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Abstract
In this work, we present a high-order finite volume framework for the numerical
simulation of shallow water flows. The method is designed to accurately capture com-
plex dynamics inherent in shallow water systems, and it is particularly suited for
real applications such as tsunami simulations. The arbitrarily high-order framework
ensures accurate representation of flow behaviors, crucial for simulating phenomena
characterized by rapid changes and fine-scale features. Thanks to an ad-hoc reformu-
lation in terms of production-destruction terms, the time integration ensures positivity
preservation without any time-step restrictions, a vital attribute for physical consis-
tency, especially in scenarios where negative water depth reconstructions could lead
to unrealistic results. In order to introduce the preservation of general steady equilibria
dictated by the underlying balance law, the high-order reconstruction and numerical
flux are blended in a convex fashion with a well-balanced approximation, which is
able to provide exact preservation of both static and moving equilibria for pseudo-
monodimensional states as well as for general 2D water at rest solutions. Through
numerical experiments, we demonstrate the effectiveness and robustness of the pro-
posed approach in capturing the intricate dynamics of shallow water flows, while
preserving key physical properties essential for flood simulations.

Keywords Well-balancing · Moving steady solutions · Positivity preservation ·
High-order accuracy · Flood simulations · Shallow water · WENO

Mathematics Subject Classification 65M08 · 65M20 · 65M22 · 35L60

1 Introduction

The Saint-Venant equations, also known as the shallow water (SW) equations, char-
acterize the behavior of hydrostatic free surface waves influenced by gravity. These
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nonlinear hyperbolic partial differential equations (PDEs) are applicable under the
assumption of either very large wavelengths or very shallow depths. They find exten-
sive use across engineering domains, including river and estuarine hydrodynamics,
urban flood management, and tsunami risk evaluation. The numerical approximation
of the SWequations is in fact a highly active area of research. Numerous originalmeth-
ods havebeendeveloped across various contexts and settings: finite volume (Castro and
Parés 2020;Kurganov 2018; Ciallella et al. 2023; Chertock et al. 2022), continuous and
discontinuous finite element (Behzadi and Newman 2020; Bender and Öffner 2024;
Micalizzi et al. 2024; Xing and Shu 2014), and references therein. The ultimate goal of
these approaches is to provide reliable and physically meaningful simulations for real-
world applications, while demanding minimal computational resources. High-order
methods are particularly suitable in this context, as they are able to achieve smaller
errors within coarser discretizations. Furthermore, an effective strategy for designing
numerical methods with reduced errors is through structure-preserving techniques.
These techniques aim to replicate additional consistency conditions beyond those
explicitly defined by the system of equations. In the context of the SW equations, the
focus is typically the preservation of stationary equilibria and of positive water height.

Concerning the first aspect, the SW equations are well known to admit stationary
solutions, whose preservation is crucial in many applications. A discretization which
is able to preserve one or more of these equilibria at the discrete level is said to
be well-balanced (WB), see (Berthon et al. 2022; Castro and Parés 2020; Gómez-
Bueno et al. 2021; Mantri et al. 2024; Micalizzi et al. 2024). This WB property is
crucial for complex, time-dependent simulations, as discretization errors due to the
non-preservation of stationary regions could accumulate over time.

Concerning the second aspect, it is a necessity to have provably positive discretiza-
tions, avoiding negative water heights, which would immediately cause simulation
crashes. In order to obtain a provably positive numerical solution in the context
of high-order weighted essentially non-oscillatory (Shu 1998) (WENO) space dis-
cretizations, an effective positive limiter has been introduced and further developed
in Zhang and Shu (2010); Perthame and Shu (1996). As proven in these references,
this limiter achieves the preservation of positivity for classical SSPRK (Gottlieb et al.
2001) time discretizations, but it restricts the CFL condition to the weight of the
Gauss-Lobatto quadrature rule of the corresponding space accuracy (e.g., 1/12 for
fifth-order schemes). To circumvent this issue, unconditionally positivity preserving
time-stepping strategies (Meister and Ortleb 2016; Ciallella et al. 2022) for the SW
equations have been proposed, based on a suitable reformulation of the finite volume
semi-discretization in terms of production-destruction terms. These approaches are
based on the modified Patankar trick (Patankar 1980). The linearly implicit nature of
this approach allows for a relaxation of the aforementioned time-step constraint at a
reasonable computational cost.

