of 𝑈ℎ and 𝑉ℎ whose nodal
values can be constructed as

𝑈 = 1𝑥 ⊗ 𝐼𝑦𝑢 , 𝑉 = 𝐼𝑥 ⊗ 1𝑦𝑣 (62)

with integration operators defined for 1D FEM as

(𝐼𝑥)𝑖,𝑠;𝑘,𝑝 ∶= ∫
𝑥𝑖,𝑠

𝑥𝑖,0

𝜑𝑥
𝑘,𝑝(𝑥)d𝑥 for 𝑠 = 1, . . . , 𝐾 and

(𝐼𝑦)𝑖,𝑠;𝑘,𝑝 ∶= ∫
𝑦𝑖,𝑠

𝑦𝑖,0

𝜑𝑦
𝑘,𝑝
(𝑦)d𝑦 for 𝑠 = 1, . . . , 𝐾 (63)

The modified weak divergence ∫ 𝜑𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ)d𝑥 then reads

DIVv = 𝐷𝑥 ⊗𝐷𝑦(𝑈 + 𝑉 ) = 𝐷𝑥 ⊗𝐷𝑦𝐼𝑦𝑢 +𝐷𝑥𝐼𝑥 ⊗ 𝐷𝑦𝑣

= 𝐷𝑥 ⊗𝐷𝑦

(
1𝑥 ⊗ 𝐼𝑦𝑢 + 𝐼𝑥 ⊗ 1𝑦𝑣

)
(64)

As in 1D, compared to (59) the latter formula essentially involves
modifications of the mass matrices: they are replaced by the oper-
ators 𝐷𝑥𝐼𝑥 and 𝐷𝑦𝐼𝑦. The GFq divergence operator (64) obtained
with this modification has a clear characterization of its kernel.
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Proposition 4 (Physically relevant part of the kernel
of the GFq divergence). The global flux quadrature diver-
gence operator (64) vanishes identically for

𝑈𝑖,𝑘;𝑗,𝑠 + 𝑉𝑖,𝑘;𝑗,𝑠 = 𝑓 (𝑖, 𝑘) + 𝑔(𝑗, 𝑠) (65)

Proof. By construction 𝐷𝑥 ⊗𝐷𝑦(𝑓 + 𝑔) = 0 since 𝐷𝑦𝑓 = 0 and
𝐷𝑥𝑔 = 0 which immediately yields the result. ◽

A neat way of writing the above property is obtained by using the
local assembly of (64), which reads using a FEM notation

[DIVv]𝛼;𝛽 =
∑

𝐸∋(𝛼;𝛽)
[𝐷𝐸

𝑥 ⊗ 𝐷𝐸
𝑦 (1

𝐸
𝑥 ⊗ 𝐼𝐸

𝑦 𝑢𝐸)]𝛼;𝛽

+
∑

𝐸∋(𝛼;𝛽)
[𝐷𝐸

𝑥 ⊗ 𝐷𝐸
𝑦 (𝐼

𝐸
𝑥 ⊗ 1𝐸

𝑦 𝑣𝐸)]𝛼;𝛽

where the superscript 𝐸 denotes the local entries of operators and
arrays inside the element 𝐸. On the element 𝐸 = 𝐸𝑖𝑗 , consider
now the local arrays

[𝑢𝐸0 ]𝑖,𝑠;𝑗,𝑝 ∶= 𝑢𝑖,0;𝑗,𝑝 ∀𝑠 = 0, . . . , 𝐾,

[𝑣𝐸0 ]𝑖,𝑠;𝑗,𝑝 ∶= 𝑣𝑖,𝑠;𝑗,0 ∀𝑝 = 0, . . . , 𝐾

Define now the elemental array of integrated divergences on each
element 𝐸 = 𝐸𝑖𝑗

Φ𝐸 ∶= (1𝐸
𝑥 ⊗ 𝐼𝐸

𝑦 )(𝑢
𝐸 − 𝑢𝐸0 ) + (𝐼𝐸

𝑥 ⊗ 1𝐸
𝑦 )(𝑣

𝐸 − 𝑣𝐸0 )

Φ𝐸
𝑖,𝑠;𝑗,𝑝 = ∫

𝑦𝑗,𝑝

𝑦𝑗,0

(𝑢ℎ(𝑥𝑖,𝑠, 𝑦) − 𝑢ℎ(𝑥𝑖,0, 𝑦))d𝑦

+ ∫
𝑥𝑖,𝑠

𝑥𝑖,0

(𝑣ℎ(𝑥, 𝑦𝑗,𝑝) − 𝑣ℎ(𝑥, 𝑦𝑗,0))d𝑥 (66)

Using the fact that 𝐷𝐸
𝑥 ⊗ 𝐷𝐸

𝑦 𝑢
𝐸
0 = 𝐷𝐸

𝑥 ⊗ 𝐷𝐸
𝑦 𝑣

𝐸
0 = 0, we can read-

ily see that

[DIVv]𝛼;𝛽 =
∑

𝐸∋(𝛼;𝛽)
[(𝐷𝐸

𝑥 ⊗ 𝐷𝐸
𝑦 )Φ

𝐸]𝛼;𝛽 (67)

The previous results readily allow us to prove the following.

Proposition 5 (GFq divergence and vanishing sub-
cell integrals). The global flux quadrature divergence oper-
ator (64) vanishes identically whenever ∀𝐸𝑖𝑗 and ∀ 𝑠, 𝑝 ∈ 𝐸𝑖𝑗

the integrated divergence on the subcell [𝑥𝑖,0, 𝑥𝑖,𝑠] × [𝑦𝑗,0, 𝑦𝑗,𝑝]
vanishes:

Φ𝐸
𝑖,𝑠;𝑗,𝑝 = 0 ∀𝑠, 𝑝 and ∀𝐸𝑖,𝑗 ⇒ DIVv = 0

The last proposition shows two important properties:

1. the approach introduced allows to define, at steady state, as
many linearly independent zero divergences as the number of
nodes in the mesh;

2. the GFq approach allows to naturally pass from nodal to face
integrated quantities. Indeed, 𝑈 and 𝑉 contain integrated
values of the velocities in the directions normal to the faces
of the element sub-cells. These are natural objects to express
the integrals

∬ (𝜕𝑥𝑢 + 𝜕𝑦𝑣)d𝑥d𝑦 = ∫ [𝑢]𝑥d𝑦 + ∫ [𝑣]𝑦d𝑥

=
[
∫ 𝑢d𝑦

]
𝑥

+
[
∫ 𝑣d𝑥

]
𝑦

(68)

This establishes a loose link to mimetic schemes using face
averages of normal components.

4.2 | Construction of the Integrators
in Multiple Dimensions

Finally, we give a general recipe for how to construct integrators
𝐼𝑥, 𝐼𝑦 that allow to discretize

𝜕𝑦𝑈 = 𝑢, 𝜕𝑥𝑉 = 𝑣 (69)

in such a way that all the discrete spatial derivatives are compact
differences, once the method is expressed in terms of 𝑢 and 𝑣.

To ensure a local nature of the method, a condition on 𝐼𝑥, 𝐼𝑦 is
that  , and in particular 𝐷𝑥𝐼𝑥,𝐷

𝑥
𝑥𝐼𝑥, etc. have to be compact dif-

ference operators. For ℚ1 FEM this is ensured by choosing

𝐼𝑥 = Δ𝑥
𝑡𝑥 + 1

2(𝑡𝑥 − 1)
(70)

because the characteristic polynomial of any finite difference for-
mula that discretizes a derivative can always be divided by 𝑡𝑥 − 1
(see [30]). Observe the identities

𝐷𝑥𝐼𝑥 =
𝑡2𝑥 + 2𝑡𝑥 + 1

4𝑡𝑥
, 𝐷𝑥

𝑥𝐼𝑥 = −𝐷𝑥 (71)

which follow from

𝔽𝑡𝑥 (𝐷𝑥𝐼𝑥) =
(𝑡𝑥 + 1)2

4𝑡𝑥
, 𝔽𝑡𝑥 (𝐷

𝑥
𝑥𝐼𝑥) = −

(𝑡𝑥 − 1)(𝑡𝑥 + 1)
2𝑡𝑥Δ𝑥

= −𝔽𝑡𝑥 (𝐷𝑥)

(72)

The idea in the context of FEM is to take 𝑢, 𝑣 ∈ 𝑉 𝐾
ℎ

and integrate
them in 𝑦 and 𝑥, respectively, inside each cell 𝐸𝑖𝑗 . This would
give piecewise 𝑈 (𝑥, 𝑦) = ∫ 𝑦

𝑢(𝑥, 𝑠)d𝑠 ∈ ℚ𝐾 (𝐸𝑥
𝑖 ) ×ℚ𝐾+1(𝐸𝑦

𝑗 ) and
𝑉 (𝑥, 𝑦) = ∫ 𝑥

𝑣(𝑠, 𝑦)d𝑠 ∈ ℚ𝐾+1(𝐸𝑥
𝑖 ) ×ℚ𝐾 (𝐸𝑦

𝑗 ). We then choose to
project 𝑈, 𝑉 pointwise back onto ℚ𝐾 (𝐸𝑖𝑗). In particular, we write

𝑢(𝑥, 𝑦) =
∑

(𝑖,𝑗)∈ℤ2

𝐾∑
𝑧,𝑤=1

𝑢𝑖,𝑧;𝑗,𝑤𝜑
𝑥
𝑖,𝑧(𝑥)𝜑

𝑦
𝑗,𝑤(𝑦)

=
∑

(𝑖,𝑗)∈ℤ2

𝐾∑
𝑧,𝑤=0

𝑢𝑖,𝑧;𝑗,𝑤𝜑𝑖,𝑧(𝑥)
|||𝐸𝑥

𝑖

𝜑𝑗,𝑤(𝑦)
|||𝐸𝑦

𝑗

(73a)

𝑣(𝑥, 𝑦) =
∑

(𝑖,𝑗)∈ℤ2

𝐾∑
𝑧,𝑤=1

𝑣𝑖,𝑧;𝑗,𝑤𝜑
𝑥
𝑖,𝑧(𝑥)𝜑

𝑦
𝑗,𝑤(𝑦)

=
∑

(𝑖,𝑗)∈ℤ2

𝐾∑
𝑧,𝑤=0

𝑣𝑖,𝑧;𝑗,𝑤𝜑
𝑥
𝑖,𝑧(𝑥)

|||𝐸𝑥
𝑖

𝜑𝑦
𝑗,𝑤(𝑦)

|||𝐸𝑦
𝑗

(73b)
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see Figure 1. Integrating 𝑢 (or 𝑣) with respect to 𝑦 (or 𝑥), we get
in the cell 𝐸𝑖,𝑗 :

Û(𝑥, 𝑦) ∶= ∫
𝑦

𝑦0

𝑢(𝑥, 𝑦′)d𝑦′ = Û(𝑥, 𝑦𝑗) + ∫
𝑦

𝑦𝑗

𝑢(𝑥, 𝑦′)d𝑦′ = Û(𝑥, 𝑦𝑗)

+
𝐾∑

𝑧′ ,𝑤′=0
𝑢𝑖,𝑧′ ;𝑗,𝑤′𝜑𝑥

𝑖,𝑧′ (𝑥)∫
𝑦

𝑦𝑗

𝜑𝑦
𝑗,𝑤′ (𝑦′)𝑑𝑦′ (74a)

𝑉 (𝑥, 𝑦) ∶= ∫
𝑥

𝑥0

𝑣(𝑥′, 𝑦)d𝑥′ = 𝑉 (𝑥𝑖, 𝑦) + ∫
𝑥

𝑥𝑖

𝑣(𝑥′, 𝑦)d𝑥′ = 𝑉 (𝑥𝑖, 𝑦)

+
𝐾∑

𝑧′ ,𝑤′=0
𝑣𝑖,𝑧′ ;𝑗,𝑤′∫

𝑥

𝑥𝑖

𝜑𝑥
𝑖,𝑧′ (𝑥

′)𝑑𝑥′ 𝜑𝑦
𝑗,𝑤′ (𝑦) (74b)

We will show below that the step-functions Û(𝑥, 𝑦𝑗), 𝑉 (𝑥𝑖, 𝑦) are
of no importance for the final form of the method, which will
allow us to eventually drop them. We also want to highlight that
the restriction of 𝑢 on cell 𝐸𝑖𝑗

𝑈
|||𝐸𝑖𝑗

=
𝐾∑

𝑧′ ,𝑤′=0
𝑢𝑖,𝑧′ ;𝑗,𝑤′∫

𝑦

𝑦𝑗

𝜑𝑥
𝑖,𝑧′ (𝑥)𝜑

𝑦
𝑗,𝑤′ (𝑦′)𝑑𝑦′ (75)

includes the degrees of freedom associated with 𝑧′ = 0 and 𝑤′ =
0, which belong also to the previous cell. Recall their definitions:

𝑢𝑖,0;𝑗,𝑤′ ∶= 𝑢𝑖−1,𝐾;𝑗,𝑤′ , ∀𝑤′ = 1, . . . , 𝐾 (76a)

𝑢𝑖,𝑧′ ;𝑗,0 ∶= 𝑢𝑖,𝑧′ ;𝑗−1,𝐾 , ∀𝑤′ = 1, . . . , 𝐾 (76b)

𝑢𝑖,0;𝑗,0 ∶= 𝑢𝑖−1,𝐾;𝑗−1,𝐾 (76c)

Proposition 6 (Differentiation of integrals is inde-
pendent on the starting value). Consider 𝑈 (𝑥, 𝑦) ∶=∑

𝑧,𝑤 𝜑𝑥
𝑖,𝑧(𝑥)𝜑

𝑦
𝑗,𝑤(𝑦)𝑈𝑖,𝑧;𝑗 in the cell𝐸𝑖𝑗 with some𝑈𝑖,𝑧;𝑗 only depend-

ing on the cell 𝑗, not on 𝑤, the DoF in 𝑦. Then, 𝜕𝑦𝑈 (𝑥, 𝑦) = 0 in the
cell 𝐸𝑖𝑗 .

Proof. Let us compute 𝜕𝑦𝑈 (𝑥, 𝑦) in the cell 𝐸𝑖𝑗 . To this end, we
need to include the degrees of freedom associated to 𝑧,𝑤 = 0:

𝜕𝑦𝑈 (𝑥, 𝑦)|||𝐸𝑖𝑗

= 𝜕𝑦

(
𝐾∑

𝑧,𝑤=0
𝜑𝑥

𝑖,𝑧(𝑥)𝜑
𝑦
𝑗,𝑤(𝑦)𝑈𝑖,𝑧;𝑗

)

=
𝐾∑
𝑧=0

𝜑𝑥
𝑖,𝑧(𝑥)𝑈𝑖,𝑧;𝑗𝜕𝑦

(
𝐾∑

𝑤=0
𝜑𝑦

𝑗,𝑤(𝑦)

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

≡1

= 0 (77)

◽

It thus does not matter which constant we choose to define 𝑈 in
each cell. As in the construction of the method, only 𝜕𝑦𝑈 appears,
the term Û(𝑥, 𝑦𝑗) in (74a) can be dropped straight away. We thus
define

𝑈𝑖,𝑧;𝑗,𝑤 ∶=
𝐾∑

𝑤′=0
𝑢𝑖,𝑧;𝑗,𝑤′∫

𝑦𝑗,𝑤

𝑦𝑗

𝜑𝑗,𝑤′ (𝑦′)𝑑𝑦′ (78a)

𝑉𝑖,𝑧;𝑗,𝑤 ∶=
𝐾∑

𝑧′=0
𝑣𝑖,𝑧′ ;𝑗,𝑤∫

𝑥𝑖,𝑧

𝑥𝑖

𝜑𝑖,𝑧′ (𝑥′)𝑑𝑥′, 𝑧, 𝑤 = 1, . . . , 𝐾

(78b)

and pass from 𝑈 and 𝑉 to 𝑢 and 𝑣 with the matrix multiplications

𝑈 = 1𝑥 ⊗ 𝐼𝑦𝑢 𝑉 = 𝐼𝑥 ⊗ 1𝑦𝑣 (79)

with the integrator 𝐼𝑥 defined by

(𝐼𝑥 ⊗ 1𝑦𝑣)𝑖,𝑧;𝑗,𝑤 =
𝐾∑

𝑧′=0
𝑣𝑖,𝑧′ ;𝑗,𝑤∫

𝑥𝑖,𝑧

𝑥𝑖

𝜑𝑖,𝑧′ (𝑥′)𝑑𝑥′ (80)

Notice that doing so, we are implicitly defining 𝑈 (𝑥, 𝑦) ∶=∑
𝛼,𝛽 𝜑𝛼;𝛽(𝑥, 𝑦)𝑈𝛼;𝛽 ∈ 𝑉 𝐾

ℎ
, while initially Û in (74a) was belonging

to a different functional space with higher degree of polynomials
in 𝑦 direction. This step is a projection onto the space 𝑉ℎ. The
two polynomials, nevertheless, coincide on the degrees of free-
dom, i.e.,

Û(𝑥𝛼, 𝑦𝛽) = 𝑈𝛼;𝛽 = 𝑈 (𝑥𝛼; 𝑦𝛽) (81)

Example 4.1. In the case of ℚ1 FEM (𝐾 = 1) one finds

𝑉 (𝑥𝑖+1, 𝑦𝑗) = 𝑉 (𝑥𝑖, 𝑦𝑗) +
Δ𝑥
2

(𝑣𝑖,0;𝑗,0 + 𝑣𝑖,1;𝑗,0) (82a)

being careful to remember that 𝑣𝑖,1;𝑗,𝑤 = 𝑣𝑖+1,0;𝑗,𝑤. Thus, we can
deduce from the relation

𝐼𝑥 ⊗ 1𝑦 𝑣𝑖+1,0 − 𝐼𝑥 ⊗ 1𝑦 𝑣𝑖,0 = Δ𝑥
2

(
𝑣𝑖,0 + 𝑣𝑖+1,0

)
(82b)

that

𝔽𝑡𝑥 (𝐼𝑥) =
Δ𝑥
2

𝑡𝑥 + 1
𝑡𝑥 − 1

(82c)

which precisely corresponds to the factor 𝑡𝑥+1
2(𝑡𝑥−1)

used in Equation
(70). Moreover,

(𝐷𝑥𝐼𝑥 ⊗ 1𝑦𝑣)𝑖,0;𝑗,0 =
𝑉 𝑖+1,0;𝑗,0 − 𝑉 𝑖−1,0;𝑗,0

2Δ𝑥

=

𝑉 (𝑥𝑖−1, 𝑦) +
Δ𝑥
2 (𝑣𝑖−1,0;𝑗,0 + 𝑣𝑖,0;𝑗,0)

+Δ𝑥
2 (𝑣𝑖,0;𝑗,0 + 𝑣𝑖+1,0;𝑗,0) − 𝑉 𝑖−1,0;𝑗,𝑤

2Δ𝑥
(82d)

=
𝑣𝑖−1,0;𝑗,0 + 2𝑣𝑖,0;𝑗,0 + 𝑣𝑖+1,0;𝑗,0

4
(82e)

4.3 | Nodal Projection, Nodal Consistency,
and Super-Convergence

We have now a new definition of the discrete divergence, and we
have shown in Proposition 4 that the desired physical equilibria
are part of its kernel. We now set out to study the following two
questions:

• Given an element of the space of discrete divergence-free
solutions of Propositions 4 and 5, what is its formal consis-
tency to exact analytical solutions?

