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Abstract

For hyperbolic conservation laws, the famous Lax–Wendroff theorem delivers sufficient conditions for
the limit of a convergent numerical method to be a weak (entropy) solution. This theorem is a fundamental
result, and many investigations have been done to verify its validity for finite difference, finite volume, and
finite element schemes, using either explicit or implicit linear time-integration methods.

Recently, the use of modified Patankar (MP) schemes as time-integration methods for the discretization
of hyperbolic conservation laws has gained increasing interest. These schemes are unconditionally conser-
vative and positivity-preserving and only require the solution of a linear system. However, MP schemes are
by construction nonlinear, which is why the theoretical investigation of these schemes is more involved. We
prove an extension of the Lax–Wendroff theorem for the class of MP methods. This is the first extension
of the Lax–Wendroff theorem to nonlinear time integration methods with just an additional hypothesis on
the total time variation boundness of the numerical solutions. We provide some numerical simulations that
validate the theoretical observations.

Keywords: Local conservation, Implicit Lax–Wendroff theorem, Total time variation, Patankar-type
schemes
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1. Introduction

In the context of hyperbolic conservation laws, the development of high-order, structure-preserving meth-
ods has attracted a broad attention. These methods are essential to ensure physically reliable solutions. One
such constraint is the positivity of certain quantities, such as the density in the Euler equations of gas dy-
namics or the water height in the context of shallow water flows where positivity preservation is usually
obtained within a numerical method by a positivity preserving reconstruction/limiting technique and an ad-
ditional time step constraint, see for instance [24, 37, 2]. To overcome the limitation of time step constraints
without solving a completely nonlinear system and to guarantee the preservation of positivity, modified
Patankar (MP) schemes have recently been applied, see e.g. [10, 18, 9]. These schemes, designed for
production-destruction systems (PDS), are nonlinear, they preserve positivity unconditionally, and are con-
servative [7, 33]. Moreover, due to their specific structure, only linear equations need to be solved. Applying
them as time-integration schemes for hyperbolic problems has yielded promising results, as outlined in re-
cent works [32, 34, 35]. For instance in [10, 9], the MP Deferred Correction (MPDeC) method from [33] is
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used to ensure the positivity of the water height in the shallow water equations discretized with finite volumes
in space. In [32, 34], it is also ensured with a Patankar-type method, where a DG method is used for space
discretization. However, the theoretical background of these schemes has not yet been sufficiently investi-
gated, especially concerning their integration into the existing convergence theory for numerical methods of
hyperbolic systems. A cornerstone in the numerical treatment of hyperbolic conservation laws within this
framework is the well-known Lax–Wendroff theorem [27]. This theorem establishes sufficient conditions
for the convergence of numerical approximations to weak (entropy) solutions of the underlying nonlinear
hyperbolic conservation law. Much of the literature [1, 12, 25, 38, 5, 26, 14, 39, 24], has been focusing on
spatial discretization (even with unstructured grids and finite element (FE) methods), mostly using linear
explicit time integration methods. One exception is given in [6, 30], where a Lax–Wendroff theorem was
proven for implicit Runge–Kutta methods using explicit pseudo-time Runge–Kutta schemes for approximat-
ing the solution to the occurring (non-)linear system. However, here only finitely many pseudo-time steps
are allowed to approximate the update of the difference scheme. Given a fixed spatial discretization of N
points, this is not a problem for linear implicit systems, as suitable Krylov subspace methods converge to the
exact solution in N iterations. Problems arise when we are interested in the convergence towards the exact
solution for N → ∞. In this case, the previous result does not directly apply, leaving some gaps in the proof
of the Lax-Wendroff theorem for the implicit setting, either linear or nonlinear. Nevertheless, a first step
towards a deeper understanding is given in [29].

In this paper, we propose a different ansatz introducing the notion of total time variation and we shift
the focus to nonlinear time-integration schemes extending the convergence theory of Lax and Wendroff to
Patankar-type methods. Altogether, the extension of the Lax–Wendroff theorem additionally assumes that
the total variation in the time variable (see Definition 6) is uniformly bounded. This extension allows us, for
the first time, to establish a theory of their convergence in the context of partial differential equations (PDEs).
The theoretical results are validated through numerical tests for different conservation laws.

The rest of the paper is organized as follows: In Section 2, we introduce the concept of consistency
and convergence for difference schemes for conservation laws and repeat the basic formulation of the Lax–
Wendroff theorem which can be found nowadays in many excellent lecture books like [28, 23, 15]. After-
wards, in Section 3 MP schemes will be introduced for production-destruction systems in context of ordinary
differential equations. Here, the recent interpretation as non-standard additive Runge–Kutta methods [20]
will also be used. Then, we explain how to employ the MP ideas within difference schemes (finite volume,
finite differences or in general in the WENO approaches) to guarantee positivity preservation. In Section 4,
we demonstrate the extension of the classical Lax–Wendroff Theorem for a large class of non-standard ad-
ditive Runge–Kutta methods, including modified Patankar difference schemes. Here, we focus on the first
order version (Theorem 3) but we give also a sketch of the proof for the extension to higher-order. In Sec-
tion 5, we validate our theoretical findings by some numerical experiments. In particular, we demonstrate
that we are unconditionally positivity-preserving and we converge to a weak solution. In Section 6, we sum-
marize the work, we derive some conclusions and we give some perspectives. Finally, in Appendix A, we
demonstrate how the total variation, which is an essential aspect of the Lax–Wendroff theorem, can in some
specific frameworks be proven to be diminishing.

2. Consistency and convergence for difference schemes for conservation laws

To transfer the convergence theory of the Lax–Wendroff theorem to Patankar-type methods, we first
summarize the theoretical background of the classical theory. We consider a one-dimensional, scalar Cauchy
problem

∂tu(x, t) + ∂x f (u(x, t)) = 0, u(x, 0) = ψ(x), (1)

with u : R × R+0 → R and f , φ : R→ R, where f denotes the physical flux function.
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We examine difference schemes of the form

Un+1
i = Un

i −
∆t
∆x

(
gn

i+ 1
2
− gn

i− 1
2

)
(2)

to find approximations Un
i ∈ R to the solution u(xi, tn) at N discrete grid points. Here, the time step of a

given grid is denoted by ∆t and the spatial mesh size by ∆x. Furthermore, we have

gn
i+ 1

2
= g(Un

i−p,U
n
i−p+1, . . . ,U

n
i+q), (3)

where g is a continuous function, depending on p+q+1 arguments, called the numerical flux. The following
results and definitions hold for both explicit and implicit numerical fluxes [23, p. 44], but for simplicity, we
only consider explicit schemes. First, we note the main properties of these fluxes.

Definition 1 (Consistency). The numerical flux function g from (3) is consistent to the physical flux func-
tion f , if

i. g(ū, . . . , ū) = f (ū) for any ū and
ii. g is locally Lipschitz continuous in every argument, that is if it exists a K ∈ R such that
|g(Un

i−p,U
n
i−p+1, . . . ,U

n
i+q) − f (ū)| ≤ K max−p≤ j≤q |Un

i+ j − ū| holds for Un
i+ j sufficiently close to ū.

If g is consistent, then we also say that the difference scheme (2) is consistent with the PDE (1).
To ensure that the limit of a converging difference scheme is a weak solution of the system, Lax and

Wendroff [27] proved the following theorem. Here, we present a formulation with slightly different require-
ments.