In this paper,wedealwith the possibility of integrating the additional preservation of
general static and moving equilibria into the arbitrary high-order positivity preserving
framework introduced in Ciallella et al. (2022). To achieve this, we suitablymodify the
spatial discretization relying on ideas presented in Berthon et al. (2022). In particular,
we perform a convex blending between the original discretization and a WB one,
able to exactly capture general families of equilibria for pseudo-monodimensional
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states as well as for general 2D water at rest solutions. The approach is able to tackle
challenging flood simulations, proving to be a good candidate for real-life applications.
We emphasize that our analysis not only includes general benchmark test cases but
also incorporates comparisons with real-world data. Additionally, we compare our
developed framework with other modern, efficient high-order well-balanced schemes.
Our approach proves to be competitive with these advanced methods, demonstrating
its potential for real-world applications and the ability to keep pace with current state-
of-the-art techniques.

The paper is structured as follows. We first introduce the multidimensional SW
system in Sect. 2. Then, the high-order WB space discretization is detailed in Sect. 3,
while, in Sect. 4, we present the positivity preserving time discretization. The results of
the numerical validation are reported in Sect. 5. Finally, Sect. 6 is left for conclusions
and future perspectives.

2 Shallowwater equations

The two-dimensional SW equations consist in a hyperbolic system of PDEs, exten-
sively used inmany applications to describe the behavior ofwater flows. Their Eulerian
formulation on a space domain � ⊆ R

2, assuming no friction and a time-independent
bathymetry, reads

∂u
∂t

+ ∂F
∂x

(u) + ∂G
∂ y

(u) = S(x, y,u), ∀(x, y) ∈ �, ∀t ∈ [0, T f ], (2.1)

where conserved variables, fluxes and source term are respectively given by

u =

⎡
⎢⎢⎢⎢⎣

h

hu

hv

⎤
⎥⎥⎥⎥⎦

, S(x, y,u) = −gh

⎡
⎢⎢⎢⎢⎣

0

∂b
∂x (x, y)

∂b
∂ y (x, y)

⎤
⎥⎥⎥⎥⎦

,

F(u) =

⎡
⎢⎢⎢⎢⎣

hu

hu2 + g h2
2

huv

⎤
⎥⎥⎥⎥⎦

, G(u) =

⎡
⎢⎢⎢⎢⎣

hv

huv

hv2 + g h2
2

⎤
⎥⎥⎥⎥⎦

,

(2.2)

with h being the water height, u and v the velocity components of the flow along the x
and y directions respectively, g the gravitational constant, and b(x, y) the bathymetry.
We also introduce the free surface water level η := h + b, and the discharge variables
along the two directions x and y, defined as qx := hu and qy := hv respectively.

Notable properties of the SW equations, which have been drawing the interest of
the scientific community in recent years and which play a central role in the context of
this paper, are the positivity of the water height and the existence of non-trivial steady
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solutions. In the context of numerical schemes preserving moving equilibria, one is
interested in a detailed capturing of steady solutions satisfying

∂u
∂t

≡ 0 ⇔ ∂F
∂x

(u) + ∂G
∂ y

(u) = S(x, y,u), ∀(x, y) ∈ � ⊆ R
2, ∀t ∈ [0, T f ].

(2.3)

The simplest and most known steady solution is the so-called “lake at rest” given by

u = v = 0, η ≡ η0 ∈ R
+
0 , ∀ (x, y) ∈ �, ∀t ∈ [0, T f ]. (2.4)

Generally speaking, steady solutions are not known in closed-form and they are char-
acterized by the analytical balance (2.3). The smooth steady solutions tackled in this
work are the pseudo-monodimensional states in the form

⎧⎪⎪⎨
⎪⎪⎩

∂

∂s
qs = 0,

∂

∂s

(
q2s
2h2

+ g(h + b)

)
= 0,

(2.5)

where s is a general handle for the x or the y variable. For more information on these
steady solutions, the reader is referred for instance to Michel-Dansac et al. (2016). For
what follows, it is useful to define the so-called equilibrium variables

Es(x, y,u) =
[

qs
q2s
2h2

+ g(h + b)

]
. (2.6)

After (2.5), steady solutions are characterized by Es(x, y,u) being constant in space.
The system of PDEs under consideration is discretized using the Method of Lines

(MOL), a numerical approach that treats space and time independently. In particular,
space and time discretizations are the main focus of the next two sections.