• Given a divergence-free vector field, how to devise a projec-
tion onto the space of discrete divergence-free solutions?

The first aspect is covered by the following result.

11 of 31

 10982426, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23167 by U
niversity D

i R
om

a L
a Sapienza, W

iley O
nline L

ibrary on [22/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Proposition 7 (GFq divergence: consistency esti-
mate). Consider a 𝐶𝑃 (Ω) solenoidal vector field (𝑢𝑒, 𝑣𝑒) with
𝑃 ≥ 1, such that the solenoidal condition 𝜕𝑥𝑢𝑒(𝑥, 𝑦) = −𝜕𝑦𝑣𝑒(𝑥, 𝑦)
is true in every point and in particular at all collocation points.
Given an ODE 𝑈 ′(𝑡) = 𝐹 (𝑈, 𝑡), let the integrators

𝑈𝑝 − 𝑈0 = (𝐼𝑥𝐹 )𝑝 , 𝑈𝑝 − 𝑈0 = (𝐼𝑦𝐹 )𝑝

be exact when 𝐹 is a polynomial of degree 𝑀 . Then, for 𝑃 ≥ 𝑀 ,
the global flux divergence (64) admits exact discrete kernels veri-
fying Propositions 4 and 5, and such that 𝑢 = 𝑢𝑒 and 𝑣 = 𝑣𝑒 on
𝜕Ωℎ. Moreover, the discrete kernel verifies the consistency estimates
𝑢 = 𝑢𝑒 + (ℎ𝑀 ), and 𝑣 = 𝑣𝑒 + (ℎ𝑀 ).

Proof. Since 𝜕𝑥𝑢𝑒 + 𝜕𝑦𝑣𝑒 = 0 is true pointwise and in particular
at all collocation points (𝑥𝛼, 𝑦𝛽 ), we can remove from the expres-
sion of DIV operators applied to pointwise values of the deriva-
tives 𝜕𝑥𝑢𝑒(𝑥𝛼, 𝑦𝛽) and 𝜕𝑦𝑣𝑒(𝑥𝛼, 𝑦𝛽 ). In particular, note that

𝜕𝑥𝑢𝑒(𝑥𝛼, 𝑦𝛽) + 𝜕𝑦𝑣𝑒(𝑥𝛼, 𝑦𝛽 ) = 0 ⇒ (𝜕𝑥𝑢𝑒)ℎ + (𝜕𝑦𝑣𝑒)ℎ = 0

We thus start from (64) and add interpolated values of the above
zero divergence tested against all 𝜑𝑥𝜑𝑦 ∈ 𝑉ℎ

DIVv = (𝐷𝑥 ⊗𝐷𝑦𝐼𝑦)(𝑢ℎ + (𝐼𝑥 ⊗ 1𝑦)((𝜕𝑥𝑢𝑒)ℎ + (𝜕𝑦𝑣𝑒)ℎ))

+ (𝐷𝑥𝐼𝑥 ⊗ 𝐷𝑦)(𝑣ℎ + (1𝑥 ⊗ 𝐼𝑦)((𝜕𝑥𝑢𝑒)ℎ + (𝜕𝑦𝑣𝑒)ℎ)) (83)

Simple manipulations show that the previous expression is equiv-
alent to

DIV𝐯 = (𝐷𝑥 ⊗𝐷𝑦𝐼𝑦)(𝑢ℎ + (𝐼𝑥 ⊗ 1𝑦)(𝜕𝑦𝑣𝑒)ℎ) + (𝐷𝑥𝐼𝑥 ⊗ 𝐷𝑦)

(𝑣ℎ + (1𝑥 ⊗ 𝐼𝑦)(𝜕𝑥𝑢𝑒)ℎ) + (𝐷𝑥𝐼𝑥 ⊗ 𝐷𝑦𝐼𝑦)���������0
((𝜕𝑥𝑢𝑒)ℎ + (𝜕𝑦𝑣𝑒)ℎ)

(84)

Since 𝑢 = 𝑢𝑒 and 𝑣 = 𝑣𝑒 on 𝜕Ω, we consider discrete states defined
by marching along gridlines using the ODE integrator defined
by 𝐼𝑥 and 𝐼𝑦 by integrating for every 𝑥𝛼 and every 𝑦𝛽 the ODEs
implicitly appearing in (84), i.e.,

𝑑𝑢(𝑥, 𝑦𝛽 )
𝑑𝑥

= −𝜕𝑦𝑣𝑒(𝑥, 𝑦𝛽 ),
𝑑𝑣(𝑥𝛼, 𝑦)

𝑑𝑦
= −𝜕𝑥𝑢𝑒(𝑥𝛼, 𝑦)

By construction the resulting nodal values 𝑢(𝑥𝛼, 𝑦𝛽 ) and 𝑣(𝑥𝛼, 𝑦𝛽 )
verify

𝑢ℎ + (𝐼𝑥 ⊗ 1𝑦)(𝜕𝑦𝑣𝑒)ℎ = c𝑥(𝑦), 𝑣ℎ + (1𝑥 ⊗ 𝐼𝑦)(𝜕𝑥𝑢𝑒)ℎ = c𝑦(𝑥)
(85)

and by virtue of (84) are thus exact discrete solutions of DIVv =
0. Moreover, if integration is started from the boundary points
(𝑥0, 𝑦𝛽 ) and (𝑥𝛼, 𝑦0), the hypotheses on the exactness of integra-
tion tables and on the regularity of (𝑢𝑒, 𝑣𝑒) lead to the local nodal
consistency estimates

𝑢(𝑥𝛼, 𝑦𝛽) = 𝑢𝑒(𝑥0, 𝑦𝛽 ) − ∫
𝑥𝑠

𝑥0

𝜕𝑦𝑣𝑒(𝑥, 𝑦𝛽 )𝑑𝑥 + (ℎ𝑀+1)

= 𝑢𝑒(𝑥𝛼, 𝑦𝛽) + (ℎ𝑀+1)

𝑣(𝑥𝛼, 𝑦𝛽) = 𝑣𝑒(𝑥𝛼, 𝑦0) − ∫
𝑦𝛽

𝑦0

𝜕𝑥𝑢𝑒(𝑥𝛼, 𝑦)𝑑𝑦 + (ℎ𝑀+1)

= 𝑣𝑒(𝑥𝛼, 𝑦𝛽 ) + (ℎ𝑀+1)

The global consistency is obtained classically by considering the
space marching on the whole domain, on a number of cells of
order ℎ−1 which leads to the sough ℎ𝑀 estimate. ◽

Concerning the initialization, the proof of Theorem 5, and in par-
ticular (66), provides an idea of how to construct discrete projec-
tions on the kernel of (64). In particular, we define hereafter the
following quadrature-based projection.

Definition 5 (Line-by-line quadrature projection).
Let (𝑢𝑒, 𝑣𝑒) be a smooth enough vector field. Let 𝑢(0, 𝑦𝛽) = 𝑢𝑒(0, 𝑦𝛽)
and 𝑣(𝑥𝛼, 0) = 𝑣𝑒(𝑥𝛼, 0) on the bottom and left of the domain𝑥 = 0
and 𝑦 = 0. Given these values, we define recursively over line/row
elements the v fulfilling

[𝐼
𝐸𝑦

𝑗

𝑦 𝑢𝐸
𝑦
𝑗 (𝑥𝑖,𝑠)]𝑝 ∶= ∫

𝑦𝑗,𝑝

𝑦𝑗,0

𝑢𝑒(𝑥𝑖,𝑠, 𝑦)𝑑𝑦

[𝐼𝐸𝑥
𝑖

𝑥 𝑣𝐸
𝑥
𝑖 (𝑦𝑗,𝑝)]𝑠 ∶= ∫

𝑥𝑖,𝑠

𝑥𝑖,0

𝑣𝑒(𝑥, 𝑦𝑗,𝑝)𝑑𝑥 (86)

with 𝐼
𝐸𝑥

𝑖
𝑥 and 𝐼

𝐸𝑦
𝑗

𝑦 the local restriction of the integration tables,
and with local initial conditions on each element 𝑢ℎ(𝑥𝑠, 𝑦𝑗,0) =
𝑢ℎ(𝑥𝑠, 𝑦𝑗−1,𝐾 ) and 𝑣ℎ(𝑥𝑖,0, 𝑦𝑝) = 𝑣ℎ(𝑥𝑖−1,𝐾 , 𝑦𝑝).

We can immediately prove the following

Proposition 8 (Line-by-line quadrature projection of
solenoidal data). Let (𝑢𝑒, 𝑣𝑒) be a given smooth enough
solenoidal field, if the quadrature of the components of (𝑢𝑒, 𝑣𝑒) in
(86) is of order 𝑀𝑞 then the line by line/row-by-row quadrature
projection is equivalent to (85) within max(ℎ𝑀𝑞 , ℎ𝑀 ), and it is in
the kernel of (64) for exact integration of the right-hand sides in
(86). Moreover, the projected data has a pointwise consistency w.r.t.
(𝑢𝑒, 𝑣𝑒) of order max(ℎ𝑀𝑞 , ℎ𝑀 ).

Proof. We prove the result for the 𝑢 component, the proof for
the 𝑣 component is similar. We can write that

∫
𝑦𝑗,𝑝

𝑦𝑗,0

𝑢ℎ(𝑥𝑖,𝑠, 𝑦)𝑑𝑦 = ∫
𝑦𝑗,𝑝

𝑦𝑗,0

𝑢𝑒(𝑥𝑖,𝑠, 𝑦)𝑑𝑦 + (ℎ𝑀𝑞+1)

= ∫
𝑦𝑗,𝑝

𝑦𝑗,0

𝑢𝑒(𝑥𝑖,0, 𝑦)𝑑𝑦 − ∫
𝑦𝑗,𝑝

𝑦𝑗,0
∫

𝑥𝑖,𝑠

𝑥𝑖,0

𝜕𝑦𝑢𝑒(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 + (ℎ𝑀𝑞+1)

= ∫
𝑦𝑗,𝑝

𝑦𝑗,0

𝑢𝑒(𝑥𝑖,0, 𝑦)𝑑𝑦 − ∫
𝑦𝑗,𝑝

𝑦𝑗,0

[𝐼𝐸𝑥
𝑖

𝑥 (𝜕𝑦𝑢𝑒)
𝐸𝑥

𝑖

ℎ
(𝑦)]𝑠 𝑑𝑦 + (ℎ𝑀𝑞+1)

+ (ℎ𝑀+1)

having used the hypotheses of the local initial conditions. The
latter is equivalent to

𝑢ℎ(𝑥𝑖,𝑠, 𝑦𝑗,𝑝) + (𝐼𝑥 ⊗ 1𝑦)(𝜕𝑦𝑣𝑒)ℎ = 𝑢ℎ(𝑥𝑖,0, 𝑦𝑗,𝑝)

+ (ℎ𝑀𝑞+1) + (ℎ𝑀+1)

which shows that the equivalence with (86) within
max(ℎ𝑀𝑞 , ℎ𝑀 ). Using the solenoidal condition on (𝑢𝑒, 𝑣𝑒), one
can also check now that by definition
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[Φ𝐸 ]𝑖,𝑠;𝑗,𝑝 = ∫
𝑦𝑝

𝑦0

(𝑢ℎ(𝑥𝑠, 𝑦) − 𝑢ℎ(𝑥0, 𝑦))𝑑𝑦

+ ∫
𝑥𝑠

𝑥0

(𝑣ℎ(𝑥, 𝑦𝑝) − 𝑣ℎ(𝑥, 𝑦0))𝑑𝑥

= ∫
𝑦𝑝

𝑦0

(𝑢𝑒(𝑥𝑠, 𝑦) − 𝑢𝑒(𝑥0, 𝑦))𝑑𝑦

+ ∫
𝑥𝑠

𝑥0

(𝑣𝑒(𝑥, 𝑦𝑝) − 𝑣𝑒(𝑥, 𝑦0))𝑑𝑥 + (ℎ𝑀𝑞+1) = (ℎ𝑀𝑞+1)

From Proposition 5 for exact integration the projected data is in
the kernel of (64). ◽

The above directional initialization introduces some apparent
dependence on the initial integration point and direction of
marching. However, the scheme is in reality symmetric to the
above choices. This can be seen from the following property.

Proposition 9 (Reversibility of global flux quadrature
SEM). The projection operator 𝐷𝑥𝐼𝑥obtained with definitions
(63) is independent on the orientation of integration.

Proof. The reversed table 𝐼𝑥 verifies

(𝐼𝑥)𝑖,𝑗;𝑖,𝑙 = ∫
𝑥𝑖,𝑙

𝑥𝑖,0

𝜑𝑖,𝑙(𝑥)𝑑𝑥 = ∫
𝑥𝑖,𝐾

𝑥𝑖,0

𝜑𝑖,𝑙(𝑥)𝑑𝑥

+ ∫
𝑥𝑖,𝑗

𝑥𝑖,𝐾

𝜑𝑖,𝑙(𝑥)𝑑𝑥 = ∫
𝑥𝑖,𝐾

𝑥𝑖,0

𝜑𝑙(𝑥)𝑑𝑥 + (𝐼𝑥)𝑖,𝑗;𝑖,𝑙

with (𝐼𝑥)𝑖,𝑗;𝑖,𝑙 ∶= −∫ 𝑥𝑖,𝐾

𝑥𝑖,𝑗
𝜑𝑖,𝑙(𝑥)𝑑𝑥. This implies 𝐼𝑥𝑆 = 𝑆 + 𝐼𝑥𝑆,

with 𝑆 containing constant entries given by the average of the
source. As a consequence 𝐷𝑥𝐼𝑥𝑆 = 𝐷𝑥𝐼𝑥𝑆. ◽

The above property shows that locally both directions of
integration provide the same global flux quadrature scheme
at the end. In practice, it is the boundary conditions that
will define the actual steady solution of the scheme. The
line-by-line/row-by-row quadrature projection is in practice sim-
ple to implement but unless corrected with several sweeps in dif-
ferent vertical/horizontal directions, or of some combinations of
the projection in different directions, it is affected by the accumu-
lation of the error along the mesh, as any ODE integrator. To avoid
this drawback we have considered the direct optimization-based
projection defined below.

Definition 6 (Optimization based projection). Con-
sider initial data obtained by nodally sampling a given solenoidal
vector field: (𝑢𝑒(𝑥𝑠, 𝑦𝑝), 𝑣𝑒(𝑥𝑠, 𝑦𝑝)). The optimization-based
projection consists in looking for perturbed nodal data
(𝑢̃(𝑥𝑠, 𝑦𝑝), 𝑣̃(𝑥𝑠, 𝑦𝑝)) whose error w.r.t. the initial sample data
is minimized, under the constraint that the discrete divergence
should vanish:

(𝑢̃, 𝑣̃) = arg min
𝑢,𝑣∈𝑉ℎ ∶ DIVv=0

||𝑢 − 𝑢𝑒||22 + ||𝑣 − 𝑣𝑒||22 (87)

The above definition requires solving a linearly constraint opti-
mization problem with a very simple quadratic function to
be minimized. This solution can be obtained, e.g., using a
Trust-Region Constrained Algorithm1. For the above method, we

cannot prove any consistency estimate, but in practice, we obtain
data with the nodal consistency of Theorem 7 and Proposition 8
within 2 iterations of the algorithm.

When initializing the solution with a given solenoidal vec-
tor field, we thus have three possibilities: a sampling at col-
location points; line-by-line/row-by-row quadrature projection;
optimization-based projection. These will be evaluated and com-
pared in detail in the results section.