Theorem 1 (Lax–Wendroff [28]). Consider a sequence of step sizes ∆x{l} > 0 with liml→∞ ∆x{l} = 0. Let(
U{l}

)
l

be a sequence of piece-wise constant functions constructed of numerical solutions obtained by a
difference scheme consistent with (1) with time step size ∆t{l} = λ∆x{l}, λ ≡ const. If for any domain [a, b] ×

[0,T ] the total variation TV
(
U{l}(·, t)

)
is uniformly bounded for all l and t ∈ [0,T ] and if U{l}

l→∞
−−−−→ u in

L1
loc(R × [0,T )), then u is a weak solution of the conservation law (1).

Remark 1. The Lax–Wendroff theorem 1 guarantees that the limit of a convergent conservative numerical
scheme is a weak solution of the conservation law. Furthermore, if the approximated solutions also satisfy a
discrete form of the entropy inequality, then the limit corresponds to the weak entropy solution. Therefore,
the theorem remains applicable in identifying the entropy solution, provided the entropy condition is met.
Therefore, applying entropy stable schemes which fulfill the Lax–Wendroff theorem yield weak entropy
solutions [41, 8, 13, 16].

The main idea of this paper is to extend Theorem 1 if modified Patankar schemes (therefore nonlinear time-
integration) schemes are used inside the discretization. We shortly introduce now the concept of modified
Patankar schemes in the following section.

3. Patankar-type schemes

3.1. Modified Patankar for Production-Destruction Systems
Patankar-type schemes are introduced to solve systems of ODE problems

∂tu(t) = f (u(t)), u(t0) = u0, (4)

with u : R+0 → RN and f : Rn → Rn. Similar to PDE problems, we denote the i-th component of an
approximate solution obtained by a numerical scheme at time step tn as Un

i , while Un denotes the whole
solution vector. As mentioned in the introduction, modified Patankar (MP) schemes are constructed to
preserve positivity and conservation.
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Definition 2. An ODE scheme is called unconditionally positive if Un > 0 implies Un+1 > 0 for all n ∈ N0
and ∆t > 0. Furthermore it is unconditionally conservative if

∑N
i=1 Un+1

i =
∑N

i=1 Un
i for all n ∈ N0 and ∆t > 0.

Consider an ODE written as a production destruction system (PDS)

∂tui(t) =
N∑

j=1

pi j(u(t)) −
N∑

j=1

di j(u(t)), i = 1, . . . ,N (5)

with pi j, di j non-negative production and destruction terms for u ≥ 0. In the past, such PDSs were commonly
used to describe inter alia biological reactions as in [7]. In later works, PDSs were also used to describe
the semi-discretization of hyperbolic balance laws as in [33, 32]. For both contexts it is important to have
conservative and unconditionally positive schemes. Therefore, it is necessary to denote these properties also
for PDSs.

Definition 3. A PDS (5) is said to be non-negative if, for an initial value ui(0) ≥ 0, ui(t) ≥ 0 follows for all
t > 0. If the strict inequalities hold, the PDS is called positive.

Definition 4. The PDS (5) is called conservative if pi j(u) = d ji(u) for all i, j = 1, . . . ,N and unconditionally
positive if additionally pii(u) = dii(u) = 0 for all i = 1, . . . ,N.

Based on such a conservative PDS we can apply an explicit Runge–Kutta (RK) method and use the modified
Patankar-trick to obtain a modified Patankar–Runge–Kutta scheme.

Definition 5. Given an explicit RK scheme with nonnegative parameters, the method

U(k)
i = Un

i + ∆t
k−1∑
ν=1

akν

N∑
j=1

(
pi j(U(ν))

U(k)
j

π(k)
j

− di j(U(ν))
U(k)

i

π(k)
i

)
, (6)

Un+1
i = Un

i + ∆t
s∑

k=1

bk

N∑
j=1

(
pi j(U(k))

Un+1
j

σ j
− di j(U(k))

Un+1
i

σi

)
(7)

is called modified Patankar–Runge–Kutta scheme (MPRK) if the Patankar weight denominators (PWDs) π(k)
i

and σi are unconditionally positive and π(k)
i is independent of U(k) while σi is independent of Un+1.

The huge advantage of such methods is that given PWDs, MPRK schemes require the solution of s linear
systems

U(1) = Un,

M(k) U(k) = Un, k = 2, . . . , s,

M Un+1 = Un,

while being unconditionally positive and conservative. We note that MPRK schemes can also be devised for
non-conservative PDS, see e.g. [42, 19], which is relevant when applying these schemes in the context of
PDEs with non-periodic boundary conditions.

Example 1 (Modified Patankar Euler). As an example, we illustrate here the first order Modified Patankar
Euler (MPE) time discretization of a conservative PDS. In this case, the there is only the final update (7)
where σi = Un

i for all i = 1, . . . ,N. The scheme reads

Un+1
i = Un

i + ∆t
N∑

j=1

(
pi j(Un)

Un+1
j

Un
j
− di j(Un)

Un+1
i

Un
i

)
.
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Clearly, each time step includes a linear system to be solved, with a matrix defined by

Mi j =


−∆t pi j(Un)

Un
j

if i , j,

1 +
∑

j,i ∆t di j(Un)
Un

j
if i = j.

This scheme will be the prototype for high order methods and we will use it to define the successive examples.

The class of MPRK methods is only one type of the schemes based on the modified Patankar trick. There
are other classes that differ mainly in the underlying classical scheme. For example, deferred correction
(DeC) schemes [11] are the basis for MPDeC methods [10] and strong stability preserving Runge–Kutta
(SSPRK) schemes [40] the basis for MPSSPRK methods [17]. Further positivity-preserving schemes are
Geometric Conservative (GeCo) [31] and generalized BBKS (gBBKS) [4]. To give the main ideas for the
extension of the Lax–Wendroff theorem to all these schemes and many more, we use the environment of
non-standard additive Runge–Kutta (NSARK) methods as introduced in [19] to obtain results that are as
universal as possible.

Therefore, first recall the definition of additive Runge–Kutta (ARK) methods. These are constructed
based on an additive splitting

∂tu(t) =
N∑
ν=1

F[ν](u(t)), u(0) = u0 ∈ Rd

of the right hand side of the ODE. Thus, several schemes given by an extended Butcher tableau

c A[1] A[2] · · · A[N]

b[1] b[2] · · · b[N]
,

can be applied to the different summands leading to a scheme of the form

U(k) = Un + ∆t
s∑

r=1

N∑
ν=1

a[ν]
kr F[ν](U(r)), k = 1, . . . , s,

Un+1 = Un + ∆t
s∑

r=1

N∑
ν=1

b[ν]
r F[ν](U(r)).

Notice that these Runge–Kutta coefficients are fixed for every summand. Now, the idea of non-standard ad-
ditive Runge–Kutta (NSARK) methods is to allow a dependency on solution and stepsize in the coefficients,
which read as

c A[1](Un, tn,∆t) A[2](Un, tn,∆t) · · · A[N](Un, tn,∆t)

b[1](Un, tn,∆t) b[2](Un, tn,∆t) · · · b[N](Un, tn,∆t)
,

i.e.