3 Well-balanced space discretization

This section is dedicated to the space discretization. First, in Sect. 3.1, we describe our
classical, non-WB high-order discretization. Then, Sect. 3.2 is devoted to the descrip-
tion of a strategy to achieve a high-order WB discretization, which was introduced
in a one-dimensional setting in Berthon et al. (2022). Here, we generalize this tech-
nique for a two-dimensional WENO framework, applying the basic idea dimension
by dimension. The underlying principle consists in a simple blending between a high-
order discretization and aWBdiscretization to be usedwhere a steady state is detected.
The main strengths of this approach are its low cost (no nonlinear equations need to
be solved) and its ease of use (it consists in multiplying the reconstruction by a suit-
able coefficient). We emphasize that the resulting scheme will be able to capture and
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preserve all the moving 1D steady solutions given by (2.5), and not just the so-called
lake at rest solution, where velocity vanishes.

3.1 Basic high-order discretization

The computational domain � is discretized in a Cartesian fashion via Nx × Ny non-
overlapping control volumes

�i, j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2],

with uniform spatial steps �x = xi+1/2 − xi−1/2 and �y = y j+1/2 − y j−1/2.
Finite volume methods are based on deriving a system of ordinary differential

equations (ODEs) for the cell averages of the solution in each control volume �i, j

Ui, j (t) := 1

�x�y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

u(x, y, t) dxdy.

The first step to obtain such a system is to integrate (2.1) over �i, j , thus getting

dUi, j (t)

dt
+ 1

�x
(Fi+1/2, j (t) − Fi−1/2, j (t)) + 1

�y
(Gi, j+1/2(t) − Gi, j−1/2(t)) = Si, j (t), (3.1)

where Si, j is the source term average

Si, j (t) := 1

�x�y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

S(x, y,u) dxdy,

and Fi+1/2, j and Gi, j+1/2 are the averages of the fluxes over the cell boundaries

Fi+1/2, j (t) := 1

�y

∫ y j+1/2

y j−1/2

F(u(xi+1/2, y, t)) dy,

Gi, j+1/2(t) := 1

�x

∫ xi+1/2

xi−1/2

G(u(x, y j+1/2, t)) dx .

So far, Equation (3.1) has been exactly derived from (2.1). However, in order to obtain
the numerical scheme, we need to discretize the fluxes and the source averages.

To that end, we rely on the following ingredients: a high-order reconstruction of the
conservative variables in each control volume (WENO Shu 1998 in our case), consis-
tent quadrature formulas to discretize all integrals (Gauss-Legendre with Q points in
our case), and suitable numerical fluxes to compute the fluxes in the boundary integrals
(described later on). In the remainder of this section, we drop the time dependency to
shorten notation.

Let us first focus on the discretization of the fluxes averages and, more in detail,
on Fi+1/2, j , asGi, j+1/2 is obtained similarly. Once the reconstruction in each control
volume has been performed, at each quadrature point yq ∈ [y j−1/2, y j+1/2] of each
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edge xi+1/2 wehave twohigh-order reconstructed values foru, corresponding to x Li+1/2

and x Ri+1/2, whichwill be referred to as the left and right high-order extrapolated values

uLi+1/2,q = uHO(x Li+1/2, yq) and uR
i+1/2,q = uHO(x Ri+1/2, yq).

By applying a consistent quadrature rule, the flux in the x-direction reads

Fi+1/2, j ≈
Q∑

q=1

wq F̂(uLi+1/2,q ,u
R
i+1/2,q),

where F̂ is a consistent numerical flux, and wq is the normalized quadrature weight
associated to the quadrature node yq . The choice of F̂ is discussed in Sect. 3.2.