5 | Gfq Based Grad-Div Compatible
Stabilization

A high-order approximation of the divergence is not enough,
because the system (1) under consideration is hyperbolic, and sta-
bilization is required. It was shown in Section 1.2 that appropri-
ate stabilization must be used in order to preserve the stationary
states. We integrate in this section the Global Flux technique into
the SUPG and OSS stabilizations.

5.1 | SUPG Stabilization With Gfq

We construct the GFq variant of the SUPG method by evaluating
the integrals

∫ 𝜑ℎ(𝜕𝑡𝑢ℎ + 𝜕𝑥𝑝ℎ)𝑑𝑥 + ∫ 𝛼 ℎ𝜕𝑥𝜑(𝜕𝑡𝑝ℎ + 𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ))𝑑𝑥 = 0

∫ 𝜑ℎ(𝜕𝑡𝑣ℎ + 𝜕𝑦𝑝ℎ)𝑑𝑥 + ∫ 𝛼 ℎ𝜕𝑦𝜑(𝜕𝑡𝑝ℎ + 𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ))𝑑𝑥 = 0

∫ 𝜑ℎ(𝜕𝑡𝑝ℎ + 𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ)𝑑𝑥 + ∫ 𝛼 ℎ𝜕𝑥𝜑(𝜕𝑡𝑢ℎ + 𝜕𝑥𝑝ℎ)𝑑𝑥

+ ∫ 𝛼 ℎ𝜕𝑦𝜑ℎ(𝜕𝑡𝑣ℎ + 𝜕𝑦𝑝ℎ)𝑑𝑥 = 0 (88)

We then use the definitions (78) of the nodal values of 𝑈ℎ and 𝑉ℎ

and end up with the modified version of the SUPG scheme:

(𝐶 +SU)
𝑑q
𝑑𝑡

+ C-GFqq + SU-GFqq = 0 (89)

with 𝐶 and SU the same as in Section 3.1 and SUPG-GFq =
C-GFq + SU-GFq with

C-GFq =
⎛⎜⎜⎜⎝

0 0 𝐷𝑥 ⊗𝑀𝑦

0 0 𝑀𝑥 ⊗𝐷𝑦

𝐷𝑥 ⊗ (𝐷𝑦𝐼𝑦) (𝐷𝑥𝐼𝑥)⊗𝐷𝑦 0

⎞⎟⎟⎟⎠ (90a)

and

SU-GFq = 𝛼 ℎ

⎛⎜⎜⎜⎝
𝐷𝑥

𝑥 ⊗ (𝐷𝑦𝐼𝑦) (𝐷𝑥
𝑥𝐼𝑥)⊗𝐷𝑦 0

𝐷𝑥 ⊗ (𝐷𝑦
𝑦𝐼𝑦) (𝐷𝑥𝐼𝑥)⊗𝐷𝑦

𝑦 0
0 0 𝐷𝑥

𝑥 ⊗𝑀𝑦 +𝑀𝑥 ⊗𝐷𝑦
𝑦

⎞⎟⎟⎟⎠
(90b)

The form of the above operators allows us to prove the following
result.

Proposition 10 (Equilibria of SUPG-GFq). Any state
with constant pressure 𝑝 and velocities in the kernel of the global
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flux divergence operator, as characterized by Proposition 4or equiv-
alently Proposition 5, is a steady equilibrium of the GFq-based
SUPG.

Proof. If (65) is true, then both the divergence and the stabi-
lization terms in the 𝑢 and 𝑣 equations vanish:

𝐷𝑥 ⊗ (𝐷𝑦𝐼𝑦)𝑢 + (𝐷𝑥𝐼𝑥)⊗𝐷𝑦𝑣 = (𝐷𝑥 ⊗𝐷𝑦)(1𝑥 ⊗ 𝐼𝑦𝑢 + 𝐼𝑥 ⊗ 1𝑦𝑣)

= (𝐷𝑥 ⊗𝐷𝑦)(𝑈 + 𝑉 ) = 0

and also

𝛼 ℎ
(
𝐷𝑥

𝑥 ⊗ (𝐷𝑦𝐼𝑦)𝑢 + (𝐷𝑥
𝑥𝐼𝑥)⊗𝐷𝑦𝑣

)
= 𝛼 ℎ(𝐷𝑥

𝑥 ⊗ 𝐷𝑦)
(
1𝑥 ⊗ 𝐼𝑦𝑢 + 𝐼𝑥 ⊗ 1𝑦𝑣

)
= 𝛼 ℎ(𝐷𝑥

𝑥 ⊗ 𝐷𝑦)(𝑈 + 𝑉 ) = 0

and similarly for the 𝑣 equation. ◽

Using the characteristic polynomial/Fourier representation of
the scheme, as done in Section 3.1, one immediately confirms for
the case of ℚ1 FEM that, independently on further choices

det 𝔽𝑡𝑥,𝑡𝑦 () = 0 (91)

and that the right kernel of 𝔽𝑡𝑥,𝑡𝑦 () (related stationary states) is
parallel to

(−𝔽𝑡𝑥 (𝐼𝑥), 𝔽𝑡𝑦 (𝐼𝑦), 0)T (92)

The above property shows one of the key differences to the
scheme of Section 3.1: the kernel of the stabilization includes
that of the divergence, in particular, it contains equilibria that
have physical meaning, and are characterized by Theorem 4 and
Proposition 5. The kernel of the divergence, however, may also
contain non-physical modes. This aspect is discussed in more
detail in Section 5.3.

5.2 | Gfq Stabilization Operators: OSS

Proceeding similarly we construct a GFq version of the OSS sta-
bilization, whose discrete equations are obtained from

∫ 𝜑ℎ(𝜕𝑡𝑢ℎ + 𝜕𝑥𝑝ℎ)𝑑𝑥

+ ∫ 𝛼 ℎ𝜕𝑥𝜑ℎ(𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ) −𝑤∇⋅u
ℎ )𝑑𝑥 = 0, ∀𝜑ℎ ∈ 𝑉 𝐾

ℎ

∫ 𝜑ℎ(𝜕𝑡𝑣ℎ + 𝜕𝑦𝑝ℎ)𝑑𝑥

+ ∫ 𝛼 ℎ𝜕𝑦𝜑ℎ(𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ) −𝑤∇⋅u
ℎ )𝑑𝑥 = 0, ∀𝜑ℎ ∈ 𝑉 𝐾

ℎ

∫ 𝜑ℎ(𝜕𝑡𝑝ℎ + 𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ))𝑑𝑥

+ ∫ 𝛼 ℎ𝜕𝑥𝜑ℎ(𝜕𝑥𝑝ℎ −𝑤
𝑝𝑥
ℎ
)𝑑𝑥

+ ∫ 𝛼 ℎ𝜕𝑦𝜑ℎ(𝜕𝑦𝑝 −𝑤𝑝𝑦 )𝑑𝑥 = 0, ∀𝜑ℎ ∈ 𝑉 𝐾
ℎ (93)

with the projections 𝑤∇⋅u
ℎ

, 𝑤𝑝
𝑥 and 𝑤𝑝

𝑦 defined by

⎧⎪⎨⎪⎩
∫ 𝜑ℎ

(
𝜕𝑥𝑦(𝑈ℎ + 𝑉ℎ) −𝑤∇⋅u

ℎ

)
𝑑𝑥 = 0

∫ 𝜑ℎ

(
𝜕𝑥𝑝ℎ −𝑤

𝑝𝑥
ℎ

)
𝑑𝑥 = 0

∫ 𝜑ℎ

(
𝜕𝑦𝑝ℎ −𝑤

𝑝𝑦
ℎ

)
𝑑𝑥 = 0

(94)

With the notation of Sections 3.2 and 5.1, we can show that the
evaluation of the above integrals leads to the following stabiliza-
tion terms for the velocity equations (compare with the OSS ones
in (55))

𝑠𝑢 = 𝛼ℎ
{
(𝑍𝑥 ⊗𝐷𝑦𝐼𝑦)𝑢 + (𝑍𝑥𝐼𝑥 ⊗ 𝐷𝑦)𝑣

}
𝑠𝑣 = 𝛼ℎ

{
(𝐷𝑥 ⊗𝑍𝑦𝐼𝑦)𝑢 + (𝐷𝑥𝐼𝑥 ⊗ 𝑍𝑦)𝑣

}
(95)

The pressure stabilization is identical to the standard case. This
leads to the final GFq form of the OSS stabilized scheme:

𝐶

𝑑q
𝑑𝑡

+ C-GFqq + OSS-GFqq = 0 (96a)

where

OSS-GFq ∶= 𝛼ℎ

⎛⎜⎜⎜⎝
𝑍𝑥 ⊗𝐷𝑦𝐼𝑦 𝑍𝑥𝐼𝑥 ⊗ 𝐷𝑦 0
𝐷𝑥 ⊗𝑍𝑦𝐼𝑦 𝐷𝑥𝐼𝑥 ⊗ 𝑍𝑦 0

0 0 𝑍𝑥 ⊗𝑀𝑦 +𝑀𝑥 ⊗𝑍𝑦

⎞⎟⎟⎟⎠
(96b)

As for SUPG with GFq, we can readily characterize the steady
states of this method.

Proposition 11 (Known equilibria of OSS-GFq). Any
state with constant pressure 𝑝 and velocities in the kernel of the
global flux divergence operator, as characterized by Theorem 4 or
equivalently Proposition 5, is a steady equilibrium of the GFq-based
OSS method.

Proof. The only thing we need to check is that the stabilization
terms (95) vanish. This is a trivial consequence of the hypothe-
ses made, which imply that not only all the terms in the pressure
stabilization vanish, but also (𝐷𝑥 ⊗𝐷𝑦)(𝑈ℎ + 𝑉ℎ) and 𝑤∇⋅u

ℎ
. ◽

For ℚ1, the right kernel is the same as for the SUPG (92).

Again, the above property is a major difference to the scheme
of Section 3.2: the stabilization shares with the non-stabilized
scheme its kernel of equilibria, characterized by Theorem 4 and
Proposition 5. As already remarked for the SUPG, these may not
be just the physically relevant ones, but the kernel might contain
non-physical modes. This aspect is discussed in more detail in
Section 5.3.

5.3 | Kernel of Derivative Operators

Elements of the kernel of the GFq divergence operator are also
contained in the kernel of the full discretization schemes pro-
posed, including the stabilization, and among them, one can
identify representatives of continuous stationary states. However,
in general, other steady states, i.e., spurious modes, may exist in
the kernel of the divergence operator. In this case, it is essential
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that such unphysical modes are not in the kernel of the stabiliza-
tion, so that they will be dissipated, if present.

One of the interesting features of the tensor-based GFq method
is that everything boils down to studying the (𝑈 + 𝑉 ) variable
instead of the two variables 𝑢 and 𝑣 independently, and informa-
tion on one-dimensional kernels can be very easily applied to the
multi-dimensional case. This section is devoted to the study of
the impact of the SUPG and OSS stabilization on spurious modes
contained in the kernel of the discrete divergence.

5.3.1 | One Dimensional Kernels

Before dealing with two dimensions consider one-dimensional
operators. To do so, let us introduce another simplified notation
for the following FEM spaces

𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) =

{
𝑞 ∈ 0(Ω𝑥

Δ𝑥) ∶ 𝑞|𝐸 ∈ ℙ𝐾 (𝐸), ∀𝐸 ∈ Ω𝑥
Δ𝑥

}
(97a)

𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥) =

{
𝑞 ∈ 0(Ω𝑥

Δ𝑥) ∶ 𝑞|𝐸 ∈ ℙ𝐾 (𝐸), ∀𝐸 ∈ Ω𝑥
Δ𝑥

and 𝑞(𝑥) = 0 ∀𝑥 ∈ 𝜕Ω𝑥
Δ𝑥

}
(97b)

𝑉 𝐾−1
Δ𝑥,𝑏 (Ω

𝑥
Δ𝑥) =

{
𝑞 ∈ 𝐿2(Ω𝑥

Δ𝑥) ∶ 𝑞|𝐸 ∈ ℙ𝐾−1(𝐸), ∀𝐸 ∈ Ω𝑥
Δ𝑥

}
(97c)

In order to study the derivative operators, we do not impose any
boundary conditions that could introduce further constraints. We
are looking for the kernel of the following operators defined on
𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) ∋ 𝑢ℎ

𝐷𝑥𝑢 ∶= ∫Ω𝑥
Δ𝑥

𝜑𝑥(𝑥)𝜕𝑥𝑢ℎ(𝑥), ∀𝜑𝑥 ∈ 𝑉 𝐾
0 (Ω𝑥

Δ𝑥) (98)

𝐷𝑥
𝑥𝑢 ∶= ∫Ω𝑥

Δ𝑥

𝜕𝑥𝜑
𝑥(𝑥)𝜕𝑥𝑢ℎ(𝑥), ∀𝜑𝑥 ∈ 𝑉 𝐾

0 (Ω𝑥
Δ𝑥) (99)

We observe that 𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) ∼ ℝ𝑁𝑥×𝐾+1, 𝑉 𝐾

Δ𝑥,0(Ω
𝑥
Δ𝑥) ∼ ℝ𝑁𝑥×𝐾−1,

so the linear operators can be equivalently seen as 𝐷𝑥,𝐷
𝑥
𝑥 ∶

ℝ𝑁𝑥×𝐾+1 → ℝ𝑁𝑥×𝐾−1. Then it is clear that there is a non-empty
kernel of dimension at least 2 for these operators. The trivial con-
stant state is of course part of both kernels. This gives us a hint
to study a simplified form of these operators. Observe that 𝑧ℎ ∶=
𝜕𝑥𝑢ℎ ∈ 𝑉 𝐾−1

Δ𝑥,𝑏
(Ω𝑥

Δ𝑥). Clearly, all the constant states 𝑢ℎ ≡ 𝑢0 ∈
ℝ vanish upon differentiation, as 𝜕𝑥 ∶ 𝑉 𝐾

ℎ
(Ω𝑥

Δ𝑥) ∼ ℝ𝑁𝑥×𝐾+1 →
𝑉 𝐾−1
Δ𝑥,𝑏

(Ω𝑥
Δ𝑥) ∼ ℝ𝑁𝑥×𝐾 has a one-dimensional kernel generated by

𝑢ℎ ≡ 1. This can be easily seen looking at each cell for functions
that are 𝜕𝑥𝑢ℎ = 0. Indeed, being 0 polynomials in each cell, it must
be that 𝑢ℎ is constant in every cell, and, being continuous, it must
be a constant over the whole domain.

Consider therefore new operators 𝐷̃𝑥, 𝐷̃
𝑥

𝑥 ∶ 𝑉 𝐾−1
Δ𝑥,𝑏

(Ω𝑥
Δ𝑥) ∼

ℝ𝑁𝑥×𝐾 → 𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥) ∼ ℝ𝑁𝑥×𝐾−1 defined as

𝐷̃𝑥𝑧 ∶= ∫Ω𝑥
Δ𝑥

𝜑(𝑥)𝑧ℎ(𝑥), ∀𝜑 ∈ 𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥) (100)

𝐷̃
𝑥

𝑥𝑧 ∶= ∫Ω𝑥
Δ𝑥

𝜕𝑥𝜑(𝑥)𝑧ℎ(𝑥), ∀𝜑 ∈ 𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥) (101)

Proposition 12 (Kernel characterization). 𝐷̃𝑥, 𝐷̃
𝑥

𝑥 ∶
ℝ𝑁𝑥×𝐾 → ℝ𝑁𝑥×𝐾−1 have kernels of dimension one. The kernel of
𝐷̃𝑥 is generated by a function that is discontinuous at each cell
interface, while the kernel of 𝐷̃

𝑥

𝑥 is generated by the constant
function 1.

The proof can be found in Appendix E.

Corollary 1. (Kernel characterization of 𝐷𝑥
𝑥, 𝑍𝑥 and

𝐷𝑥) Consider 𝐷𝑥,𝐷
𝑥
𝑥,𝑍𝑥 ∶ ℝ𝑁𝑥×𝐾+1 → ℝ𝑁𝑥×𝐾−1 defined with test

functions in 𝑉 𝐾
Δ𝑥,0 and trial functions in 𝑉 𝐾

Δ𝑥. The kernel of 𝐷𝑥
𝑥 is⟨1, 𝑥⟩, the kernel of 𝑍𝑥 contains ⟨1, 𝑥⟩, while the kernel of 𝐷𝑥 =⟨1, 𝑤⟩ with 𝑤 a non-constant function with discontinuities in the

first derivative at each cell interface. Moreover, the kernel of 𝑍𝑥 does
not contain 𝑤.

The proof is trivial for 𝐷𝑥
𝑥 and 𝐷𝑥, while the proof for 𝑍𝑥 can be

found in Appendix E.

Example 5.1. (Analysis of the one-dimensional operator
kernels for ℙ2) In the ℙ1 case, i.e., for Finite Differences, one
usually associates spurious modes with the checkerboard mode
𝑡𝑥 = −1. One can show that 𝐷𝑥 for ℙ2 Finite Elements has a
non-trivial kernel iff 𝑡𝑥 = 1. This does not mean, though, that it is
checkerboard-free, because

ker 𝔽𝑡𝑥 (𝐷𝑥) = span

{(
1
0

)
,

(
0
1

)}
(102)

and thus the values 𝑞𝑖,0 and 𝑞𝑖,1 can be specified independently.
The opposite case is exemplified by 𝐷𝑥

𝑥 whose kernel is also
non-trivial iff 𝑡𝑥 = 1, but

ker 𝔽𝑡𝑥 (𝐷
𝑥
𝑥) = span

{(
1
1

)}
(103)

such that it contains only uniform constants and no
checkerboards.