U(k) = Un + ∆t
s∑

r=1

N∑
ν=1

a[ν]
kr (Un, tn,∆t)F[ν](U(r)), k = 1, . . . , s,

Un+1 = Un + ∆t
s∑

r=1

N∑
ν=1

b[ν]
r (Un, tn,∆t)F[ν](U(r)).
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As introduced in equation (5), we focus on ODEs which can be split into a PDS. So we can understand such
a right-hand side as

F[ν]
i (U(t)) =

piν(U(t)), ν , i,
−

∑N
j=1 di j(U(t)), ν = i

and interpret a Patankar-type method as NSARK method with

a[ν]
kr (Un, tn,∆t) = akrγ

(k)
ν (Un, tn,∆t),

b[ν]
r (Un, tn,∆t) = brδν(Un, tn,∆t)

(8)

where the Patankar-trick is represented in the non-standard weights (NSWs) γ(k)
ν , δν. In particular, we obtain

the MPRK methods introduced in Definition 5 by choosing the NSWs

γ(k)
ν =

U(k)
ν

π(k)
ν

, δν =
Un+1
ν

σν
.

Note that we use “()” whenever we refer to a stage while “[]” is used to refer to a different RK scheme used
within the ARK framework.

3.2. Modified Patankar for difference schemes

The key properties of Patankar-type methods, being unconditionally positivity-preserving and conserva-
tive, can be a huge advantage when used in the time integration part of the semidiscretization of a hyperbolic
PDE. For instance, they can guarantee to produce nonnegative solutions when approaching zero. This is in
contrast with almost all classical time discretization where this bound can either be obtained with constraints
on the time-step or it cannot be obtained at all. Negative solutions in such contexts can lead not only to
unphysical solutions, but also to NaN in the code and stop the execution. The only major exception is the
implicit Euler method, which is unfortunately only first order accurate and very dissipative for hyperbolic
conservation laws.

To apply Patankar-type time integration methods to semidiscrete hyperbolic PDEs, it is necessary to find
and adequate splitting of the obtained ODE into a PDS. After that, the production and destruction terms are
properly weighted. Note that such a splitting is not unique.

The transfer to Patankar-type difference schemes is done along the difference scheme formulation as
originally introduced in [27]. That is, a flux formulation of the RHS treated by an explicit Euler scheme
in time, which in our context is associated with the MPE scheme. Thus, the modification of the numerical
fluxes is the key point of this extension. Therefore, we first introduce an explicit conservative PDS based on
a classical numerical flux g as in (2) and add the corresponding weights. These are kept in a general notation
to clarify the later extension to general Patankar-type methods with more stages.

Beginning with the PDS, we interpret the fluxes at the cell boundaries as production or destruction terms
according to their signs, i.e.,

pi,i+1(Un) = di+1,i(Un) := −min
{
gn

i+ 1
2
, 0

}
,

di,i+1(Un) = pi+1,i(Un) := max
{
gn

i+ 1
2
, 0

}
,

(9)

where Un denotes the vector containing Un
i for i = 1, . . . ,N. We define pi, j, di, j to be equal to zero for

j , i + k, k ∈ {−1, 1}. Now, we consider a one-stage Patankar-type method interpreted as a non-standard
additive Runge–Kutta (NSARK) method with non-standard weights (NSWs) δν = δν(Un, tn,∆t) [19]. We
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write it in terms of this PDS in difference form:

Un+1
i = Un

i + ∆t
N∑

j=1

1
∆x

(
pi, j(Un)δ j − di, j(Un)δi

)

= Un
i +
∆t
∆x

(
pi,i+1(Un)δi+1 − di,i+1(Un)δi + pi,i−1(Un)δi−1 − di,i−1(Un)δi

)
,

(10)

where we use the conservation property of the PDS, i.e., pi, j = d j,i, leading to the difference scheme formu-
lation

Un+1
i = Un

i −
∆t
∆x

(
Fδ

gi+ 1
2

(Un) − Fδ
gi− 1

2

(Un)
)

with the new numerical flux

Fδ
gi+ 1

2

(Un) := di,i+1(Un)δi − pi,i+1(Un)δi+1 = max{gn
i+ 1

2
, 0}δi +min{gn

i+ 1
2
, 0}δi+1, (11)

with short notation Fn,δ
gi+ 1

2
= Fδ

gi+ 1
2

(Un). As mentioned earlier, the NSWs δν depend on the particular method.

For example, considering an MPRK scheme as in [21], δν represent the corresponding Patankar weights,

which are δi =
Un+1

i
Un

i
for the MPE.

Remark 2 (Non uniqueness of the splitting). It should be noted that the splitting in production and de-
struction terms is not unique. There are other possibilities that may have advantages regarding, for example,
the differentiability of the numerical fluxes. We require that such a splitting results in a conservative PDS
consisting of production and destruction terms which are positive on their domain. On the other side, by
construction (9), there always exists a splitting.

Although, we first introduced one stage methods, also s-stage Patankar-type difference scheme based on
an explicit RK scheme with A = (akr)k,r=1,...,s ≥ 0

¯
and weights b1, . . . , bs ≥ 0 can be devised as well by

U(k)
i = Un

i −
∆t
∆x

∑k−1

r=1
akr

(
di,i+1(U(r))γ(k)

i − pi,i+1(U(r))γ(k)
i+1 −

(
di−1,i(U(r))γ(k)

i−1 − pi−1,i(U(r))γ(k)
i

))
,

Un+1
i = Un

i −
∆t
∆x

∑s

r=1
br

(
di,i+1(U(r))δi − pi,i+1(U(r))δi+1 −

(
di−1,i(U(r))δi−1 − pi−1,i(U(r))δi

))
,

(12)

for k = 1, . . . , s, where new NSWs γ(k)
ν = γ

(k)
ν (Un, tn,∆t) are introduced for the stages U(k)

i . We define the
new numerical flux based on Fδ

gi+ 1
2

(Un) from (11) as

F̄n,δ
gi+ 1

2

:=
∑s

r=1
brFδ

gi+ 1
2

(U(r)). (13)

Remark 3 (Systems of conservation laws). This approach can also be extended to systems of conserva-
tion laws. There, we apply the modified Patankar-trick on every component of the vector u of the initial
value problem that requires positivity, and we consider t he numerical flux for every such component as a
scalar function g. With that it becomes evident that this approach can be applied also for different space-
discretizations as long as they can be written in flux formulation [1].

Remark 4 (Negative RK weights). The Modified Patankar RK can be designed also when some of the A
and b coefficients are negative, see [21], by simply changing the role of production and destruction for that
particular term in that stage. This has been applied systematically to design arbitrary high order Modified
Patankar methods as the MPDeC [33] that will be used in the numerical section.
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Remark 5 (High order discretizations). The difference schemes framework (2) is very general and can
encompass various spatial discretization. This includes also various high order discretizations as ENO,
WENO finite volume [10, 9] and finite difference [17] reconstructions schemes. A slightly different formu-
lation should be introduced to include also other high order discretizations as continuous and discontinuous
Galerkin Finite Element methods [32, 44], where the PDS is either written only on the interfaces of the cells
or there is more freedom in the choice of the PD terms between the degrees of freedom inside each cell.

4. Lax–Wendroff theorem for MP-difference schemes

The aim of this section is to adapt the proof of Theorem 1 to Patankar-type schemes in the form (12). To
achieve this, we need to control the nonlinear weights, resulting in the extra assumption, that the numerical
solution has a bounded total variation also in time (classical Lax–Wendroff requires only bounded total
variation in space). So, let us introduce the concept of total time variation (TTV).