The high-order source term averages are computed as

Si, j ≈
Q∑

q=1

Q∑
p=1

wqwpS(xq , yp,uHO(xq , yp)),

with a surface quadrature obtained as the tensor product of the classical 1D quadrature
used for the edges and uHO being the local reconstruction of the solution in the cell.

Remark 1 As already stated, in this work, we consider a WENO space reconstruction
for our solution. However, the flexibility of the proposed strategy allows to select any
other space reconstruction without spoiling unconditional positivity preservation and
well–balancing. Other space reconstructions such as CWENO (Levy et al. 1999) can
be adopted with no conceptual modification of the approach and with minor changes
in the implementation.

Despite its robustness in capturing discontinuities, while minimizing the oscilla-
tions, the WENO reconstruction may provide some negative reconstructed values for
the water height, especially close to dry regions. Such negative water heights are not
physically admissible, and in fact will immediately lead to the simulation crashing. In
order to avoid such an issue, we adopt for the water height reconstruction the positivity
limiter introduced in Perthame and Shu (1996) and further discussed in Zhang and
Shu (2010).

As shown in Xing and Shu (2014), provable positivity preservation for the water
height, in the context of this framework, is subjected to severe CFL constraints, when
adopting standard time integration techniques. In particular, assuming a simple for-
ward Euler time-stepping and a local Lax-Friedrichs (or Rusanov) numerical flux, the
limit CFL guaranteeing positivity preservation is CFLFE := wLobatto

1 , where wLobatto
1

is the first weight of the adopted high-order Gauss-Lobatto quadrature rule. This cor-
responds to CFLFE = 1/12 for a quadrature of order 5. The restriction gets even worse

as the order of accuracy increases, e.g., we have CFLFE = 1/20 for a quadrature of
order 7. The adoption of high-order SSPRKmethods slightly relaxes the constraint, but
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not significantly. For instance, using the SSPRK(5, 4) discretization relaxes the condi-
tion to CFLSSPRK(5,4) = 1.508CFLFE. The adopted time discretization, described in
Sect. 4, allows us to drop such limitations and to run simulations at any CFL without
violating the positivity constraint on the water height. Due to the explicit nature of
the time scheme used for the discharge equations, however, the (far less restrictive)
stability constraint CFL ≤ 1 of explicit schemes applies.

3.2 Well-balanced blending

We now describe the WB strategy, which makes possible the capture of steady states
characterized by constant equilibrium variables (2.6). The key idea comes from the
following remark: for the simulation of a steady solution, a well-balanced scheme is
exact, and therefore has a better accuracy than any high-order scheme. For unsteady
simulations, high-order schemes are more accurate, and should be used whenever the
solution is not steady. To achieve a seamless switch between high-order and well-
balanced schemes, we propose a simple blending between the two. This blending is
performed according to a suitable steady solution indicator, defined below.

For simplicity, we only derive the reconstruction along the x-direction. The exten-
sion to the y-direction is easily performed following a dimension by dimension
approach. We replace the reconstructed variables at the interfaces by the convex com-
bination between the high-order extrapolated values and the cell averages

ũLi+1/2,q = (1 − θi+1/2, j )Ui, j + θi+1/2, juLi+1/2,q ,

ũR
i+1/2,q = (1 − θi+1/2, j )Ui+1, j + θi+1/2, juR

i+1/2,q ,
(3.2)

where θi+1/2, j is a steady state indicator. On the one hand, it should vanish when
the equilibrium variables (2.6) are constant in space; in this case, the modified recon-
structed values ũLi+1/2,q are equal to the cell averages Ui, j . On the other hand, when

far from any equilibrium, ũLi+1/2,q should be an approximation of order P, where P is

the order of the discretization (herein, P = 5).
Following (Berthon et al. 2022), we define θi+1/2, j by

θi+1/2, j = εi+1/2, j

εi+1/2, j +
(

�x
Ci+1/2, j

)P ,

with

εi+1/2, j := ‖Ex (xi+1, y j , θi+1/2, j ) − Ex (xi , y j , θi+1/2, j )‖,
where Ci+1/2, j is a quantity independent of �x , which is here chosen, at a given time
iteration, as the time residual difference at the previous iteration

Ci+1/2, j := 1

2

(
Un
i+1, j − Un−1

i+1, j

�t
+ Un

i, j − Un−1
i, j

�t

)
.
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We remark that, at equilibrium Ci+1/2, j → 0, hence θi+1/2, j → 0 as well resulting
in the low-order WB reconstruction.