5.3.2 | Global Flux Operator Kernels in Two
Dimensions

When we consider the two-dimensional extension of these oper-
ators, we can still focus on similar function spaces, namely
𝑉 𝐾
ℎ
(Ωℎ), 𝑉 𝐾

ℎ,0(Ωℎ), 𝑉 𝐾−1
ℎ,𝑏

(Ωℎ), obtaining for (𝑈 + 𝑉 )ℎ ∈ 𝑉 𝐾
ℎ
(Ωℎ)

𝐷𝑥 ⊗𝐷𝑦(𝑈 + 𝑉 )

= ∫Ωℎ

𝜑(𝑥, 𝑦)𝜕𝑥𝜕𝑦(𝑈 + 𝑉 )ℎ(𝑥, 𝑦)d𝑥d𝑦, ∀𝜑 ∈ 𝑉 𝐾
ℎ,0(Ωℎ) (104)

𝐷𝑥
𝑥 ⊗ 𝐷𝑦(𝑈 + 𝑉 )

= ∫Ωℎ

𝜕𝑥𝜑(𝑥, 𝑦)𝜕𝑥𝜕𝑦(𝑈 + 𝑉 )ℎ(𝑥, 𝑦)d𝑥d𝑦, ∀𝜑 ∈ 𝑉 𝐾
ℎ,0(Ωℎ) (105)

𝐷𝑥 ⊗𝐷𝑦
𝑦(𝑈 + 𝑉 )

= ∫Ωℎ

𝜕𝑦𝜑(𝑥, 𝑦)𝜕𝑥𝜕𝑦(𝑈 + 𝑉 )ℎ(𝑥, 𝑦)d𝑥d𝑦, ∀𝜑 ∈ 𝑉 𝐾
ℎ,0(Ωℎ) (106)

Again, we notice that 𝑉 𝐾
ℎ
(Ωℎ) ∼ ℝ(𝑁𝑥𝐾+1)×(𝑁𝑦𝐾+1), 𝑉 𝐾

ℎ,0(Ωℎ) ∼
ℝ(𝑁𝑥𝐾−1)×(𝑁𝑦𝐾−1) and 𝑉 𝐾−1

ℎ,0 (Ωℎ) ∼ ℝ(𝑁𝑥𝐾)×(𝑁𝑦𝐾), and that
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the operator 𝜕𝑥𝜕𝑦 ∶ 𝑉 𝐾
ℎ
(Ωℎ) → 𝑉 𝐾−1

ℎ,0 (Ωℎ) has a kernel of
dimension 𝑁𝑥𝐾 +𝑁𝑦𝐾 + 1. Kernel bases trivially include
{(0, . . . , 0, 1, 0, . . . , 0)⊗ (1, . . . , 1)} (these are 𝑁𝑥𝐾 + 1), and
{(1, . . . , 1)⊗ (0, . . . , 0, 1, 0, . . . , 0)} (these are 𝑁𝑦𝐾 + 1). The
spaces generated by these two sets have an intersection which
is of dimension one and generated by (1, . . . , 1)⊗ (1, . . . , 1).
Hence, we have a clear description of the kernel of 𝜕𝑥𝜕𝑦 which
consists of the constant-by-line solutions: the interesting steady
states that are automatically in the kernel of all GF operators. We
can now focus on the spurious modes.

Define ̃𝐷𝑥 ⊗𝐷𝑦, ̃𝐷𝑥
𝑥 ⊗𝐷𝑦,

̃𝐷𝑥 ⊗𝐷𝑦
𝑦 ∶ 𝑉 𝐾−1

ℎ,𝑏
(Ωℎ) → 𝑉 𝐾

ℎ,0(Ωℎ) by
their actions on 𝑧ℎ ∈ 𝑉 𝐾−1

ℎ,𝑏
(Ωℎ) as

̃𝐷𝑥 ⊗𝐷𝑦𝑧ℎ = ∫Ωℎ

𝜑(𝑥, 𝑦)𝑧ℎ(𝑥, 𝑦)d𝑥d𝑦, ∀𝜑 ∈ 𝑉 𝐾
ℎ,0(Ωℎ)

(107a)

̃𝐷𝑥
𝑥 ⊗𝐷𝑦𝑧ℎ = ∫Ωℎ

𝜕𝑥𝜑(𝑥, 𝑦)𝑧ℎ(𝑥, 𝑦)d𝑥d𝑦, ∀𝜑 ∈ 𝑉 𝐾
ℎ,0(Ωℎ)

(107b)

̃𝐷𝑥 ⊗𝐷𝑦
𝑦𝑧ℎ = ∫Ωℎ

𝜕𝑦𝜑(𝑥, 𝑦)𝑧ℎ(𝑥, 𝑦)d𝑥d𝑦, ∀𝜑 ∈ 𝑉 𝐾
ℎ,0(Ωℎ)

(107c)

Note that ̃𝐷𝑥 ⊗𝐷𝑦 = 𝐷̃𝑥 ⊗ 𝐷̃𝑦, ̃𝐷𝑥
𝑥 ⊗𝐷𝑦 = 𝐷̃

𝑥

𝑥 ⊗ 𝐷̃𝑦 and
̃𝐷𝑥 ⊗𝐷𝑦

𝑦 = 𝐷̃𝑥 ⊗ 𝐷̃
𝑦

𝑦, and that the kernel of the Kronecker
product of two such operators is given by the space

ker(𝐴𝑥 ⊗ 𝐵𝑦) = ker(𝐴𝑥)⊗ 𝑉 𝐾
Δ𝑦(Ω

𝑦
Δ𝑦) + 𝑉 𝐾

Δ𝑥(Ω
𝑥
Δ𝑥)⊗ ker(𝐵𝑦)

(108)

Then, using Theorem 12, we can infer many things from the ker-
nel of the two-dimensional operators. First of all, we notice that

𝐷𝑥 ⊗𝐷𝑦Φ = 0 ⇔ Φ = Φ𝑥 + Φ𝑦

with Φ𝑥 ∈ ker(𝐷𝑥)⊗ℝ𝑁𝑦𝐾+1 and Φ𝑦 ∈ ℝ𝑁𝑥𝐾+1 ⊗ ker(𝐷𝑦). This
means that

Φ𝑥 = 1 ⊗ 𝑔1 +𝑤⊗ 𝑔2 with 𝑔1, 𝑔2 ∈ ℝ𝑁𝑦𝐾+1

Φ𝑦 = 𝑓1 ⊗ 1 + 𝑓2 ⊗𝑤 with 𝑓1, 𝑓2 ∈ ℝ𝑁𝑥𝐾+1 (109)

Let us focus on Φ𝑦, as the same holds for the 𝑥 component. We
can distinguish between the desired equilibria 𝑓1 ⊗ 1 and the
checkerboard spurious modes 𝑓2 ⊗𝑤. Clearly, 𝑓1 ⊗ 1 belongs
also to the kernel of the stabilization 𝐷𝑥 ⊗𝐷𝑦

𝑦 and 𝐷𝑥
𝑥 ⊗ 𝐷𝑦 as

1 ∈ ker(𝐷𝑦) and 1 ∈ ker(𝐷𝑦
𝑦); so the desired equilibria are pre-

served. At the same time,

(𝐷𝑥 ⊗𝐷𝑦
𝑦)(𝑓2 ⊗𝑤) ≠ 0 ⇔ 𝑓2 ∉ ker(𝐷𝑥)

So, the spurious modes of 𝐷𝑥 ⊗𝐷𝑦 are diffused away by the sta-
bilization operators, except for those generated by 1 ⊗𝑤,𝑤⊗ 1,
and 𝑤⊗𝑤. In principle, these modes could be filtered out by
boundary conditions or initial conditions.

Example 5.2. (Fourier analysis of the operator kernels
forℚ1) Recall that forℚ1 Finite Elements, the characteristic poly-
nomials of the relevant operators are

ker(𝐷𝑥 ⊗𝐷𝑦) =

{
Φ ∶

(𝑡2𝑥 − 1)
2𝑡𝑥Δ𝑥

(𝑡2𝑦 − 1)
2𝑡𝑦Δ𝑦

Φ = 0

}
(110a)

ker(𝐷𝑥
𝑥 ⊗ 𝐷𝑦) =

{
Φ ∶

(𝑡𝑥 − 1)2

𝑡𝑥Δ𝑥

(𝑡2𝑦 − 1)
2𝑡𝑦Δ𝑦

Φ = 0

}
(110b)

ker(𝐷𝑥 ⊗𝐷𝑦
𝑦) =

{
Φ ∶

(𝑡2𝑥 − 1)
2𝑡𝑥Δ𝑥

(𝑡𝑦 − 1)2

𝑡𝑦Δ𝑦
Φ = 0

}
(110c)

The kernel of𝐷𝑥 ⊗𝐷𝑦 contains functions that are either constant
in one of the directions, or are checkerboards 𝔠 ∈ ℭ in one of the
directions:

ℭ𝑥 = {𝜑 ≠ 0 ∶ (𝑡𝑥 + 1)𝜑 = 0},ℭ𝑦 = {𝜑 ≠ 0 ∶ (𝑡𝑦 + 1)𝜑 = 0}

ℭ ∶= ℭ𝑥 ∪ ℭ𝑦 (111)

One easily can verify the inclusions

ker(𝐷𝑥
𝑥 ⊗ 𝐷𝑦) ⊂ ker(𝐷𝑥 ⊗𝐷𝑦)

ker(𝐷𝑥 ⊗𝐷𝑦
𝑦) ⊂ ker(𝐷𝑥 ⊗𝐷𝑦) (112)

However, not all the checkerboards are damped by the numerical
diffusion:

𝔞 ∈ ℭ𝑥 ⇒

{
𝑎 ∉ ker(𝐷𝑥

𝑥 ⊗ 𝐷𝑦) if 𝑡2𝑦 ≠ 1
𝑎 ∈ ker(𝐷𝑥

𝑥 ⊗ 𝐷𝑦) if 𝑡2𝑦 = 1
(113)

The checkerboards not dissipated are

{𝜑 ≠ 0 ∶ (𝑡𝑥 + 1)(𝑡2𝑦 − 1)𝜑 = 0} ∪ {𝜑 ≠ 0 ∶ (𝑡𝑦 + 1)(𝑡2𝑥 − 1)𝜑 = 0}
(114)

5.4 | Discrete Involutions

Involutions of the SUPG-GFq matrix SUPG-GFq (90) can be found
[1] by using the characteristic polynomial/Fourier representation
of the scheme as done in Section 3.1.

The left kernel (the kernel of the transpose, related to the station-
ary involution) of SUPG-GFq in the ℚ1 case is parallel to

⎛⎜⎜⎜⎜⎝
𝔽𝑡𝑥 (𝐷𝑥)

(
𝔽𝑡𝑦 (𝐷𝑦)2𝔽𝑡𝑥 (𝑀𝑥) − 𝛼2ℎ2𝔽𝑡𝑦 (𝐷

𝑦
𝑦)
(
𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑥 (𝑀𝑥) + 𝔽𝑡𝑥 (𝐷

𝑥
𝑥)𝔽𝑡𝑦 (𝑀𝑦)

))
𝔽𝑡𝑦 (𝐷𝑦)

(
−𝔽𝑡𝑥 (𝐷𝑥)2𝔽𝑡𝑦 (𝑀𝑦) + 𝛼2ℎ2𝔽𝑡𝑥 (𝐷

𝑥
𝑥)
(
𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑥 (𝑀𝑥) + 𝔽𝑡𝑥 (𝐷

𝑥
𝑥)𝔽𝑡𝑦 (𝑀𝑦)

))
𝛼ℎ

(
−𝔽𝑡𝑥 (𝐷

𝑥
𝑥)𝔽𝑡𝑦 (𝐷𝑦)2𝔽𝑡𝑥 (𝑀𝑥) + 𝔽𝑡𝑥 (𝐷𝑥)2𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑦 (𝑀𝑦)

)
⎞⎟⎟⎟⎟⎠

𝑇

(115)

Observe that it does not depend on 𝐼𝑥, 𝐼𝑦.

Proposition 13 (Involutions of SUPG-GFq). There exist
𝐾2 discrete involutions remaining stationary for any initial data
subject to evolution according to SUPG-GFq with ℚ𝐾 FEM.

16 of 31 Numerical Methods for Partial Differential Equations, 2025
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Proof. We use the fact that the SUPG-GFq method for linear
acoustics can be written as a function of 𝑈 + 𝑉 and 𝑝, instead of
𝑢, 𝑣, 𝑝 individually. This is obvious from Equation (88). In partic-
ular the 3 × 3 (block) matrix 𝑆𝑈𝑃𝐺−GFq from (90b) can be writ-
ten as

𝑆𝑈𝑃𝐺−GFq

⎛⎜⎜⎜⎝
𝑢

𝑣

𝑝

⎞⎟⎟⎟⎠
=
⎛⎜⎜⎜⎝
𝛼ℎ𝐷𝑥

𝑥 ⊗ 𝐷𝑦 𝐷𝑥 ⊗𝑀𝑦

𝛼ℎ𝐷𝑥 ⊗ 𝐷𝑦
𝑦 𝑀𝑥 ⊗𝐷𝑦

𝐷𝑥 ⊗𝐷𝑦 𝛼ℎ𝐷𝑥
𝑥 ⊗𝑀𝑦 + 𝛼ℎ𝑀𝑥 ⊗𝐷𝑦

𝑦

⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶̂𝑆𝑈𝑃𝐺−GFq

(
𝑈 + 𝑉

𝑝

)
(116)

Matrix ̂𝑆𝑈𝑃𝐺−GFq, for ℚ𝑘 FEM, has 3𝐾2 rows and 2𝐾2 columns.
Its left kernel therefore is at least 𝐾2-dimensional. ◽

However, in practice, it is rather difficult to explicitly express the
preserved involution. In particular, one cannot simply extend the
result of ℚ1. Defining

 ∶= 𝐷𝑥
𝑥 ⊗𝑀𝑦 +𝑀𝑥 ⊗𝐷𝑦

𝑦

𝜔 ∶=

⎛⎜⎜⎜⎜⎝
𝐷𝑥

(
𝑀𝑥 ⊗𝐷2

𝑦 − 𝛼2ℎ2𝐷𝑦
𝑦

)
𝐷𝑦

(
−𝐷2

𝑥 ⊗𝑀𝑦 + 𝛼2ℎ2𝐷𝑥
𝑥)

𝛼ℎ
(
−𝑀𝑥𝐷

𝑥
𝑥 ⊗ 𝐷2

𝑦 +𝐷2
𝑥 ⊗𝑀𝑦𝐷

𝑦
𝑦

)
⎞⎟⎟⎟⎟⎠

T

(117)

we find
(𝜔̂) = (𝑣1 𝑣2)𝑇

with

𝑣1 = 𝛼ℎ
{
[𝐷𝑥,𝑀𝑥𝐷

𝑥
𝑥]⊗𝐷3

𝑦 +𝐷3
𝑥 ⊗ [𝑀𝑦𝐷

𝑦
𝑦,𝐷𝑦]

+ 𝛼2ℎ2
(
(𝐷𝑥

𝑥 ⊗ 𝐷𝑦)[, 𝐷𝑥 ⊗ 𝐷𝑦
𝑦] + [𝐷𝑥

𝑥 ⊗ 𝐷𝑦, (𝐷𝑥 ⊗𝐷𝑦
𝑦)]

)}
,

𝑣2 = 𝐷𝑥[𝑀𝑥,𝐷𝑥]⊗𝐷𝑦[𝐷𝑦,𝑀𝑦] + 𝛼2ℎ2[(𝐷𝑥
𝑥 ⊗ 𝐷𝑦),𝑀𝑥 ⊗ 𝐷𝑦]

+ 𝛼2ℎ2[𝐷𝑥 ⊗𝑀𝑦, (𝐷𝑥 ⊗𝐷𝑦
𝑦)]

The appearance of commutators in each term in general pre-
vent 𝜔 from being an involution. This is due to the fact that one
cannot perform the same computations with block matrices as
with usual matrices if the blocks do not commute. It is only for
𝐾 = 1 that the matrices reduce to scalars and (117) is indeed the
involution.

The left kernel of OSS-GFq in (96b) is, for ℚ1,

⎛⎜⎜⎜⎜⎝
𝔽𝑡𝑥,𝑡𝑦 (𝐷𝑦)𝔽𝑡𝑥,𝑡𝑦 (𝑀𝑥) + 𝛼2ℎ2𝑢

− 𝔽𝑡𝑥,𝑡𝑦 (𝐷𝑥)𝔽𝑡𝑥,𝑡𝑦 (𝑀𝑦) + 𝛼2ℎ2𝑣

𝛼ℎ

(
−

𝔽𝑡𝑥 ,𝑡𝑦 (𝐷
𝑥
𝑥)𝔽𝑡𝑥 ,𝑡𝑦 (𝐷𝑦)𝔽𝑡𝑥 ,𝑡𝑦 (𝑀𝑥)

𝔽𝑡𝑥 ,𝑡𝑦 (𝐷𝑥)
+

𝔽𝑡𝑥 ,𝑡𝑦 (𝐷𝑥)𝔽𝑡𝑥 ,𝑡𝑦 (𝐷
𝑦
𝑦)𝔽𝑡𝑥 ,𝑡𝑦 (𝑀𝑦)

𝔽𝑡𝑥 ,𝑡𝑦 (𝐷𝑦)

)
⎞⎟⎟⎟⎟⎠

(118)

where 𝑢 and 𝑣 are reported in Appendix D. It is a consistent
discretization of

(
𝜕𝑦,−𝜕𝑥, 0

)T.