Definition 6 (Total time variation). The TTV over a domain [a, b] × [0,T ] of a function U ∈ L1
loc(R ×R+)

is

TTV(U(x, [0,T ])) B sup
nT∑

n=1

|U(x, tn) − U(x, tn−1)|, (14)

where the supremum is taken over all possible subdivisions t0 = 0 < · · · < tnT = T for any nT ∈ N.

Remark 6 (Discrete total time variation). On a domain [a, b] × [0,T ] for a discrete function {Un
i }i,n =

{U(xi, tn)}i,n for i = 1, . . . ,N and n = 0, . . . , nT with t0 = 0 and tnT = T , the TTV can be equivalently
defined using a piece-wise constant reconstruction of the discrete function on the space-time grid, obtaining
the formula

TTV(U(x, [0,T ])) B
nT∑

n=1

|Un(x) − Un−1(x)|, (15)

with Un(x) being the piece-wise constant reconstruction in space of {Un
i }i.

It should be noticed that this definition differs from the definition of total of time variation (TOTV) given in
[43], and it is the equivalent of the TV definition in space, but switching the roles of time and space.

Lemma 2 (MPE weights convergence). Let U{l}(xi, tn) be the approximation of problem (1) at the space x{l}i
and time t{l}n for a mesh discretization ∆x{l} ∼ ∆t{l} → 0 for l→ ∞. For every l, consider U{l}(x, t) a piece-wise
constant reconstruction of the numerical solution U{l}(xi, tn). Let TTV(U{l}(x, [0,T ])) be uniformly bounded
for all x ∈ [a, b] and for all l ∈ N. Suppose that U{l} → u in L1

loc([a, b] × [0,T ]) with u positive. Defining
δ{l}(x, t) as the piece-wise constant reconstruction of the MPE weights δ{l}(xi, tn) = U{l}(xi, tn+1)/U{l}(xi, tn)
for all i and n. Then, δ{l}(x, t)→ 1 almost everywhere in [a, b] × [0,T ].

Proof. Consider the MPE weights

δ{l}(x, t) :=
U{l}(x, t + ∆t{l})

U{l}(x, t)
= 1 +

U{l}(x, t + ∆t{l}) − U{l}(x, t)
U{l}(x, t)

.

Now, we can say that liml→∞U{l}(x, t + ∆t{l}) − U{l}(x, t) = 0 a. e. because the numerical solutions are TTV
bounded uniformly for all l and x and the solutions are converging to a weak solution u in L1

loc.

The arguments of this proof are the same used in space for the Lax–Wendroff theorem in the proof of [28].
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Theorem 3 (Lax–Wendroff for MPE Difference schemes). Consider a sequence of step sizes ∆x{l} > 0
with liml→∞ ∆x{l} = 0. Let

(
U{l}

)
l

be a sequence of piece-wise constant functions constructed of numerical
solutions obtained by a MPE difference scheme (10) consistent with (1) with time step size ∆t{l} = λ∆x{l}, λ ≡
const. If for any domain [a, b] × [0,T ] the total variation TV

(
U{l}([a, b], t)

)
from (15) is uniformly bounded

for all l and t ∈ [0,T ], the total time variation TTV
(
U{l}(x, [0,T ])

)
is uniformly bounded for all l and

x ∈ [a, b] and if U{l}
l→∞
−−−−→ u in L1

loc(R × [0,T )), then u is a weak solution of the conservation law (1).

Proof. We follow the original Lax–Wendroff proof from [27, 28] and adapt it for our case where needed.
The main goal is to show that the limit function u(x, t) of the considered method satisfies∫ ∞

0

∫ ∞

−∞

[φtu + φx f (u)] dxdt = −
∫ ∞

−∞

φ(x, 0)u(x, 0) dx. (16)

for all φ ∈ C1
0([a, b]×[0,T ]). In what follows, we omit to write the dependency on the refinement represented

by the index l if it is clear from the context and extend the numerical solution, if needed, periodically to the
domain (−∞,∞) × [0,∞).

Multiplying the numerical method (10) by any test function φ ∈ C1
0 and summation over all i and n ≥ 0

yields
∞∑

n=0

∞∑
i=−∞

φ(xi, tn)(Un+1
i − Un

i ) =
∆t
∆x

∞∑
n=0

∞∑
i=−∞

φ(xi, tn)
[
Fδ

gi+ 1
2

(Un) − Fδ
gi− 1

2

(Un)
]
,

whereas using summation by parts, the fact φ has a compact support, multiplying by ∆x and rearranging
leads to

∆x∆t

 ∞∑
n=1

∞∑
i=−∞

(
φ(xi, tn) − φ(xi, tn−1)

∆t

)
Un

i +

∞∑
n=0

∞∑
i=−∞

(
φ(xi+1, tn) − φ(xi, tn)

∆x

)
Fδ

gi+ 1
2

(Un)


= − ∆x

∞∑
i=−∞

φ(xi, 0)U0
i .

(17)

Now we show that this equation coincides with the desired assertion (16) as we pass to the limit liml→∞ ∆x{l} =
0 with ∆t{l} = λ∆x{l}, λ ≡ const. For the first and the last term of the previous equation, apply the classi-
cal proof of Lax and Wendroff, as done in [28], i.e., as l → ∞, the L1

loc convergence of U{l} to u, to-
gether with the smoothness of φ, ensures the convergence of the first summand to

∫ ∞
0

∫ ∞
−∞

φt(x, t)u(x, t) dx,
whereas the choice of the initial data U0

i = ψi enables us to conclude the convergence of the RHS to
−

∫ ∞
−∞

φ(x, 0)u(x, 0) dx. What is left to prove is the limit for the middle term, in particular, we are inter-
ested showing the convergence of the new numerical flux to the physical flux and therefore in estimating∣∣∣∣Fδ,{l}

g (xi, tn) − f (U{l}(xi, tn))
∣∣∣∣ (18)

for l → ∞ where Fδ,{l}
g ((xi, tn) is a piece-wise constant reconstruction of the values Fδ

gi+ 1
2

(Un) from (11) by

using
gn,{l}

i+ 1
2
= g(U{l}(xi, tn)) = g

(
U{l}(xi − p∆x, tn), . . . ,U{l}(xi + q∆x, tn)

)
for i = 1, . . . ,Nl and n = 0, . . . , nT,{l} with xi = (xi − p∆x, . . . , xi + q∆x). Adding and subtracting

g(U{l}(xi, tn)) = max{g(U{l}(xi, tn)), 0} +min{g(U{l}(xi, tn)), 0}

9



to (18) leads to

|Fδ
gi+ 1

2

(Un) − f (U{l}(xi, tn))| =
∣∣∣∣max{g(U{l}(xi, tn)), 0}δ{l}i +min{g(U{l}(xi, tn)), 0}δ{l}i+1 − f (U{l}(xi, tn))

∣∣∣∣
≤

∣∣∣∣max{g(U{l}(xi, tn)), 0}δ{l}i −max{g(U{l}(xi, tn)), 0}
∣∣∣∣ + ∣∣∣∣min{g(U{l}(xi, tn)), 0}δ{l}i+1 −min{g(U{l}(xi, tn)), 0}

∣∣∣∣
+

∣∣∣∣max{g(U{l}(xi, tn)), 0} +min{g(U{l}(xi, tn)), 0} − f (U{l}(xi, tn))
∣∣∣∣

=
∣∣∣∣max{g(U{l}(xi, tn)), 0}δ{l}i −max{g(U{l}(xi, tn)), 0}

∣∣∣∣ + ∣∣∣∣min{g(U{l}(xi, tn)), 0}δ{l}i+1 −min{g(U{l}(xi, tn)), 0}
∣∣∣∣

+
∣∣∣∣g(U{l}(xi, tn)) − f (U{l}(xi, tn))

∣∣∣∣ ,
where the first two addends vanish a.e. for l→ ∞ due to Lemma 2.