5.5 | Time Discretization via Deferred
Correction

Our goal is to obtain an explicit high-order space-time discretiza-
tion. SUPG discretization (39c) produces a non-negligible mass
matrix that we would like to avoid in our discretization. The
Deferred Correction [31–33] can achieve high-order approxi-
mations without solving linear systems using two operators. It
works in an iterative procedure that gains one order of accuracy
at each iteration. One operator is a low-order approximation of
the formulation and it is auxiliary to the time discretization. Its
main objective is to provide an iterative solver. The second oper-
ator is a high-order time discretization of the semidiscrete prob-
lems presented above and its solution is the limit of the iterative
procedure.

More details on the implementation are summarized in
Appendix C.

6 | Numerical Results

In this section, we show the benefits of the proposed formula-
tion through various numerical tests. In all computations we have
used Gauss–Lobatto points both for interpolation and quadra-
ture. In all tests the time step is computed using a classical explicit
restriction, which accounts for the wave speeds {−1, 0, 1} associ-
ated to (1), and which reads

Δ𝑡 = CFL Δ𝑥

We have used CFL = 1∕10 for 𝐾 < 5, while for 𝐾 ≥ 5 we use
CFL = 1∕2(2𝐾 + 1). We refer to [20, 29] for a systematic study of
the above time-step limitations in the context of stabilized finite
elements.

6.1 | Convergence Analysis on a Smooth
Oblique Flow

To show the arbitrarily high-order property of the SUPG and
SUPG-GFq DeC-FEM methods of Section 4, we use a smooth
two-dimensional problem of an oblique wave on the square [0, 1]2

with periodic boundary conditions. Its analytical solution for the
linear acoustic equations (1) is

⎧⎪⎨⎪⎩
𝑢(𝑥, 𝑦, 𝑡) = − 1

2𝑐
(cos(𝛼𝜉(𝑥, 𝑦) + 𝑐𝑡) − cos(𝛼𝜉(𝑥, 𝑦) − 𝑐𝑡)) cos(𝜗)

𝑣(𝑥, 𝑦, 𝑡) = − 1
2𝑐
(cos(𝛼𝜉(𝑥, 𝑦) + 𝑐𝑡) − cos(𝛼𝜉(𝑥, 𝑦) − 𝑐𝑡)) sin(𝜗)

𝑝(𝑥, 𝑦, 𝑡) = 1
2
(cos(𝛼𝜉(𝑥, 𝑦) + 𝑐𝑡) + cos(𝛼𝜉(𝑥, 𝑦) − 𝑐𝑡))

(119)
with 𝛼 = 2𝜋

𝜆 cos(𝜗)
with 𝜗 = 𝜋

4
and 𝜆 = 1

4
. We run the simulations up

to 𝑇 = 1.

The errors are compared for the two methods in Figure 2 (for
𝑢). The SUPG and SUPG-GF methods provide very similar errors
and both of them converge with the expected order of accuracy.

6.2 | Divergence-Free Solutions

In this section, we will consider two analytical solutions that are
divergence-free. Both have the velocity field of a vortex and a
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FIGURE 2 | Oblique flow: convergence of 𝐿2 error in 𝑢 w.r.t. the number of elements in 𝑥.

FIGURE 3 | Simulation at time 𝑇 = 100 of the vortex (121) with 20 × 20 cells and ℙ1 elements for the SUPG (top) and SUPG-GF (bottom) schemes.

constant pressure. Both are defined on the unit square with
Dirichlet boundary conditions and centered in (𝑥0, 𝑦0) =
(0.5, 0.5). The first one is a compactly supported solution in
6, while the second one is used for convergence purposes and is
a ∞ compactly supported function. Both can be written as

⎧⎪⎨⎪⎩
𝑢(𝑥, 𝑦) = 𝑓 (𝜌(𝑥, 𝑦)) ⋅ (𝑦 − 𝑦0)
𝑣(𝑥, 𝑦) = −𝑓 (𝜌(𝑥, 𝑦)) ⋅ (𝑥 − 𝑥0)
𝑝(𝑥, 𝑦) = 1

(120)

with 𝜌(𝑥, 𝑦) =
√
(𝑥−𝑥0)2+(𝑦−𝑦0)2

𝑟0
with 𝑟0 = 0.45 the radius of the sup-

port. The first test case is defined by

𝑓 (𝜌) = 𝛾(1 + cos(𝜋𝜌))2 (121)

with 𝛾 = 12𝜋
√

0.981
𝑟0

√
315𝜋2−2048

, see [34] for the origin of these solutions.
The second is defined by

𝑓 (𝜌) = 2𝛾𝑒−
1

2(1−𝜌)2

√
𝑔

𝑟0(1 − 𝜌)3 (122)

with 𝑔 = 9.81, 𝛾 = 0.2 if 𝜌 < 1, else 0.

For the first vortex (121), let us consider some qualitative results
on a coarse mesh. In Figure 3, we compare the solution at time
𝑇 = 100 for ℚ1 SUPG and SUPG-GFq methods on a grid of 20 ×
20 cells. On the one hand, for long simulation times the SUPG
scheme leads to vertical/horizontal artifacts that are not physi-
cal and the pressure does not converge to a constant state. On
the other hand, the SUPG-GFq does not show this behavior and
converges to the divergence-free state with constant pressure. In
Figure 4, we compare the pressures for ℚ2 schemes and observe
the same behavior on a smaller scale. SUPG-GFq obtains a con-
stant pressure up to machine precision, while SUPG has oscilla-
tions of the order of 10−9.

18 of 31 Numerical Methods for Partial Differential Equations, 2025
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FIGURE 4 | Simulation at time 𝑇 = 100 of the vortex (121) (only 𝑝) with 10 × 10 cells and ℙ2 elements for the SUPG (left) and SUPG-GF (right)
schemes.

FIGURE 5 | Norm of the discrete divergence of v for SUPG (𝐷𝑥 ⊗𝑀𝑦𝑢 +𝑀𝑥 ⊗𝐷𝑦𝑣) and SUPG-GFq (𝐷𝑥 ⊗ (𝐷𝑦𝐼𝑦)𝑢 + (𝐷𝑥𝐼𝑥)⊗𝐷𝑦𝑣) as a function
of time for different orders of accuracy.

In Figure 5, we show the norm of the discrete divergence in time.
For the SUPG-GFq schemes, it decays exponentially until reach-
ing machine precision (higher orders decay faster than low-order
schemes). For the SUPG schemes the decay is much slower and
it depends heavily on the order of accuracy. In particular, the
second-order method is very inaccurate, while the fourth-order
scheme reaches small values of divergence at the final time.

For the smooth vortex (122), we test the convergence for arbitrar-
ily high-order at final time 𝑇 = 1. Although the solution is ∞,
the spatial derivatives of the solution are quite steep [34]. Hence,
it is not trivial to observe the right convergence rate for coarse
meshes. Nevertheless, in Tables 1–5 we see that all SUPG-GFq
solutions reach the expected order, while SUPG seems to struggle
at this objective. Moreover, the error magnitude for the GF formu-
lation is significantly smaller than for the classical one, as much
as by two orders of magnitude. In Figure 6, we depict the errors
for 𝑢 and the ratio of the SUPG errors and the SUPG-GFq ones.
SUPG-GFq methods of lower order can outperform the SUPG
method, see for instance how close SUPG-GFq-4 and SUPG-6 are.

6.3 | Perturbation of Divergence-Free Solutions

In this section, we study the behavior of the schemes when a per-
turbation is applied to an equilibrium state. Typically, one is not
aware of the steady state before running the simulation, more-
over, the class of steady states of (1) is quite rich and it is not
fully determined by an external datum, like for 1D or 1D-like
source-driven equilibria [35].

Several options are available to run such setups.

1. The first obvious possibility is to just use analytical initial
conditions to start the simulations. This, however, might
lead to a loss in accuracy in the early stages of the simula-
tions.

2. A second approach consists of running long time simu-
lations, reaching the equilibrium solution and adding the
perturbation afterward. This approach guarantees that a dis-
crete equilibrium is used as an initial condition. This strat-
egy is natural for simulations in which the equilibrium is
not known a priori. However, it can be expensive to run a
long time simulation, just to have a short simulation of the
perturbation.

3. Finally, discretely well-prepared initial data can be first
obtained and the perturbation added to those. We propose
two approaches to reach such a goal: an optimization of
the analytical initial condition constrained to the discrete
div-free property and a line-by-line reconstruction of the ini-
tial conditions. The description of the two strategies is given
in Section 4.3.

To start the discussion with the analytical initial condition, we
want to first check the amount of discrete divergence carried by
the analytical IC. We display in Figure 7 the norm of the discrete
divergence (𝐷̃𝑥𝑢 + 𝐷̃𝑦𝑣) of the analytical initial conditions of the
∞ vortex (122). We have used Gauss–Legendre polynomial ℙ𝑝

and see some super-convergence pattern. The divergence should
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TABLE 1 | Smooth vortex convergence results in ℙ1: without GF (left) and with GF (right).

𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑 𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑

20 4.36e−03 4.36e−03 2.06e−03 0.00 0.00 0.00 20 1.60e−03 1.60e−03 8.16e−04 0.00 0.00 0.00
40 1.17e−03 1.17e−03 4.19e−04 1.90 1.90 2.30 40 3.13e−04 3.13e−04 1.75e−04 2.35 2.35 2.22
80 2.44e−04 2.44e−04 9.47e−05 2.26 2.26 2.15 80 7.39e−05 7.39e−05 4.62e−05 2.08 2.08 1.92
160 4.79e−05 4.79e−05 2.35e−05 2.35 2.35 2.01 160 1.84e−05 1.84e−05 1.17e−05 2.00 2.00 1.98
320 1.01e−05 1.01e−05 5.78e−06 2.24 2.24 2.02 320 4.60e−06 4.60e−06 2.89e−06 2.00 2.00 2.02

TABLE 2 | Smooth vortex convergence results in ℙ2: without GF (left) and with GF (right).

𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑 𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑

10 5.06e−03 5.06e−03 1.87e−03 0.00 0.00 0.00 10 1.91e−03 1.91e−03 9.07e−04 0.00 0.00 0.00
20 1.61e−03 1.61e−03 4.45e−04 1.65 1.65 2.07 20 2.12e−04 2.12e−04 8.69e−05 3.17 3.17 3.38
40 4.16e−04 4.16e−04 6.95e−05 1.95 1.95 2.68 40 1.76e−05 1.76e−05 5.92e−06 3.59 3.59 3.87
80 1.03e−04 1.03e−04 1.22e−05 2.01 2.01 2.51 80 1.14e−06 1.14e−06 4.57e−07 3.95 3.95 3.70
160 2.32e−05 2.32e−05 2.43e−06 2.15 2.15 2.33 160 7.14e−08 7.14e−08 3.21e−08 4.00 4.00 3.83

TABLE 3 | Smooth vortex convergence results in ℙ3: without GF (left) and with GF (right).

𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑 𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑

6 7.32e−03 7.32e−03 2.61e−03 0.00 0.00 0.00 6 1.57e−03 1.57e−03 6.72e−04 0.00 0.00 0.00
13 1.21e−03 1.21e−03 3.25e−04 2.33 2.33 2.69 13 1.90e−04 1.90e−04 6.68e−05 2.73 2.73 2.99
26 1.84e−04 1.84e−04 1.63e−05 2.71 2.71 4.32 26 1.13e−05 1.13e−05 3.61e−06 4.07 4.07 4.21
53 1.69e−05 1.69e−05 1.04e−06 3.35 3.35 3.86 53 4.06e−07 4.06e−07 1.10e−07 4.67 4.67 4.90
106 1.29e−06 1.29e−06 6.62e−08 3.71 3.71 3.98 106 1.34e−08 1.34e−08 1.88e−09 4.92 4.92 5.87

TABLE 4 | Smooth vortex convergence results in ℙ4: without GF (left) and with GF (right).

𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑 𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑

5 4.30e−03 4.30e−03 1.44e−03 0.00 0.00 0.00 5 1.60e−03 1.60e−03 7.29e−04 0.00 0.00 0.00
10 8.86e−04 8.86e−04 1.09e−04 2.28 2.28 3.73 10 1.95e−04 1.95e−04 5.55e−05 3.04 3.04 3.72
20 8.87e−05 8.87e−05 6.96e−06 3.32 3.32 3.96 20 7.59e−06 7.59e−06 1.81e−06 4.68 4.68 4.94
40 5.47e−06 5.47e−06 2.59e−07 4.02 4.02 4.75 40 1.86e−07 1.86e−07 3.80e−08 5.35 5.35 5.57
80 3.35e−07 3.35e−07 1.48e−08 4.03 4.03 4.13 80 3.29e−09 3.29e−09 6.75e−10 5.82 5.82 5.82

TABLE 5 | Smooth vortex convergence results in ℙ5: without GF (left) and with GF (right).

𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑 𝑵 err 𝒖 err 𝒗 err 𝒑 ord 𝒖 ord 𝒗 ord 𝒑

4 4.25e−03 4.25e−03 1.16e−03 0.00 0.00 0.00 4 2.03e−03 2.03e−03 9.83e−04 0.00 0.00 0.00
8 6.68e−04 6.68e−04 8.80e−05 2.67 2.67 3.72 8 1.46e−04 1.46e−04 3.38e−05 3.80 3.80 4.86
16 5.35e−05 5.35e−05 2.93e−06 3.64 3.64 4.91 16 6.25e−06 6.25e−06 1.32e−06 4.55 4.55 4.68
32 2.87e−06 2.87e−06 1.22e−07 4.22 4.22 4.59 32 1.08e−07 1.08e−07 2.19e−08 5.85 5.85 5.91
64 8.52e−08 8.52e−08 2.48e−09 5.08 5.08 5.62 64 1.11e−09 1.11e−09 1.13e−10 6.61 6.61 7.60
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FIGURE 6 | Smooth vortex: convergence of 𝐿2 error of 𝑢 to the number of elements in 𝑥 (left) and error ratios between SUPG and SUPG-GFq (right).

FIGURE 7 | Smooth vortex: convergence of divergence operator on exact IC to the number of elements in 𝑥.

decay with order 𝑝, but we observe in most of the cases 𝑝 + 1 con-
vergence, and for ℙ2 we observe order 4. Comparing it with the
classical FEM divergence, in Figure 7, we observe that the GF
divergence is much more accurate and gains one extra order of
accuracy to the classical method (except for ℙ1 where also FEM
gains it and forℙ3 where GF-FEM gains 2 order of accuracy). Nev-
ertheless, such an error is still too high to preserve a perturbation
of an equilibrium.

Let us add a perturbation to the pressure in the form of a Gaussian
centered in 𝑥𝑝 = (0.4, 0.43) with scaling coefficient 𝑟0 = 0.1 and
radius defined as 𝜌(𝑥) =

√||𝑥 − 𝑥𝑝||∕𝑟0

𝛿𝑝(𝑥) = 𝜀𝑒
− 1

2(1−𝜌(𝑥))2
+ 1

2 (123)

until a final time 𝑇 = 0.35, obtaining the solution
(𝑢𝑝(𝑥, 𝑡), 𝑝𝑝(𝑥, 𝑡)).

In Figure 8, we do not apply any preprocessing, but we just run
the analytical perturbed solution as an initial condition. We com-
pare different meshes and orders to understand how the schemes
behave. The plot for order 4 and 26 × 26 cells with SUPG-GFq
shows the most accurate scheme we tested. For lower resolutions,
we observe a clear advantage of the SUPG-GFq scheme over the
SUPG only scheme, even if, it is easy to observe numerical noise
also for SUPG-GFq in the slightly coarser mesh configurations.
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FIGURE 8 | Perturbation (𝜀 = 10−2) test: analytical solution. Plot of ||u𝑒𝑞 − u𝑝||, with u𝑒𝑞 the analytical equilibrium (122). SUPG (top), SUPG-GFq
(bottom). Left ℙ1 with 80 × 80 cells, center ℙ3 with 13 cells, right ℙ3 with 26 cells.

FIGURE 9 | Perturbation (𝜀 = 10−3) test: line-by-line equilibrium solution, see Section 4.3. Plot of ||u𝑒𝑞 − u𝑝||, with u𝑒𝑞 the analytical equilibrium
(122). SUPG (top), SUPG-GFq (bottom). Left ℙ1 with 80 × 80 cells, center ℙ3 with 13 cells, right ℙ3 with 26 cells.

In the other setups studied, we can reduce the size of the
perturbation and still be able to see its evolution. In Figure 9,
we use the integral procedure to preprocess the data and
find the equilibrium, see Section 4.3, while in Figure 10,
we use the optimization procedure as described above. Once
the equilibrium is obtained, we add the perturbation 𝛿𝑝

and let the simulation run. We observe that the results,
even with a much smaller perturbation, are very accurate
for SUPG-GFq even for very coarse grids. To achieve com-
parable results, the standard SUPG scheme requires a very
fine mesh and high resolution to capture the motion of the
perturbation.

22 of 31 Numerical Methods for Partial Differential Equations, 2025
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FIGURE 10 | Perturbation (𝜀 = 10−3) test: optimal equilibrium solution, see Section 4.3. Plot of ||u𝑒𝑞 − u𝑝||, with u𝑒𝑞 the analytical equilibrium
(122). SUPG (top), SUPG-GFq (bottom). Left ℙ1 with 80 × 80 cells, center ℙ3 with 13 cells, right ℙ3 with 26 cells.

FIGURE 11 | Perturbation(𝜀 = 10−3) test: optimal equilibrium solution, see Section 4.3. Plot of ||u𝑒𝑞 − u𝑝||, with u𝑒𝑞 the analytical equilibrium (122).
OSS (top), OSS-GFq (bottom). Left ℚ1 with 80 × 80 cells, center ℚ3 with 13 cells, right ℚ3 with 26 cells.

In Figure 11, we start from the optimal equilibrium obtained

according to the procedure outlined in Definition 6, but we use

the OSS stabilization technique. There are less precise results, to

SUPG, as boundaries, in this case, influence the solutions more,

but the GF version is still very accurate for all the presented tests.
We only use OSS in this test for brevity.

Finally, in Figure 12, we use as an initial solution the long-time
simulation of the previous test (𝑇 = 100) with the SUPG-GFq
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FIGURE 12 | Perturbation test (𝜀 = 10−3): long time equilibrium solution. Plot of ||𝑢𝑒𝑞 − 𝑢𝑝||, with 𝑢𝑒𝑞 the analytical equilibrium (122). SUPG (top),
SUPG-GFq (bottom). Left ℚ1 with 80 × 80 cells, center ℚ3 with 13 cells, right ℚ3 with 26 cells.

FIGURE 13 | Riemann problem. Simulation at time 𝑇 = 0.4 with ℙ2 elements and 50 × 50 cells with SUPG-GFq scheme.

scheme that reaches convergence. We observe that adding a per-
turbation to such an initial condition leads to very clear results
for the SUPG-GFq scheme.

6.4 | Riemann Problem

We present in this section a two-dimensional Riemann problem
(RP) centered in 𝑥0 = (0.5, 0.5) on the unit squareΩ = [0, 1]2. The
initial conditions [36] are

𝑢(𝑥) =

{
1, if 𝑥 > 0.5 and 𝑦 > 0.5,
0, else,

𝑣(𝑥) = 0, 𝑝(𝑥) = 0

(124)

It has been shown [36] that the perpendicular component 𝑣 has
a logarithmic singularity in the center of the RP for 𝑡 > 0:

𝑣(𝑥, 𝑦, 𝑡) = 1
2𝜋


(√

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2

𝑐𝑡

)

(𝑠) ∶= log

(
1 +

√
1 − 𝑠2

𝑠

)
= − log

(
𝑠
2

)
− 𝑠2

4
+ (𝑠4) (125)

In Figure 13, we plot the solution for ℚ2 elements with the
SUPG-GFq method. Other resolutions and orders give quali-
tatively similar results. We can observe that some oscillations
appear due to the Gibbs phenomenon at the discontinuities of
the solution.

This can also be seen in Figure 14, where the solution 𝑣 is plotted
against the radius. We do not observe many differences between
SUPG and SUPG-GFq.
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FIGURE 14 | Riemann problem. Distribution of the solution 𝑣 for different elements and meshes. Left SUPG scheme, right SUPG-GFq scheme.

7 | Conclusions and Perspectives

In this paper, we have studied the preservation of steady states
for acoustics when using stabilized continuous finite elements.
We have shown that, despite their structure, classical grad-div
stabilizations as SUPG and OSS are in general not stationar-
ity preserving due to an incompatibility between the stabilizing
term and of the Galerkin one. Borrowing ideas from the so-called
Global Flux quadrature, we have proposed a new framework
allowing to construction of constraint-compatible stabilization
operators, which additionally are non-vanishing for at least some
of the unwanted spurious modes. We have characterized rigor-
ously the discrete kernel of the schemes obtained in terms of
stability, consistency, and characterized the corresponding curl
involutions using Fourier symbols. Numerical results confirm
the theoretical developments. Ongoing work involves the exten-
sion to non-homogeneous systems, e.g., the linearized shallow
water equations with Coriolis, friction, mass, and other sources,
as well as the extension to discontinuous polynomial approxi-
mations. The application to non-linear systems (shallow water
and Euler equations with gravity) is also under development.
The extension to non-Cartesian and unstructured grids is also
an interesting aspect. Adapting the algorithm to unstructured
quadrilateral meshes is in principle possible and necessitates only
the inclusion of the Jacobian of the transformation onto a refer-
ence element inside the integral procedure. For non-quadrilateral
meshes, e.g., triangular, the scheme would require a heavier
transformation. First of all, there would be a non-unique way
of applying the algorithm, as the principle could be applied dif-
ferently in each triangle (not uniformly oriented) or uniformly
on a reference element and then applying the pull-back; another
strategy is defined by using a quadrilateral reference element
that is mapped singularly on the physical ones [37]. After this,
it is not so straightforward to know a priori if these newly
found equilibria would still maintain the super-convergence
property observed in the Cartesian case, nor any sort of extra
accuracy. However, simplicial grids present a special case where
standard methods are often found to be already stationarity
preserving [38–40].
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Appendix A

Additional Definitions and Proofs

Example of High-Order Differences

Consider the mass matrix appearing in

Δ𝑥(𝑀𝑥𝑞)𝑖,𝑠 = ∫ 𝜑𝑥
𝑖,𝑠(𝑥)𝑞ℎ(𝑥)d𝑥

=
𝑁𝑥−1∑
𝑘=0

𝐾∑
𝑝=1

(
∫𝐸𝑥

𝑘

𝜑𝑥
𝑖,𝑠(𝑥)𝜑

𝑥
𝑘,𝑝(𝑥)d𝑥

)
𝑞𝑘,𝑝 (A1)

Then, by comparison with (24) one finds (using the translational invari-
ance)

𝛼𝑠
𝑘,𝑝 = ∫ℝ

𝜑0,𝑠𝜑𝑘,𝑝(𝑥)d𝑥 (A2)

Proof of Theorem 1

The characteristic polynomials of 𝐴 and 𝐵 are

(𝔽𝑡𝑥 (𝐴))𝑟,𝑠 =
∑
𝑘∈ℤ

𝛼𝑟
𝑘,𝑠𝑡

𝑘
𝑥 (𝔽𝑡𝑥 (𝐵))𝑟,𝑠 =

∑
𝑘∈ℤ

𝛽𝑟
𝑘,𝑠𝑡

𝑘
𝑥 (A3)

while that of 𝐴𝐵 is

(𝔽𝑡𝑥 (𝐴𝐵))𝑟,𝑠′ =
∑
𝑘∈ℤ

𝐾∑
𝑠=1

∑
𝑘′∈ℤ

𝛼𝑟
𝑘,𝑠𝛽

𝑠
𝑘′ ,𝑠′ 𝑡

𝑘+𝑘′
𝑥

=
𝐾∑
𝑠=1

∑
𝑘∈ℤ

𝛼𝑟
𝑘,𝑠𝑡

𝑘
𝑥

∑
𝑘′∈ℤ

𝛽𝑠
𝑘′ ,𝑠′ 𝑡

𝑘′

𝑥 =
𝐾∑
𝑠=1

(𝔽𝑡𝑥 (𝐴))𝑟,𝑠(𝔽𝑡𝑥 (𝐵))𝑠,𝑠′ (A4)

Rules of Computation for Tensor Products of Finite Difference
Operators

Proposition 14 (Fourier transform of the tensor product in the
high-order case). The characteristic polynomial 𝔽𝑡𝑥,𝑡𝑦 (𝐴⊗ 𝐵) of 𝐴⊗ 𝐵
is the standard Kronecker product of the polynomials of 𝐴 and 𝐵:

𝔽𝑡𝑥,𝑡𝑦 (𝐴⊗ 𝐵) = 𝔽𝑡𝑥 (𝐴)⊗ 𝔽𝑡𝑦 (𝐵) (A5)

Proof. Using the definition, we obtain

𝔽𝑡𝑥,𝑡𝑦 (𝐴⊗ 𝐵)𝑟,𝑧 =
∑

(𝑘,𝓁)∈ℤ2

𝐾∑
𝑠,𝑝=1

𝛼𝑟
𝑘,𝑠𝛽

𝑧
𝓁,𝑝𝑡

𝑘
𝑥𝑡

𝓁
𝑦

=
∑
𝑘∈ℤ

𝐾∑
𝑠=1

𝛼𝑟
𝑘,𝑠𝑡

𝑘
𝑥

∑
𝓁∈ℤ

𝐾∑
𝑝=1

𝛽𝑧
𝓁,𝑝𝑡

𝓁
𝑦 (A6)

which is the statement to be proven. ◽

Proposition 15. Consider high-order unidirectional difference formulas
on a two-dimensional grid

(𝐴𝑥𝑢)𝑖,𝑟 =
∑
𝑘∈ℤ

𝐾∑
𝑠=1

(𝛼𝑥)𝑟𝑘,𝑠𝑢𝑖+𝑘,𝑠, (𝐴𝑦𝑣)𝑗,𝑡 =
∑
𝓁∈ℤ

𝐾∑
𝑝=1

(𝛼𝑦)𝑡𝓁,𝑝𝑣𝑗+𝓁,𝑝

(𝐵𝑥𝑢)𝑖,𝑟 =
∑
𝑘∈ℤ

𝐾∑
𝑠=1

(𝛽𝑥)𝑟𝑘,𝑠𝑢𝑖+𝑘,𝑠, (𝐵𝑦𝑣)𝑗,𝑡 =
∑
𝓁∈ℤ

𝐾∑
𝑝=1

(𝛽𝑦)𝑡𝓁,𝑝𝑞𝑗+𝓁,𝑝 (A7)

The composition of tensor products is the tensor product of compositions:

(𝐴𝑥 ⊗ 𝐴𝑦)(𝐵𝑥 ⊗ 𝐵𝑦) = (𝐴𝑥𝐵𝑥)⊗ (𝐴𝑦𝐵𝑦) (A8)

Proof. Simply insert the definitions:

((𝐴𝑥 ⊗ 𝐴𝑦)(𝐵𝑥 ⊗ 𝐵𝑦)𝑞)𝑟𝑡𝑖𝑗 =

( ∑
(𝑘,𝓁)∈ℤ2

𝐾∑
𝑠,𝑝=1

(𝛼𝑥)𝑟𝑘,𝑠(𝛼
𝑦)𝑡𝓁,𝑝𝑞𝑖+𝑘,𝑠;𝑗+𝓁,𝑝

)

×

( ∑
(𝑘,𝓁)∈ℤ2

𝐾∑
𝑠,𝑝=1

(𝛽𝑥)𝑟,𝑡
𝑘,𝑠;𝓁,𝑝(𝛽

𝑦)𝑡𝓁,𝑝𝑞𝑖+𝑘,𝑠;𝑗+𝓁,𝑝

)

=
∑

(𝑘,𝓁)∈ℤ2

∑
(𝑘′ ,𝓁′ )∈ℤ2

𝐾∑
𝑠,𝑝=1

𝐾∑
𝑠′ ,𝑝′=1

(𝛼𝑥)𝑟𝑘,𝑠(𝛼
𝑦)𝑡𝓁,𝑝(𝛽

𝑥)𝑟𝑘′ ,𝑠′ (𝛽
𝑦)𝑡𝓁′ ,𝑝′

× 𝑞𝑖+𝑘+𝑘′ ,𝑠′ ;𝑗+𝓁+𝓁′ ,𝑝′

=
∑
𝑘∈ℤ

∑
𝑘′∈ℤ

𝐾∑
𝑠=1

𝐾∑
𝑠′=1

(𝛼𝑥)𝑟𝑘,𝑠(𝛽
𝑥)𝑟𝑘′ ,𝑠′

×
∑
𝓁∈ℤ

∑
𝓁′∈ℤ

𝐾∑
𝑝=1

𝐾∑
𝑝′=1

(𝛼𝑦)𝑡𝓁,𝑝(𝛽
𝑦)𝑡𝓁′ ,𝑝′𝑞𝑖+𝑘+𝑘′ ,𝑠′ ;𝑗+𝓁+𝓁′ ,𝑝′

= ((𝐴𝑥𝐵𝑥)⊗ (𝐴𝑦𝐵𝑦)𝑞)𝑟𝑡𝑖𝑗 .
◽

Appendix B

OSS Derivation

We first consider the projection which can be written as

⎧⎪⎨⎪⎩
𝑤∇⋅u = (𝑀𝑥 ⊗𝑀𝑦)−1((𝐷𝑥 ⊗𝑀𝑦)𝑢 + (𝑀𝑥 ⊗𝐷𝑦)𝑣)
𝑤𝑝

𝑥 = (𝑀𝑥 ⊗𝑀𝑦)−1(𝐷𝑥 ⊗𝑀𝑦)𝑝
𝑤𝑝

𝑦 = (𝑀𝑥 ⊗𝑀𝑦)−1(𝑀𝑥 ⊗𝐷𝑦)𝑝
(B1)

Then, inserting these definitions into the stabilization terms we can show
the following for the horizontal velocity

𝑠𝑢 = 𝛼ℎ
[
(𝐷𝑥

𝑥 ⊗𝑀𝑦)𝑢 + (𝐷𝑥 ⊗𝐷𝑦)𝑣 − (𝐷𝑥 ⊗𝑀𝑦)(𝑀𝑥 ⊗𝑀𝑦)−1

× ((𝐷𝑥 ⊗𝑀𝑦)𝑢 + (𝑀𝑥 ⊗𝐷𝑦)𝑣)
]

= 𝛼ℎ
[
(𝐷𝑥

𝑥 ⊗𝑀𝑦)𝑢 + (𝐷𝑥 ⊗𝐷𝑦)𝑣 − (𝐷𝑥𝑀−1
𝑥 𝐷𝑥 ⊗𝑀𝑦)

× 𝑢 − (𝐷𝑥 ⊗𝐷𝑦)𝑣
]

= 𝛼ℎ
[
(𝐷𝑥

𝑥 ⊗𝑀𝑦)𝑢 − (𝐷𝑥𝑀−1
𝑥 𝐷𝑥 ⊗𝑀𝑦)𝑢

]
= ((𝐷𝑥

𝑥 −𝐷𝑥𝑀−1
𝑥 𝐷𝑥)⊗𝑀𝑦)𝑢 (B2)

which provides a coupled matrix representation of the stabilization
term. Introducing the matrices 𝑍𝑥 ∶= 𝐷𝑥

𝑥 −𝐷𝑥𝑀−1
𝑥 𝐷𝑥 and 𝑍𝑦 ∶= 𝐷𝑦

𝑦 −
𝐷𝑦𝑀−1

𝑦 𝐷𝑦, the OSS stabilization terms can be written in semi-discrete
form as

𝑠𝑢 = 𝛼ℎ𝑀𝑦 ⊗ 𝑍𝑥𝑢 (B3)

𝑠𝑣 = 𝛼ℎ𝑀𝑥 ⊗𝑍𝑦𝑣 (B4)

𝑠𝑝 = 𝛼ℎ(𝑀𝑦 ⊗𝑍𝑥 +𝑀𝑥 ⊗𝑍𝑦)𝑝 (B5)
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Appendix C

Time Stepping via Deferred Correction

In Equation (37), we have described the classical SUPG discretization of
the linear acoustic system within a time-continuous framework, while in
(89) we have modified the spatial discretization to obtain a GF formula-
tion that is vorticity preserving. Similarly, in Section 5.2 we have intro-
duced the spatial discretization of the OSS and its GF version. The goal of
this section is to introduce an arbitrarily high-order time discretization.

The deferred correction is a class of arbitrarily high-order time integra-
tions that are based on a space-time residual formulation [31, 41, 42].
This residual is then approximated with a certain level of accuracy that
matches the order of the space-time discretization. We start by intro-
ducing Lagrangian basis functions in time (we will use Gauss-Lobatto
Lagrangian basis functions). Then, we define 2-time operators, following
[32]: a high-order one that corresponds to an implicit collocation RK, in
this case to the Lobatto IIIA, and a low-order one that corresponds to an
explicit RK, in our case the explicit Euler method. The implicit high-order
operator will be based on the residual that we want to minimize, while the
explicit one is a simple aid to set up an iterative process.