Finally, as only the original numerical flux g appears in the remaining term
∣∣∣g(U{l}(xi, tn)) − f (U{l}(xi, tn))

∣∣∣,
we can follow the reasoning for Lax–Wendroff [28]. Consistency of g is provided, i.e., we have the estimate∣∣∣∣g(U{l}(xi, tn)) − f (U{l}(xi, tn))

∣∣∣∣ =∣∣∣∣g(U{l}(xi − p∆x, tn), . . . ,U{l}(xi + q∆x, tn)
)
− f (U{l}(xi, tn))

∣∣∣∣ ≤ K max
−p≤ j≤q

∣∣∣∣U{l}(xi + j∆x, tn) − U{l}(xi, tn)
∣∣∣∣

with a Lipschitz constant K, where the total variation boundness (TVB) property of U{l}(·, t) leads to

max
−p≤ j≤q

∣∣∣∣U{l}(x + j∆x, t) − U{l}(x, t)
∣∣∣∣→ 0

as l → ∞ for almost every value of x. Altogether we proved the a. e. convergence of the numerical flux
function Fδ,{l}

g (xi, tn) to the physical flux function f (U{l}(xi, tn)). This gives, together with some standard
estimates, the convergence of (17) to the weak form (16) and shows, since it is true for any test function
φ ∈ C1

0, that u is indeed a weak solution.

4.1. Extension to Patankar-type RK

In this section, we draw the steps to extend the previous proof to the multi-stage Patankar-type schemes.

Definition 7 (Total time variation for Runge–Kutta). The total time variation of a numerical solution {Un
i }i,n =

{U(xi, tn)}i,n obtained by an s-stage RK method (TTVRK) over a domain [a, b] × [0,T ] for i = 1, . . . ,N and
n = 0, . . . , nT with x1 = a, xN = b, t0 = 0 and tnT = T is

TTVRK(U(x, [0,T ])) :=
nT∑

n=0

s∑
k=1

|U(k)(x, tn) − U(k−1)(x, tn)| +
nT∑

n=1

|U(x, tn) − U(s)(x, tn−1)|, (19)

where U(0)(x, tn) B U(x, tn) and U(k)(x, tn) denotes the piece-wise constant reconstruction in space of the
k-th stage computed from the numerical solution Un at time level n.

Lemma 4 (Extended Patankar weights convergence). Let U{l}(xi, tn) be the approximation of problem (1)
at the space x{l}i and time t{l}n for a mesh discretization ∆x{l} ∼ ∆t{l} → 0 for l → ∞. For every l, consider
U{l}(x, t) a piece-wise constant reconstruction of the numerical solution U{l}(xi, tn). Let TTVRK(U{l}(x, [0,T ]))
be uniformly bounded for all x ∈ [a, b] and for all l ∈ N. Suppose that U{l} → u in L1

loc([a, b]× [0,T ]). Defin-
ing δ{l}(x, t) as the piece-wise constant reconstruction of δ{l}(xi, tn) = U{l}(xi, tn+1)/σ{l}(xi, tn) and γ(k),{l}(x, t)
the one of γ(k),{l}(xi, tk

n) = U(k),{l}(xi, tk
n)/π(k),{l}(xi, tk

n) for all i and n. Then, δ{l}(x, t) and γ(k),{l}(x, t)→ 1 almost
everywhere in [a, b] × [0,T ] if σ{l}(x, t), respectively, π(k),{l}(x, t)→ U(x, t) as l→ ∞.
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Proof. First we investigate the weights of the update

δ{l}(x, t) :=
U{l}(x, t + ∆t)
σ{l}(x, t)

= 1 +
U{l}(x, t + ∆t) − σ{l}(x, t)

σ{l}(x, t)
.

Now, we can follow the same reasoning as in the proof of Lemma 2 under usage of the TTVRK property and
the convergence of the numerical solutions to a weak solution u in L1

loc, to show the convergence of U{l}(x, t+
∆t) to U{l}(x, t). Furthermore we assumed σ{l}(x, t) → U(x, t) which finally leads to liml→∞U{l}(x, t + ∆t) −
σ{l}(x, t) = 0 and thus to δ{l}(x, t)→ 1. We proceed considering the weights of the stages

γ(k),{l}(x, t) =
U(k),{l}(x, t)
π(k),{l}(x, t)

= 1 +
U(k),{l}(x, t) − π(k),{l}(x, t)

π(k),{l}(x, t)

and see the desired results under the same arguments as in the first part of the proof.

In the previous Lemma 4, some convergence for the PWDs was assumed, that is σ{l}(x, t) respectively
π(k),{l}(x, t)→ U(x, t) almost everywhere for l→ ∞ and (x, t) ∈ [a, b] × [0,T ].

Theorem 5 (Lax–Wendroff for MPRK schemes). Assume the PWDs of an MPRK method continuously
depend on the i-th component of the stages, i.e.

π(k)
i = π

(k)
i (Un

i ,U
(1)
i , . . . ,Uk−1

i ) and σi = σi(Un
i ,U

(1)
i , . . . ,U(s)

i ).

Furthermore we assume that the PWDs are consistent in the sense that

π(k)
i (Un

i ,U
n
i , . . . ,U

n
i ) = Un

i and σi(Un
i ,U

n
i , . . . ,U

n
i ) = Un

i .

then the PWDs fulfill the extended Patankar weights convergence of Lemma 4.

Proof. The needed convergence U(k),{l}
i → Un

i for l→ ∞ is secured by the TTVD property.

Remark 7. The assumptions made in the previous theorem are exactly those of [19] and [3] which cover
common methods such as the ones presented in [21, 22, 33]. Altogether Theorem 5 shows that the PWDs
from the literature already satisfy the assumption from Lemma 4.

In the following example, we illustrate that the assumption of Theorem 5 are fulfilled for a second-order
family of MP methods.

Example 2 (MPRK22(α)). Consider the two stage second-order family of modified Patankar–Runge–Kutta
methods introduced in [21] and denoted by MPRK22(α), where α ≥ 1

2 is a free parameter and the PWDs are

given by π(2)
i = Un

i and σi =
(
Un

i

)1− 1
α
(
U(2)

i

) 1
α .

For l→ ∞ we find γ(2),{l}(x, t) = U(2),{l}(x,t)
Un,{l}(x,t) → 1 and thus σ{l}i →

(
Un

i

)1− 1
α
(
Un

i

) 1
α = Un

i i.e. δ{l} → 1 almost
everywhere.