The implicit operator can be seen as a high-order FEM discretization in
space and time. We focus, for simplicity, on the ODE

𝑢′ + 𝐹 (𝑢) = 0 (C1)

inside one timestep [𝑡𝑛, 𝑡𝑛+1], as for every one-step method. In this
timestep, we define 𝑀 sub-timesteps through 𝑀 + 1 sub-timenodes 𝑡𝑛 =
𝑡0 < . . . < 𝑡𝑚 < . . . < 𝑡𝑀 = 𝑡𝑛+1 and the Lagrangian interpolating poly-
nomials 𝛾𝑟(𝑡) for 𝑟 = 0, . . . ,𝑀 . We then denote with the superscript 𝑟
the approximation of the solution 𝑞 at the sub-timenode 𝑡𝑟, i.e., 𝑞𝑟 ≈
𝑞(𝑡𝑟). Now, for each sub-timenode 𝑚 = 1, . . . ,𝑀 , the high-order time dis-
cretization operator reads

𝑇 2,𝑚(𝑞) = 𝑞𝑚 − 𝑞0

Δ𝑡
+ 1

Δ𝑡∫
𝑡𝑚

𝑡0
𝐹

(
𝑀∑
𝑟=0

𝛾𝑟(𝑡)𝑞𝑟
)

𝑑𝑡 (C2)

Then, using as quadrature points the same Lagrangian sub-time nodes,
we have

𝑇 2,𝑚(𝑞) = 𝑞𝑚 − 𝑞0

Δ𝑡
+

𝑀∑
𝑟=0

1
Δ𝑡∫

𝑡𝑚

𝑡0
𝛾𝑟(𝑡) 𝑑𝑡 𝐹 (𝑞𝑟)

= 𝑞𝑚 − 𝑞0

Δ𝑡
+

𝑀∑
𝑟=0

𝜗𝑚
𝑟 𝐹 (𝑞𝑟) (C3)

with 𝜗𝑚
𝑟 = 1

Δ𝑡
∫ 𝑡𝑚

𝑡0 𝛾𝑟(𝑡)𝑑𝑡, which are independent onΔ𝑡. The simple explicit
Euler operator, instead, will read

𝑇 1,𝑚(𝑞) = 𝑞𝑚 − 𝑞0

Δ𝑡
+

𝑀∑
𝑟=0

1
Δ𝑡∫

𝑡𝑚

𝑡0
𝛾𝑟(𝑡) 𝑑𝑡 𝐹

(
𝑞0)

= 𝑞𝑚 − 𝑞0

Δ𝑡
+ 𝛽𝑚𝐹

(
𝑞0) (C4)

with 𝛽𝑚 = 𝑡𝑚−𝑡0

Δ𝑡
. Moreover, as in our case, mass matrices or more complex

spatial discretizations can be included in both operators. One can further
simplify the 𝑇 1 operator by using a lumped first-order approximation ver-
sion of the mass matrix in front of the term 𝑞𝑚−𝑞0

Δ𝑡
, leading to an explicit

matrix-free solver for 𝑇 1(𝑞) = 𝑟.

The DeC iterative method is then defined as

⎧⎪⎨⎪⎩
𝑞(0) = 𝑞(𝑡0) = 𝑞𝑛,

𝑇 1(𝑞(𝑝)) = 𝑇 1(𝑞(𝑝−1)) − 𝑇 2(𝑞(𝑝−1)), for 𝑝 = 1, . . . , 𝑃
𝑞𝑛+1 = 𝑞(𝑃 )(𝑡𝑀 ),

(C5)

with 𝑃 being the order of accuracy of the scheme. Notice that each itera-
tion 𝑝 implies the solution of 𝑀 systems that are explicit and matrix-free.
Hence, for each time step, in total, we need to compute around𝑀𝑃 equiv-
alent RK stages, more precisely 𝑀(𝑃 − 1) + 1.

Proposition 16. (Order of accuracy of DeC time integrator [43,
44]) The order of accuracy of the DeC is the minimum between the
number of iterations 𝑃 and the order of the time discretization 𝑄. For
Gauss–Lobatto nodes it is min(𝑃 , 2𝑀), with 𝑀 the number of the sub-time
steps.

Now, for clarity, we discuss the SUPG/OSS spatial discretization in the
matrix formulation introduced in (39c) and in (56), respectively. We will
give in Appendix C.0.1 the expansion of the space-time discretization in
each equation, for ease in reproducibility (only for the SUPG case). The
𝑇 2 operator encompasses the SUPG/OSS residual, so, differently from the
ODE case, we have to insert also the mass matrix term. It is defined for
𝑚 = 1, . . . ,𝑀 as

𝑇 2,𝑚(𝑞) =  𝑞𝑚 − 𝑞0

Δ𝑡
+

𝑀∑
𝑟=0

𝜗𝑚
𝑟 𝑞𝑟 (C6)

On the other side, the 𝑇 1 low-order operator is a simplified version of
𝑇 2, in particular, the mass matrix is a simple lumped version of the mass
matrix, i.e., (𝐿𝑥)𝛼,𝛽 = 𝛿𝛼,𝛽 ∫Ω𝑥

Δ𝑥
𝜑𝑥

𝛼(𝑥)d𝑥, which we define as

 ∶=
⎛⎜⎜⎜⎝
𝐿𝑥 ⊗ 𝐿𝑦 0 0

0 𝐿𝑥 ⊗ 𝐿𝑦 0
0 0 𝐿𝑥 ⊗ 𝐿𝑦

⎞⎟⎟⎟⎠ (C7)

Hence, the 𝑇 1 operator can be defined for 𝑚 = 1, . . . ,𝑀 as

𝑇 1,𝑚(𝑞) =  𝑞𝑚 − 𝑞0

Δ𝑡
+ 𝛽𝑚𝑞0 (C8)

The update formula in (C5), after the simplification of the terms in the 𝑇 1

operators reads for every 𝑝 = 1, . . . , 𝑃 and every 𝑚 = 1, . . . ,𝑀

0 =  𝑞(𝑝),𝑚 − 𝑞(𝑝−1),𝑚

Δ𝑡
+ 𝑞(𝑝−1),𝑚 − 𝑞0

Δ𝑡
+

𝑀∑
𝑟=0

𝜗𝑚
𝑟 𝑞(𝑝−1),𝑟 (C9)

where 𝑞(𝑝),𝑚 is the only unknown term and  is a diagonal matrix.

Proposition 17 (Order of accuracy of the space-time DeC). The
SUPG–DeC/OSS–DeC space-time discretization presented above is of order
min(𝐾 + 1, 2𝑀,𝑃 ).

Proof. The proof follows the ones of [32, 43] with the details on the
SUPG/OSS discretization defined in [20, 29]. ◽

Proposition 18 (Steady states of the DeC). If 𝑞 is such that 𝑞 = 0,
then 𝑞 is a steady state of the DeC, i.e., if 𝑞𝑛 = 𝑞 then 𝑞𝑛+1 = 𝑞.

Proof. We proceed by induction on 𝑝, for all𝑚, showing that 𝑞(𝑝),𝑚 = 𝑞𝑛 =
𝑞. By definition of the DeC, for 𝑝 = 0 we set all 𝑞(0),𝑚 = 𝑞 and for 𝑚 = 0 we
set all 𝑞(𝑝),0 = 𝑞. Then, for 𝑝 = 1, . . . , 𝑃 and 𝑚 = 1, . . . ,𝑀 we have that

𝑞(𝑝),𝑚 = 𝑞(𝑝−1),𝑚 − −1(𝑞(𝑝−1),𝑚 − 𝑞0) − Δ𝑡−1

𝑀∑
𝑟=0

𝜗𝑚
𝑟 𝑞(𝑝−1),𝑟 = 𝑞(𝑝−1),𝑚 = 𝑞 (C10)

as for 𝑝 − 1 we have that 𝑞(𝑝−1),𝑟 = 0 for all 𝑟 = 0, . . . ,𝑀 and that
𝑞(𝑝−1),𝑚 = 𝑞0 = 𝑞 for all 𝑚 = 1, . . . ,𝑀 . Hence, also 𝑞𝑛+1 = 𝑞(𝑃 ),𝑀 = 𝑞. ◽

The consequence of this theorem is that for the SUPG-GFq and OSS-GFq
discretizations  , we know a class of steady states, hence, the DeC time
integration method will preserve them. This allows us to easily converge
towards the steady states, or to set up initial conditions that verify the
condition 𝑞 = 0 and to preserve them.
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Fully Discrete 𝑻 2 SUPG Operators

As an example, we explicitly list here the 𝑇 2 operator for the SUPG stabi-
lization. We recall that indexes𝑚, 𝑟 are devoted to sub-time nodes, indexes
𝑖, 𝑗 are devoted to degrees of freedom, index 𝑑 is for dimension, and 𝑠,𝑤

is for variable index. We start first with the classical SUPG operator, cor-
responding to the matrix formulation (C6):

𝑇 2,𝑚
𝑢 (𝑞) = 𝑀𝑥 ⊗𝑀𝑦

𝑢𝑚 − 𝑢0

Δ𝑡
+𝐷𝑥 ⊗𝑀𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑝

𝑟 + 𝛼ℎ

×

(
𝐷𝑥 ⊗𝑀𝑦

𝑝𝑚 − 𝑝0

Δ𝑡
+𝐷𝑥

𝑥 ⊗𝑀𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑢

𝑟 +𝐷𝑥 ⊗𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑣

𝑟

)
(C11a)

𝑇 2,𝑚
𝑣 (𝑞) = 𝑀𝑥 ⊗𝑀𝑦

𝑣𝑚 − 𝑣0

Δ𝑡
+𝑀𝑥 ⊗𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑝

𝑟 + 𝛼ℎ

×

(
𝑀𝑥 ⊗𝐷𝑦 𝑝

𝑚 − 𝑝0

Δ𝑡
+𝐷𝑥 ⊗𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑢

𝑟 +𝑀𝑥 ⊗𝐷𝑦
𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑣

𝑟

)
(C11b)

𝑇 2,𝑚
𝑝 (𝑞) = 𝑀𝑥 ⊗𝑀𝑦

𝑝𝑚 − 𝑝0

Δ𝑡
+𝐷𝑥 ⊗𝑀𝑦

×
∑
𝑟

𝜗𝑚
𝑟 𝑢

𝑟 +𝑀𝑥 ⊗𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑣

𝑟+

× 𝛼ℎ

(
𝐷𝑥 ⊗𝑀𝑦

𝑢𝑚 − 𝑢0

Δ𝑡
+𝑀𝑥 ⊗𝐷𝑦 𝑣

𝑚 − 𝑣0

Δ𝑡

+ (𝐷𝑥
𝑥 ⊗𝑀𝑦 +𝑀𝑥 ⊗𝐷𝑦

𝑦)
∑
𝑟

𝜗𝑚
𝑟 𝑝

𝑟

)
(C11c)

Now, we describe the SUPG-GFq 𝑇 2 operators, corresponding to the
semidiscrete (89)

𝑇 2,𝑚
𝑢 (𝑞) = 𝑀𝑥 ⊗𝑀𝑦

𝑢𝑚 − 𝑢0

Δ𝑡
+𝐷𝑥 ⊗𝑀𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑝

𝑟 + 𝛼ℎ

×

(
𝐷𝑥 ⊗𝑀𝑦

𝑝𝑚 − 𝑝0

Δ𝑡
+𝐷𝑥

𝑥 ⊗ 𝐷𝑦𝐼𝑦
∑
𝑟

𝜗𝑚
𝑟 𝑢

𝑟

+ 𝐷𝑥
𝑥𝐼𝑥 ⊗ 𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑣

𝑟

)

𝑇 2,𝑚
𝑣 (𝑞) = 𝑀𝑥 ⊗𝑀𝑦

𝑣𝑚 − 𝑣0

Δ𝑡
+𝑀𝑥 ⊗𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑝

𝑟 + 𝛼ℎ

×

(
𝑀𝑥 ⊗𝐷𝑦 𝑝

𝑚 − 𝑝0

Δ𝑡
+𝐷𝑥 ⊗𝐷𝑦

𝑦𝐼𝑦
∑
𝑟

𝜗𝑚
𝑟 𝑢

𝑟

+ 𝐷𝑥𝐼𝑥 ⊗ 𝐷𝑦
𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑣

𝑟

)

𝑇 2,𝑚
𝑝 (𝑞) = 𝑀𝑥 ⊗𝑀𝑦

𝑝𝑚 − 𝑝0

Δ𝑡
+𝐷𝑥 ⊗𝐷𝑦𝐼𝑦∑

𝑟

𝜗𝑚
𝑟 𝑢

𝑟 +𝐷𝑥𝐼𝑥 ⊗ 𝐷𝑦

∑
𝑟

𝜗𝑚
𝑟 𝑣

𝑟+

𝛼ℎ

(
𝐷𝑥 ⊗𝑀𝑦

𝑢𝑚 − 𝑢0

Δ𝑡
+𝑀𝑥 ⊗𝐷𝑦 𝑣

𝑚 − 𝑣0

Δ𝑡

+ (𝐷𝑥
𝑥 ⊗𝑀 +𝑀 ⊗𝐷𝑦

𝑦)
∑
𝑟

𝜗𝑚
𝑟 𝑝

𝑟

)
(C12a)

Appendix D

Curl Involution for OSS: Definitions

Here, we give implicitly the definition of 𝑢 and 𝑣.

(𝔽𝑡𝑦 (𝐷𝑦𝑀
2
𝑦 )𝔽𝑡𝑥 (𝑀𝑥))𝑢 =

−
{(

𝔽𝑡𝑦 (𝐷𝑦)2 + 𝔽𝑡𝑦 (𝐷
𝑦
𝑦𝑀𝑦)

)(
𝔽𝑡𝑦 (𝐷𝑦)2𝔽𝑡𝑥 (𝑀𝑥)2 − 𝔽𝑡𝑦 (𝑀𝑦)

×
(
−𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑥 (𝑀𝑥)2 − 𝔽𝑡𝑥 (𝐷𝑥)2𝔽𝑡𝑦 (𝑀𝑦)

− 𝔽𝑡𝑥 (𝐷
𝑥
𝑥𝑀𝑥)𝔽𝑡𝑥,𝑡𝑦 (𝑀𝑦)

))}
,

(𝔽𝑡𝑥 (𝐷𝑥𝑀
2
𝑥 )𝔽𝑡𝑦 (𝑀𝑦))𝑣

=
{(

𝔽𝑡𝑥 (𝐷𝑥)2 + 𝔽𝑡𝑥 (𝐷
𝑥
𝑥𝑀𝑥)

)(
𝔽𝑡𝑦 (𝐷𝑦)2𝔽𝑡𝑥 (𝑀𝑥)2 − 𝔽𝑡𝑦 (𝑀𝑦)

×
(
−𝔽𝑡𝑦 (𝐷

𝑦
𝑦)𝔽𝑡𝑥 (𝑀𝑥)2 − 𝔽𝑡𝑥 (𝐷𝑥)2𝔽𝑡𝑦 (𝑀𝑦)

− 𝔽𝑡𝑥 (𝐷
𝑥
𝑥𝑀𝑥)𝔽𝑡𝑦 (𝑀𝑦)

))}

Appendix E

One-Dimensional Kernel Characterization

Lemma 1 (Invertibility of mixed mass matrix). Consider {𝜑̂𝑖}𝐾𝑖=0
the set of Lagrangian polynomials generated by 𝐾 + 1 Gauss Lobatto points
in ℙ𝐾 ([0, 1]) and {𝜓̂ 𝑖}𝐾−1

𝑖=0 the set of Lagrangian polynomials generated
by 𝐾 Gauss Lobatto points in ℙ𝐾−1([0, 1]). Consider the matrix 𝐴𝑖𝑗 ∶=
∫ 1

0 𝜑̂𝑖𝜓̂ 𝑗d𝑥 for 𝑖 = 0, . . . , 𝐾 and 𝑗 = 0, . . . , 𝐾 − 1. Now, consider the square
matrices obtained as the restriction of 𝐴 that we denote by 𝐵𝑖𝑗 = 𝐴𝑖𝑗 for
𝑖 = 0, . . . , 𝐾 − 1, 𝑗 = 0, . . . , 𝐾 − 1. Then, 𝐵 is invertible.

Proof. Let us denote with (𝑥𝑖, 𝑤𝑖) for 𝑖 = 0, . . . , 𝐾 the 𝐾 + 1
Gauss–Lobatto quadrature nodes and weights, respectively. This
quadrature formula is exact for polynomials of degree 2𝐾 − 1, hence,

𝐵𝑖𝑗 = ∫
1

0
𝜑̂𝑖(𝑥)𝜓̂ 𝑗 (𝑥)d𝑥 = 𝑤𝑖𝜓̂𝑗 (𝑥𝑖) (E1)

We want to show that the system
∑𝐾−1

𝑗=1 𝐵𝑖𝑗𝑞𝑗 = 𝑟𝑖 for 𝑖 = 1, . . . , 𝐾 − 1 is
invertible. Using (E1), the system becomes

𝐾−1∑
𝑗=1

𝐵𝑖𝑗𝑞𝑗 = 𝑟𝑖 ⇔
𝐾−1∑
𝑗=1

𝜓̂ 𝑗 (𝑥𝑖)𝑞𝑗 =
𝑟𝑖
𝑤𝑖

(E2)

Now, the system (E2) for 𝑞𝑗 with 𝑗 = 0, . . . , 𝐾 − 1 is equivalent to finding
a polynomial 𝑞ℎ ∈ ℙ𝐾−1 that interpolates the 𝐾 distinct point {(0, 0)} ∪
{(𝑥𝑖, 𝑟𝑖∕𝑤𝑖)}𝐾−1

𝑖=1 , which has one and only one solution. Hence, the matrix
𝐵 is invertible. ◽

Proposition 19. (Kernel characterization of 𝐷̃𝑥) 𝐷̃𝑥 ∶ ℝ𝑁𝑥×𝐾 →
ℝ𝑁𝑥×𝐾−1 has the kernel of dimension one and it is generated by a function
that is discontinuous at each cell interface, hence, not the constant function.