Remark 8 (Lax–Wendroff proof: extension to Patankar-type RK sketch). The extension to RK meth-
ods with more stages differs only in the investigation of equation (18), where we have, instead of the MPE
weighted numerical flux (11), the generalized version (13), i.e.,∣∣∣∣∣∣F̄n,δ,{l}

gi+ 1
2
− f (U{l}(xi, tn))

∣∣∣∣∣∣
11



which, using the definition of F̄n,δ,{l}
gi+ 1

2
and

∑s
r=1 br = 1, reads

∣∣∣∣∣∣∣∣
s∑

r=1

brFδ,{l}
g

(
U(r),{l}(xi, t

(r)
n )

)
− f (U{l}(xi, tn))

∣∣∣∣∣∣∣∣ ≤
s∑

r=1

|br |

∣∣∣∣Fδ,{l}
g

(
U(r),{l}(xi, t

(r)
n )

)
− f (U{l}(xi, tn))

∣∣∣∣ .
Thus, defining again xi = (xi − p∆x, . . . , xi + q∆x), we take an arbitrary summand r and decompose it
analogously to the proof of Theorem 3, which leads to∣∣∣∣Fδ,{l}

g

(
U(r),{l}(xi, t

(r)
n )

)
− f (U{l}(xi, tn))

∣∣∣∣ ≤ ∣∣∣∣max{g(U(r),{l}(xi, t
(r)
n )), 0}δ{l}i −max{g(U(r),{l}(xi, t

(r)
n )), 0}

∣∣∣∣
+

∣∣∣∣min{g(U(r),{l}(xi, t
(r)
n )), 0}δ{l}i+1 −min{g(U(r),{l}(xi, t

(r)
n )), 0}

∣∣∣∣
+

∣∣∣∣g(U(r),{l}(xi, t
(r)
n )) − f (U{l}(xi, tn))

∣∣∣∣ .
The first two lines vanish reasoned by δ{l}i → 1 for l → ∞, i.e., we need to prove that in the limit l → ∞ the
last summand∣∣∣∣g(U(r),{l}(xi, t

(r)
n )) − f (U{l}(xi, tn))

∣∣∣∣
=

∣∣∣∣g(U(r),{l}(xi − q∆x, t(r)
n ), . . . ,U(r),{l}(xi + p∆x, t(r)

n ))
∣∣∣∣ ≤ L max

−p≤ j≤q

∣∣∣∣U(r),{l}(xi + j∆x, t(r)
n ) − U{l}(xi, tn)

∣∣∣∣→ 0,

for a.e. xi, where, independently of the argument, we can apply the Lipschitz continuity of g with Lipschitz
constant L to get the estimation.

Note in this case the RK stages are arguments of the numerical flux. Therefore, we need first Lemma 4 to
secure the convergence of the stages to the same solution liml→∞U(r),{l}(xi + j∆x, t(r)

n )−U{l}(xi + j∆x, tn) = 0
and proceed with the proof of the original Lax–Wendroff theorem to obtain the desired result.

Remark 9 (Lax–Wendroff for NSARK). In the case of MP methods we assumed in Lemma 4 and Theo-
rem 5 that the PWDs fulfill certain properties to conclude that the NSW grid functions δ{l},γ(k),{l} satisfy

lim
l→∞
δ{l}(x, t) = 1 and lim

l→∞
γ(k),{l}(x, t) = 1 (20)

almost everywhere. This property represents the main ingredient in the proof outlined in Remark 8. Indeed,
to extend the Lax–Wendroff theorem also to general NSARK schemes with general solution-dependent co-
efficients of the form (8), it is sufficient to add the condition (20) to the classical assumptions of the Lax–
Wendroff theorem.

Remark 10 (On the TTV boundness assumption). The difference with respect the classical Lax–Wendroff
theorem consists on the assumption that the numerical solutions are TTV bounded uniformly in space and in
the limit process. The authors could not easily remove this assumption to prove the Lax–Wendroff theorem.
Different strategies have been pursued but all of them ended up requiring some extra hypotheses. In par-
ticular, the technique proposed by Birken and Linders [6] shows that Lax–Wendroff theorem using iterative
methods for implicit schemes can be applied also in the context of Patankar-type methods. Nevertheless, in
their work the case where both the limit of iterations of the linear solver and the mesh refinement level go to
infinity is not treated. In particular, it is hard to prove the liml→∞ limz→∞ case, where l is the mesh refinement
level and z is the linear solver iteration. Indeed, this leads to a dependency of the composed numerical flux
in one step of the RK on the whole domain. This destroys the argument used in the classical Lax–Wendroff
theorem to prove the flux convergence almost everywhere.
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The hypotheses of being TVB in space and time for a given spatial and temporal discretization is not
trivial to study, as one needs to find a bound uniformly with the mesh refinement, which in a discrete setting
is virtually impossible to check. What one can do in some cases is to prove a stronger result, i.e., the total
variation diminishing (TVD) (in space) property. In Appendix A, we study the TVD property of the MPE
scheme applied to an upwind first order FV spatial discretization for the nonviscous Burgers’ equation. We
also propose some numerical tests to validate the findings.

5. Numerical results

In this section, we will run some simple Riemann problem tests to validate the convergence towards exact
solutions. What we are looking for is to test the regimes where the modified Patankar weights are large and
change significantly the scheme with respect to explicit ones. Clearly, this happens close to discontinuity
and close to 0 values of the solution, while everywhere else the modified Patankar weights quickly converges
to 1. Hence, we choose to test Riemann problems with very low value of one of the two sides.

We will start from first order methods with the MPE time discretization and then we will proceed with
higher order discretizations.

5.1. First order tests

5.1.1. Burgers’ equation
We start the discussion with Burgers’ equation

∂tu + ∂x

u2

2

 = 0, x ∈ [−1, 1], t ∈ [0,T ], (21)

with a double Riemann problem for initial conditions, i.e.,

u(x, 0) =

u1, if − 0.5 < x < 0.5
u2, else,

(22)

with both u1, u2 > 0 and periodic boundary conditions. The exact solution of this problem if u1 > u2 is a

discontinuity traveling at speed c =
u2

1−u2
2

2(u1−u2) on the right and a rarefaction wave on the left. For the spatial
discretization, we use a simple upwind numerical flux that, given the positivity of the solution, will sum up
to gi+ 1

2
(Un) = Un

i . In Appendix A, we show that MPE with the upwind spatial discretization is TVD for an
implicit CFL bound: CFL < 2.

To check the convergence of the scheme, we look at a very strong Riemann problem where u1 = 104

and u2 = 10−30, so that we expect the modified Patankar weights to be particularly large. We run some
simulations with different number of cells N at CFL = 1 and CFL = 2.1. For each of these simulations we
look for the interface with largest derivative and we set this point to be the “numerical shock location” sN .
We measure then |sN − s|, where s is the exact shock location. For both CFLs (so, also in a non TVD regime),
we obtain that the numerical shock locations converge linearly to the exact shock location.

In Figure 1, we show the simulations and the error of the shock locations, proving the convergence of
the numerical solutions to the exact solution of the problem.

5.1.2. Buckley–Leverett equation
Then, we test the Buckley–Leverett equation that approximates a phase concentration in multiphase

flows, i.e.,

∂tu + ∂x f (u) = 0, with f (u) =

 u2

u2 + a(1 − u2)

 (23)
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Figure 1: Simulations (top) and numerical shock location errors (bottom) for Burgers’ equation (21) with upwind numerical flux
and MPE. CFL=1 on the left and CFL=2.1 on the right
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Figure 2: Simulations for explicit Euler (first line), MPE (third line) and numerical shock location errors for explicit Euler (second
line) and MPE (last line) for Buckley–Leverett equation (23) with upwind numerical flux and MPE. CFL = 0.99 (left), CFL = 1.20
(center) and CFL = 1.99 (right)
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with the IC given by the Riemann problems (22), with u1 = 0.5 and u2 = 10−30 and a = 0.5. Again, the right
discontinuity travels with speed c = f (u1)− f (u2)

u1−u2
, while a rarefaction fan spreads from the left discontinuity.

In this case, we could prove that the scheme is TVD and, from the numerical simulations, we guess that
the MPE is TVD for CFL ≤ 1, as well as the explicit Euler method.

In Figure 2, we show the simulations of explicit Euler and MPE at various N for CFL = 0.99 (left),
CFL = 1.2 (center) and CFL = 1.99 (right). Below each figure, we also plot the error of the numerical shock
location. MPE clearly has some qualitative improvements with respect to explicit Euler, in particular for
CFL = 1.2 where we are outside the stability region for the explicit method, but we can still obtain reliable
simulations for MPE. In the explicit method, we observe not only oscillations close to the shock, but also a
wrong weak solution at the rarefaction wave (not the entropy solution), while the MPE gives correct results
at both waves. Numerically, we have seen that for MPE seems TVD up to CFL = 1, while explicit Euler
is not TVD for CFL larger than 1. In any case, in the regime where explicit Euler converges to the exact
solution, we also have that the MPE converges to the exact solution.

5.2. High order tests

In this section, we test with higher order schemes the findings of this work. We will first have a high
order in time and upwind first order space reconstruction and then we will move to high order in space and
time using a WENO spatial reconstruction.

5.2.1. High order in time
To test the high order in time Patankar-type schemes, we will use the MPDeC with different order of

accuracy, while still using an upwind first order discretization. In Figure 3, we show the simulations for
the same double Riemann problem studied in the previous section. As for the MPE, we notice a good
convergence towards the exact solution, in particular in the shock location at an O(∆x) rate. For CFL = 2.1
there is still convergence, even if the shock location does not converge monotonically to the exact one. It
seems that there are two first-order error lines on which the error bounces.

Moreover, numerically, we can observe that also the second order MPDeC(2) for Burgers with upwind
seems TVD up to CFL 2, while higher order MPDeC are never TVD even for very small CFLs.

In figure (4), we check the TTV boundness for different time discretization methods at different CFL
number (0.99, 1.99, 2.99, 10) for a double RP (22) with u1 = 2 and u2 = 10−13. The TTV boundness is
the hypothesis that we added to the Lax–Wendroff theorem in order to be proven for Patankar-type methods.
Here, we check whether this hypothesis is reasonable for such methods. In particular, we observe that the
Modified Patankar methods seem to have bounded TTV also for very large CFLs, even if the bound is larger
than the exact solution one (which is bounded by 2). This does not prove that the method is uniformly
bounded for large CFLs, but it gives good hopes, while for low CFLs it seems that the TTV is bounded by
the exact TTV. On the other side, the explicit Euler method is TTV only for CFL ≤ 1, while for larger CFLs
has an exploding behavior.

5.2.2. High order in space and time with WENO-FV
Finally, in this section we propose a space-time high order discretization which involves a finite volume

(FV) WENO spatial reconstruction [40] in each cell, with a positivity limiter [36] to guarantee the positivity
in each reconstruction point. Typically these limiters are set to work with the explicit Euler method and
SSPRK methods, where the CLF has to be adjusted according to the weights of the underlying quadrature,
e.g. for order 5 one needs a CFL of 1

12 . In the context of Patankar-type schemes, it has been shown that this
restriction of the CFL is not required [10].

Here, we use the discretization proposed in [10] where the FV-WENO discretization order matches
the time integration order of accuracy. As time discretization, we use various Patankar-type methods,
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Figure 3: Burgers’ equation (21) simulations and error of the shock location with MPDeC of order 2 (left), 3 (center) and 4 (right)
and upwind numerical flux with different CFLs
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Figure 4: Total time variation for various methods and different CFL number for Burgers’ equation (21) with IC (22) with u1 = 2
and u2 = 10−13. Observe that for different methods different scales are used.
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Figure 5: Burgers’ (top) and SW dam break (bottom), solutions and shock location error refining the mesh: MPDeC2 (left),
MPSSPRK3 (center) and MPDeC5 (right)
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i.e. MPDeC [33] of various order and the optimal third order MP strong-stability-preserving Runge–Kutta
method [18] (MPSSPRK3).

Also here, we propose two tests for different conservation laws with discontinuities with a state close
to 0, for Burgers’ equations and Shallow Water (SW) equations. Differently from the previous test cases,
in this code a minimum quantity for the positive variable is set at 10−14 to avoid blow-ups in the velocity
computation (in SW).

We start with the inviscid Burgers’ equations ∂tu(x, t) + ∂x(u2(x, t)/2) = 0 for u : [0, 1] × R+ → R with
IC and exact solution

u(x, 0) =

1 x ≤ 0.2,
10−16 else,

u(x, t) =

1 x ≤ 0.2 + 1
2 t,

10−16 else.

The solution of this problem is clearly positive, hence it is reasonable to apply the MP procedure on the
variable u. In Fig. 5 (top), we show the simulations for various methods at time T = 1 obtained with
CFL = 0.5. In all schemes, we see a convergence of the shock towards the exact solution, in accordance
with Remark 8 and, hence, with the shock traveling at the right speed. This is a symptom of a conservative
method and consistent numerical fluxes.

We then proceed with a shallow water equation test of a slightly wet dam break∂th + ∂x(hu) = 0,
∂t(hu) + ∂x(hu2 + 9.8

2 h2) = 0,
h(x, 0) =

2.5 x ≤ 5,
0.025 x > 5,

u(x, 0) = 0. (24)

Clearly, for this test only h is part of a positive production-destruction system and is put in an MP solver,
while hu is solved with the underlying explicit method. The choice of a wet dam break is dictated by the fact
that dry dam breaks do not show a discontinuity close to the dry area, but rather a rarefaction wave, making it
impossible to validate the speed of the shock close to the dry region. Moreover, we remark that, in particular
in the initial times, the MP weights close to the shock are proportional to the ratio of the left and the right
state of h, which in this case is 100, see (24). We believe that this jump would already influence the behavior
of the solution. Larger jumps would make the shock smaller and the numerical diffusion would smear out
their behavior, making the validation of the result impossible.

In Fig. 5 (bottom), we depict the simulation at time T = 0.7 obtained with CFL = 0.5 for different MP
solvers next to the exact solutions as well as the numerical shock location error. Here, we also observe that
the solutions converge to the exact one as the mesh is refined.

In [10, 9], other more challenging Shallow Water tests have been solved using the same approach with
MPDeC. There, multiple shocks and their interactions in wet/dry regimes have been tested and in all those
simulations the solutions showed reliable results in comparison with classical benchmarks.

6. Conclusions and perspectives

We have extended the Lax-Wendroff theorem to Patankar-type temporal discretization of difference
methods for conservation laws. The proof of the theorem required an additional hypothesis, with respect
to the classical one, that bounds the total time variation of the numerical solutions uniformly in space and
refinements. The numerical results show that, if convergent, the Patankar-type methods converge to the same
weak solution of the explicit methods, and sometimes they converge also when the explicit methods fail at
converging, bringing in some extra stabilization.

It would be interesting to extend this result, for example, proving that the extra hypothesis is not needed.
In this context, ideas similar to [6] could be explored, even if there is no guarantee that the two limits of
linear solver iterations going to infinity and mesh refinements can be exchanged. Another aspect of interest
is a formulation of entropy preserving Patankar-type methods which is ongoing work.
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Appendix A. Total Variation Diminishing property

In this section, we will prove an interesting results for a very specific combination of space-time dis-
cretization on Burgers’ equation. We use MPE as time discretization, an upwind numerical flux (being u
positive, this is quite straightforward) with the definition of PDS of (9). We can prove that this scheme is
total variation diminishing (TVD) for an implicit CFL < 2.