Proof. Let us quickly recall the definition and notation of the matrix.
Let us order the indexes of the degrees of freedom of 𝑉 𝐾

Δ𝑥(Ω
𝑥
Δ𝑥) with a

unique index. Recall that for 𝑖 = 0, . . . , 𝑁𝑥 − 1 𝜑𝑖,𝑘|𝐸𝑥
𝑖
∈ ℙ𝐾 (𝐸𝑥

𝑖 ) are the
Lagrangian basis functions defined through the Gauss–Lobatto quadra-
ture points. We also recall that for the degrees of freedom 𝑟 = 0, . . . , 𝐾
of the cell 𝐸𝑥

𝑖 we assign a unique index the 𝛼 ∶= 𝑖𝐾 + 𝑟 with the equiv-
alence 𝜑𝑖,𝐾 = 𝜑𝑖+1,0 for 𝑖 = 0, . . . , 𝑁𝑥 − 2. For 𝑉 𝐾

Δ𝑥,0(Ω
𝑥
Δ𝑥) the first and

the last degrees of freedom are neglected, and we can define its basis
as {𝜑𝛼}

𝑁𝑥𝐾−1
𝛼=1 . For the broken polynomial space 𝑉 𝐾−1

Δ𝑥,𝑏
(Ω𝑥

Δ𝑥), instead, for
each Lagrangian basis function 𝜓𝑗,𝓁|𝐸𝑥

𝑗
∈ ℙ𝐾−1(𝐸𝑥

𝑗 ) for 𝑗 = 0, . . . , 𝑁𝑥 − 1
and 𝑘 = 1, . . . , 𝐾 , we define another unique index 𝛽 = 𝑗𝐾 + 𝑘 with 𝛽 =
1, . . . , 𝑁𝑥𝐾 .

Then, the matrix is defined for 𝛼 = 1, . . . , 𝑁𝑥𝐾 − 1 and 𝛽 =
1, . . . , 𝑁𝑥𝐾 as

(𝐷̃𝑥)𝛼;𝛽 ∶= ∫Ω𝑥
Δ𝑥

𝜑𝛼(𝑥)𝜓𝛽 (𝑥)d𝑥 (E3)
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Now, we want to compute the kernel of these operators, so we are solving
for each of them 𝑁𝑥𝐾 − 1 equations for 𝛼 = 1, . . . , 𝑁𝑥𝐾 − 1

𝑁𝑥𝐾∑
𝛽=1

(𝐷̃𝑥)𝛼,𝛽𝑞𝛽 = 0 (E4)

In this first part of the proof, we show that any basis the kernel of 𝐷̃𝑥 must
have discontinuities across cells if 𝑞𝑖,0 ≠ 0 for all 𝑖 = 1, . . . , 𝑁𝑥 − 1. Later,
we will show that 𝐷̃𝑥 has full rank 𝑁𝑥 − 1 and hence that basis generates
the whole kernel.

Each term of the matrices can be computed as the sum of integrals of
polynomials of degree 2𝐾 − 1 at most, hence, it will be exactly computed
by the Gauss–Lobatto quadrature formula with 𝐾 nodes which defines
also the polynomials of degree 𝐾 . For the matrix 𝐷̃𝑥, if we focus on the
degrees of freedom 𝛼 = (𝑖, 0) for 𝑖 = 1, . . . , 𝑁𝑥 − 1, and using the Lobatto
quadrature formula with weights {𝑤𝑟}𝐾𝑟=0, we obtain that (E4) becomes:
find 𝑞ℎ ∈ 𝑉 𝐾−1

Δ𝑥,𝑏
(Ω𝑥

Δ𝑥) such that

0 = ∫𝐸𝑥,𝑖−1

𝜑𝑖−1,𝐾 (𝑥)𝑞ℎ(𝑥)d𝑥 + ∫𝐸𝑥,𝑖

𝜑𝑖,0(𝑥)𝑞ℎ(𝑥)d𝑥

= Δ𝑥 𝑤0(𝑞𝑖−1,𝐾−1 + 𝑞𝑖,0) (E5)

Here, clearly we have that 𝑞𝑖,0 = −𝑞𝑖−1,𝐾−1 for 𝑖 = 1, . . . , 𝑁𝑥 − 1. Hence,
the constant 1 cannot be in the kernel of 𝐷̃𝑥.

Now, to show the matrix is fully ranked, we study its structure in (E6),
recalling that 𝐷̃𝑥 ∈ ℝ(𝑁𝑥𝐾−1)×(𝑁𝑥𝐾).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑍
0 0 0 0 0 0
0 0 0 0 0 0

𝐾 − 1

{
∗ ∗ ∗

𝐵

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

𝐾

⎧⎪⎨⎪⎩
0 0 0 ∗ ∗ ∗

𝐵0 0 0 0 0 0

0 0 0 0 0 0
𝐾

⎧⎪⎨⎪⎩

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E6)

We observe that it contains matrices 𝐵 ∈ ℝ(𝐾−1)×(𝐾−1) proportional to
the 𝐵 matrix of Lemma 1 and a 𝑍 ∈ ℝ𝐾×(𝐾−1) matrix that is given by 𝐵
without the first row. Since 𝐵 is invertible, there exists a minor of 𝑍 of
dimension (𝐾 − 1) × (𝐾 − 1) that is invertible as well. If we remove the
corresponding column also from the matrix 𝐷̃𝑥, the result is also invert-
ible. This can be seen by computing the determinant and looking at the
minors that contribute to that computation, i.e., only the 𝐵 matrices and
the invertible minor of 𝑍. This means that 𝐷̃𝑥 is of full rank 𝑁𝑥𝐾 − 1 and,
hence, possesses a kernel of dimension one generated by a non-constant
vector. ◽

Lemma 2 (Invertibility of mixed derivative matrix). Consider
{𝜑̂𝑖}𝐾𝑖=0 the set of Lagrangian polynomials generated by 𝐾 + 1 Gauss
Lobatto points in ℙ𝐾 ([0, 1]) and {𝜓̂ 𝑖}𝐾−1

𝑖=0 the set of Lagrangian polyno-
mials generated by 𝐾 Gauss Lobatto points in ℙ𝐾−1([0, 1]). Consider the
matrix 𝐶𝑖𝑗 ∶= ∫ 1

0 𝜕𝑥𝜑̂𝑖𝜓̂ 𝑗d𝑥 for 𝑖 = 0, . . . , 𝐾 and 𝑗 = 0, . . . , 𝐾 − 1. Now,
consider the square matrices obtained as the restriction of 𝐶 that we denote
by 𝐷𝑖𝑗 = 𝐶𝑖𝑗 for 𝑖 = 1, . . . , 𝐾 , 𝑗 = 0, . . . , 𝐾 − 1. Then, 𝐷 is invertible.

Proof. Instead of proving the invertibility of 𝐷, we will show the invert-
ibility of its transpose, which is

(𝐷𝑇 )𝑖𝑗 = ∫
1

0
𝜓̂ 𝑖(𝑥)𝜕𝑥𝜑̂𝑗 (𝑥)d𝑥 (E7)

Now, the system is invertible if there exists one and only solution to the
system of equations for the unknown {𝑞𝑗}𝐾𝑗=1 and the right-hand side
{𝑟𝑖}𝐾−1

𝑖=0

∫
1

0
𝜓̂ 𝑖(𝑥)𝜕𝑥𝜑̂𝑗 (𝑥)𝑞𝑗d𝑥 = 𝑟𝑖 ⇔ ∫

1

0
𝜓̂ 𝑖(𝑥)𝑞ℎ(𝑥)d𝑥 = 𝑟𝑖 (E8)

with 𝑞ℎ =
∑𝐾

𝑗=1𝜕𝑥𝜑̂𝑗 (𝑥) ∈ ℙ𝐾−1([0, 1]) for every 𝜓̂ 𝑖 ∈ ℙ𝐾−1. Classically,
𝑞ℎ ∈ ℙ𝐾−1([0, 1]) could be rewritten in an expansion of the 𝜓̂ 𝑗 basis func-
tions, obtaining on the left-hand side the classical symmetric and posi-
tive definite mass matrix for ℙ𝐾−1([0, 1]). This is invertible, hence 𝐷 is
invertible. ◽

Proposition 20. (Kernel characterization of 𝐷̃
𝑥

𝑥) 𝐷̃
𝑥

𝑥 ∶ ℝ𝑁𝑥×𝐾 →
ℝ𝑁𝑥×𝐾−1 has the kernel of dimension one and it is generated by the constant
function 1.

Proof. The matrix is defined for 𝛼 = 1, . . . , 𝑁𝑥𝐾 − 1 and 𝛽 =
1, . . . , 𝑁𝑥𝐾 (with the notation of Theorem 12) by

(𝐷̃𝑥

𝑥)𝛼;𝛽 ∶= ∫Ω𝑥
Δ𝑥

𝜕𝑥𝜑𝛼(𝑥)𝜓𝛽 (𝑥)d𝑥 (E9)

Clearly 1 belongs to the kernel of 𝐷̃𝑥

𝑥, as

∫Ω𝑥
Δ𝑥

𝜕𝑥𝜑𝛼(𝑥)1d𝑥 =
[
𝜑𝛼(𝑥)𝜕𝑥1

]
𝜕Ω𝑥

Δ𝑥
− ∫Ω𝑥

Δ𝑥

𝜑𝛼(𝑥)𝜕𝑥1d𝑥 = 0 (E10)

because 𝜑𝛼 ∈ 𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥) and 𝜕𝑥1 ≡ 0. This corresponds to the space of all

affine functions for the kernel of 𝐷𝑥
𝑥 .

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
𝐷 0 0 0 0 0 0

∗ ∗ ∗ 0 0 0
𝐾

⎧⎪⎨⎪⎩
0 0 0

𝐷

0 0 0
0 0 0 0 0 0

0 0 0 ∗ ∗ ∗
𝐾

⎧⎪⎨⎪⎩
0 0 0 0 0 0

𝐸

0 0 0 0 0 0
𝐾 − 1

{

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E11)

Now, looking at the structure of 𝐷̃𝑥

𝑥 ∈ ℝ(𝑁𝑥𝐾−1)×(𝑁𝑥𝐾), we observe that the
matrix 𝐷 ∈ ℝ𝐾×𝐾 is proportional to the one of Lemma 2. Matrix 𝐸 is the
matrix 𝐷 without its last row. Since 𝐷 is invertible, there exists a minor of
𝐸 of dimension (𝐾 − 1) × (𝐾 − 1) that is invertible. Hence, if we consider
the whole matrix without the column which is excluded by the invertible
minor of 𝐸, then, we clearly see that it is invertible (the determinant is not
0 studying the relevant minors). Hence, the kernel of 𝐷𝑥

𝑥 is of dimension
1 and it is generated by the constant function 1. ◽

Proposition 21. (Kernel characterization of 𝑍𝑥 = 𝐷𝑥
𝑥 −𝐷𝑥𝑀−1𝐷𝑥)

Let 𝑍𝑥 = 𝐷𝑥
𝑥 −𝐷𝑥𝑀−1𝐷𝑥 ∶ ℝ𝑁𝑥×𝐾+1 → ℝ𝑁𝑥×𝐾−1, with 𝑀−1, 𝐷𝑥 ∶

ℝ𝑁𝑥×𝐾+1 → ℝ𝑁𝑥×𝐾+1 be the matrices defined with test and trial functions
in 𝑉 𝐾

Δ𝑥(Ω
𝑥
Δ𝑥) and 𝐷𝑥

𝑥,𝐷
𝑥 ∶ ℝ𝑁𝑥×𝐾+1 → ℝ𝑁𝑥×𝐾−1 be defined with trial func-

tions in 𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) and test in 𝑉 𝐾

Δ𝑥,0(Ω
𝑥
Δ𝑥). Then, the kernel of 𝑍 contains⟨1, 𝑥⟩ and does not contain 𝑤 the vector of the kernel of 𝐷𝑥.

Proof. Clearly, 1 and 𝑥 belong to the kernel of 𝑥𝑍 as they belong to the
kernel of 𝐷𝑥

𝑥 and since 𝐷𝑥1 ≡ 0 and

𝐷𝑥𝑀−1𝐷𝑥𝑥 ≡ 𝐷𝑥𝑀−11 ≡ 𝐷𝑥1 ≡ 0

Let us now restrict our operator on 𝑉 𝐾
0 , by taking the affine operation

𝑢̃ = 𝑢 − 𝑢(0) + (𝑢(0) − 𝑢(1))𝑥 that uses only elements in the kernel of 𝑍𝑥

to bring 𝑢 ∈ 𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) into 𝑢̃ ∈ 𝑉 𝐾

Δ𝑥,0(Ω
𝑥
Δ𝑥). We aim showing that 𝑍𝑥 on

𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) is symmetric non-negative definite. The symmetry is trivially

shown. We focus on the non-negativeness.

Before proceeding, let us better describe 𝑍𝑥 on 𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥). We have that

(𝐷𝑥)𝛼;𝛽𝑢𝛽

=

{
Δ𝑥𝑤𝛼

(
𝜕𝑥𝑢(𝑥+𝛼 ) + 𝜕𝑥𝑢(𝑥−𝛼 )

)
if 𝛼 = (𝑖, 0) = (𝑖 − 1, 𝐾)

Δ𝑥𝑤𝛼𝜕𝑥𝑢(𝑥𝛼) else
(E12)

with 𝜕𝑥𝑢 ∈ 𝑉 𝐾−1
Δ𝑥,𝑏

(Ω𝑥
Δ𝑥), 𝑥𝛼 being the Gauss–Lobatto composite quadra-

ture points defined by 𝐾 + 1 points in each cell and 𝑤𝛼 the quadrature
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weight referred to the kth degree of freedom in the reference element [0, 1]
with 𝑤(𝑖,0) = 𝑤(𝑖−1,𝐾). Then, if we study the bilinear form, we have that

𝑢𝑇 (𝐷𝑥𝑀−1𝐷𝑥)𝑢 =
∑
𝛼,𝛽

∫ 𝜕𝑥𝑢 𝜑𝛼 𝑑𝑥
𝛿𝛼,𝛽

𝑀𝛼,𝛼 ∫ 𝜑𝛽 𝜕𝑥𝑢 𝑑𝑥

=
∑
𝛼

1
𝑀𝛼,𝛼

(
∫ 𝜑𝛼𝜕𝑥𝑢

)2

(E13)

=
∑
𝛼∈

Δ𝑥2𝑤2
𝛼

Δ𝑥𝑤𝛼

(𝜕𝑥𝑢(𝑥𝛼))2 +
∑
𝛼∈

Δ𝑥2𝑤2
𝛼

2Δ𝑥𝑤𝛼

(𝜕𝑥𝑢(𝑥−𝛼 ) + 𝜕𝑥𝑢(𝑥+𝛼 ))
2 (E14)

=
∑
𝛼∈

Δ𝑥𝑤𝛼(𝜕𝑥𝑢(𝑥𝛼))2 +
∑
𝛼∈

Δ𝑥𝑤𝛼

2
(𝜕𝑥𝑢(𝑥−𝛼 ) + 𝜕𝑥𝑢(𝑥+𝛼 ))

2 (E15)

where we have introduced the set of internal degrees of freedom  =
{𝛼 ∶ 𝜑𝛼 ∈ 𝑉 𝐾

Δ𝑥,0(Ω
𝑥
Δ𝑥), 𝛼 = (𝑖, 𝑘) with 𝑘 ∈ [1, 𝐾 − 1]} and edges degrees

of freedom  = {𝛼 ∶ 𝜑𝛼 ∈ 𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥), 𝛼 = (𝑖, 0)}.

Now, using this definition, we will show that the restriction of 𝑍𝑥 to
𝑉 𝐾
Δ𝑥,0(Ω

𝑥
Δ𝑥) is symmetric non-negative definite. Take 𝑢 ∈ 𝑉 𝐾

Δ𝑥,0(Ω
𝑥
Δ𝑥) ≡

ℝ𝑁𝑥𝐾−1 ⊂ 𝑉 𝐾
Δ𝑥(Ω

𝑥
Δ𝑥) ≡ ℝ𝑁𝑥𝐾+1, using the previous computations and the

definition of 𝐷𝑥
𝑥 , we compute

𝑢𝑇𝑍𝑥𝑢 =𝑢𝑇𝐷𝑥
𝑥𝑢 − 𝑢𝑇𝐷𝑥𝑀−1𝐷𝑥𝑢 = ∫ (𝜕𝑥𝑢)2 − 𝑢𝑇𝐷𝑥𝑀−1𝐷𝑥𝑢 (E16)

=
∑
𝛼∈

Δ𝑥𝑤𝛼(𝜕𝑥𝑢(𝑥𝛼))2 +
∑
𝛼∈

Δ𝑥𝑤𝛼(𝜕𝑥𝑢(𝑥−𝛼 )
2 + 𝜕𝑥𝑢(𝑥+𝛼 )

2) (E17)

−
∑
𝛼∈

Δ𝑥𝑤𝛼(𝜕𝑥𝑢(𝑥𝛼))2 −
∑
𝛼∈

Δ𝑥𝑤𝛼

2
(𝜕𝑥𝑢(𝑥−𝛼 ) + 𝜕𝑥𝑢(𝑥+𝛼 ))

2 (E18)

=
∑
𝛼∈

Δ𝑥𝑤𝛼

2
(𝜕𝑥𝑢(𝑥−𝛼 ) − 𝜕𝑥𝑢(𝑥+𝛼 ))

2 ≥ 0 (E19)

We have just shown that 𝑍𝑥 is non-negative definite. So, the element
in the kernel of 𝑍𝑥, i.e., 𝑍𝑥𝑢 = 0, must also be such that 𝑢𝑇𝑍𝑥𝑢 = 0
and hence, they must have a continuous derivative at the interfaces
(E19). This was not the case for 𝑤 the element generating with 1 the
kernel of 𝐷𝑥. ◽

Unfortunately, we cannot say more about the matrix 𝑍𝑥 and experimen-
tally, we have noticed that the kernel is indeed much larger than just these
vectors. In particular, the dimension of the kernel increases with the order
of the method and the number of cells.
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