Theorem 6. Consider the upwind method with the following PDS distribution

∂tUi = −
U2

i − U2
i−1

2∆x
, with pi,i−1 =

U2
i−1

2∆x
, di,i+1 =

U2
i

2∆x
. (A.1)

The MPE scheme applied to this semidiscretization is TVD with the implicit CFL condition

∆tn

∆x
Un+1

i ≤ 2 ∀i, (A.2)

for all times n with ∆tn = tn+1 − tn.

Proof. Let us first write down explicitly the MPE scheme applied to the previous semidiscretization:

Un+1
i = Un

i −
∆t

2∆x

(Un
i )2 Un+1

i

Un
i
− (Un

i−1)2 Un+1
i−1

Un
i−1

 (A.3)

= Un
i −
∆t

2∆x

(
Un

i Un+1
i − Un

i−1Un+1
i−1

)
= Un

i −
∆t

2∆x

(
Un

i (Un+1
i − Un+1

i−1 ) + (Un
i − Un

i−1)Un+1
i−1

)
. (A.4)

Now, applying the difference of two consecutive values, we obtain

Un+1
i − Un+1

i−1 = Un
i − Un

i−1

−
∆t

2∆x

(
Un

i (Un+1
i − Un+1

i−1 ) + (Un
i − Un

i−1)Un+1
i−1 − Un

i−1(Un+1
i−1 − Un+1

i−2 ) − (Un
i−1 − Un

i−2)Un+1
i−2

) (A.5)

and bringing on the left hand side the implicit term that we can collect, we obtain

(Un+1
i − Un+1

i−1 )
(
1 +

∆t
2∆x

Un
i

)
=(Un

i − Un
i−1)

(
1 −

∆t
2∆x

Un+1
i−1

)
+
∆t

2∆x

(
Un

i−1(Un+1
i−1 − Un+1

i−2 ) + (Un
i−1 − Un

i−2)Un+1
i−2

)
.

(A.6)
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Figure A.6: Deviation of the total variation from the initial total variation (left) and maximum variation of TV (right) for different
CFL numbers on a Burgers’ double Riemann Problem test with MPE and upwind

Now, using (A.2) and the positivity of the solution, we obtain∑
i

|Un+1
i − Un+1

i−1 |

(
1 +

∆t
2∆x

Un
i

)
≤

∑
i

|Un
i − Un

i−1|

(
1 −

∆t
2∆x

Un+1
i−1

)
+

∑
i

∆t
2∆x

Un
i−1|U

n+1
i−1 − Un+1

i−2 | +
∑

i

∆t
2∆x
|Un

i−1 − Un
i−2|U
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i−2

(A.7)
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∆t
2∆x

Un
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∆t

2∆x
Un
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Un+1
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∆t
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)
(A.8)

⇐⇒ TV(Un+1) =
∑

i

|Un+1
i − Un+1

i−1 | ≤
∑

i

|Un
i − Un

i−1| = TV(Un). (A.9)

It is not so easy to use the same trick for other schemes and systems as the add-and-subtract trick we did was
tailored for Burgers’ equation and those Patankar weights. For more complex problems and schemes one
would have further terms that are not so easy to handle.

Remark 11 (On the implicit CFL condition). The implicit CFL condition (A.2) is not the classical CFL
condition imposed using the values of the solution at the previous time step, but it rather implies knowing
the solution at the next time step, which is not possible. Nevertheless, from an experimental point of view, we
have observed that also imposing the classical explicit CFL condition with CFL value equal to 2 is sharply
guaranteeing the TVD property.

Appendix A.1. Numerical results
To test the TVD property, we run some simulations for the Burgers’ equation with a double Riemann

problem (22) as initial condition with different values for u1 and u2. The numerical findings are independent
on these values. We show the simulations for u1 = 2 an u2 = 10−13 with N = 100 discretization points
and periodic Boundary conditions. We test for different explicit CFL numbers close to the critical value 2 to
check if the found condition is valid and sharp, i.e., ∆tn

∆x maxi Un
i ≤ CFL. In figure A.6, we plot the difference

between the TV at a given time and the TV at the initial time. We clearly see that for CFL ≤ 2 the simulations
are TVD while as soon as we cross the value 2, the simulations are not TVD. Moreover, the maximum of
value of the difference between the TV at a time step and at the previous time step is reported in the right of
Figure A.6 and confirms once again that even imposing the CFL at an explicit level, we sharply obtain the
TVD property for CFL ≤ 2.
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Numerically, we have observed that other high order schemes do not share the same property. For
example, we could not find any CFL for which MPDeC of order 3 and 4 would be TVD, while for MPDeC
of order 2 we obtained numerically the same CFL bound as MPE.
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[4] A. I. Ávila, S. Kopecz, and A. Meister, A comprehensive theory on generalized BBKS schemes, Appl.
Numer. Math., 157 (2020), pp. 19–37.

[5] M. Ben-Artzi, GRP – a direct Godunov extension, J. Comput. Phys., 519 (2024), p. 23. Id/No 113388.

[6] P. Birken and V. Linders, Conservation Properties of Iterative Methods for Implicit Discretizations of
Conservation Laws, J Sci Comput, 92 (2022), p. 60.

[7] H. Burchard, E. Deleersnijder, and A. Meister, A high-order conservative Patankar-type discretisa-
tion for stiff systems of production–destruction equations, Appl. Numer. Math., 47 (2003), pp. 1–30.

[8] M. H. Carpenter and T. C. Fisher, High-Order Entropy Stable Formulations for Computational Fluid
Dynamics.

[9] M. Ciallella, L. Micalizzi, V. Michel-Dansac, P. Öffner, and D. Torlo, A high-order, fully well-
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[33] P. Öffner and D. Torlo, Arbitrary high-order, conservative and positivity preserving Patankar-type
deferred correction schemes, Applied Numerical Mathematics, 153 (2020), pp. 15–34.

[34] S. Ortleb, Positivity preserving implicit and partially implicit time integration methods in the context
of the DG scheme applied to shallow water flows, in Finite volumes for complex applications VII.
Methods and theoretical aspects, vol. 77 of Springer Proc. Math. Stat., Springer, Cham, 2014, pp. 431–
438.

[35] S. Ortleb and W. Hundsdorfer, Patankar-type Runge-Kutta schemes for linear PDEs, vol. 1863, 07
2017, p. 320008.

[36] B. Perthame and C.-W. Shu, On positivity preserving finite volume schemes for Euler equations, Nu-
merische Mathematik, 73 (1996), pp. 119–130.

[37] M. Ricchiuto and A. Bollermann, Stabilized residual distribution for shallow water simulations, J.
Comput. Phys., 228 (2009), pp. 1071–1115.

[38] C. Shi and C.-W. Shu, On local conservation of numerical methods for conservation laws, Comput.
Fluids, 169 (2018), pp. 3–9.

[39] C. Shi and C.-W. Shu, On local conservation of numerical methods for conservation laws, Computers
& Fluids, 169 (2018), pp. 3–9. Recent progress in nonlinear numerical methods for time-dependent
flow & transport problems.

[40] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing
schemes, Journal of Computational Physics, 77 (1988), pp. 439–471.

[41] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and
related time-dependent problems, Acta Numer., 12 (2003), pp. 451–512.
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