Similarly, the source term discretization is defined as

S̃i, j = 1

2

(
θi−1/2, j + θi+1/2, j

)
Si, j

+ 1

2

((
1 − θi−1/2, j

)
SWB
i−1/2, j + (1 − θi+1/2, j

)
SWB
i+1/2, j

)
,

where SWB
i−1/2, j and SWB

i+1/2, j represent WB discretizations of the source term at the

interfaces described in Michel-Dansac et al. (2016).
In order to ensure stability in the context of unsteady wet-dry simulations, we found

experimentally useful to introduce,with respect to the classical approach (Berthon et al.
2022; Michel-Dansac et al. 2016), a similar convex combination in the flux definition

F̂(uLi+1/2,q ,u
R
i+1/2,q) = (1 − θi+1/2, j )F̂

WB
(uLi+1/2,q ,u

R
i+1/2,q)

+ θi+1/2, j F̂
LF

(uLi+1/2,q ,u
R
i+1/2,q),

where F̂
WB

represents the WB approximate Riemann solver presented in Michel-

Dansac et al. (2016); Berthon et al. (2021), while F̂
LF

is a robust local Lax-Friedrichs
numerical flux reading

F̂
LF

(uL ,uR) = 1

2

(
F(uR) + F(uL)

)
− 1

2
smax

(
uR + uL

)
,

where smax is the spectral radius of the normal flux Jacobian of system (2.1).

Remark 2 The discretized termsSWB
i−1/2, j ,S

WB
i+1/2, j and F̂

WB
are designed in such away

to guarantee an exact equilibrium with respect to steady states in the form (2.6), when
taking in input the cell averages. These consist in pseudo-monodimensional steady
states (2.5) and2D lake at rest solutions. The reader can easily verify that,when a steady
state of this type is considered, then all θi+1/2, j are equal to 0 (numerically speaking
this consists in defining a low enough threshold to set θi+1/2, j = 0, 10−10 in our
case) and the scheme reduces to the WB version. Indeed, the modified reconstruction
(3.2) degenerates to the cell averages. This means that, despite guaranteeing an exact
capturing of the steady states, the basic WB discretization is directly based on cell
averages without any reconstruction, and it is, therefore, only first order accurate in
general (Berthon et al. 2022). Superconvergence to second-order accuracy is achieved
for moving equilibria thanks to the exact preservation of equilibrium variables.

Remark 3 We emphasize an important property of the proposed strategy: the steady
state indicator is defined in such a way that the nonlinear system (2.5) never has to
be solved. Instead, it merely relies on evaluating the equilibrium variables (2.6) at the
cell interfaces.
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4 Unconditionally positive time discretization

In this section, we describe the time-stepping strategy, which consists in a slight
modification of arbitrary high-order deferred correction (DeC) methods for ODEs
(Abgrall 2017). In particular, the water height update is reinterpreted as a Production-
Destruction System (PDS) and then the modified Patankar trick is applied in order
to achieve unconditional preservation of its positivity as in Ciallella et al. (2022).
Both DeC methods and Patankar trick have a long history. In particular, for more
information on DeC the interested reader is referred to Dutt et al. (2000); Han Veiga
et al. (2021); Micalizzi et al. (2023); Veiga et al. (2024); Micalizzi (2024), while
Patankar (and modified Patankar) tricks are detailed in Patankar (1980); Burchard
et al. (2003); Öffner and Torlo (2020) and references therein.

4.1 Deferred correctionmethod

To introduce the DeC method, let us consider the Cauchy problem

{ d
dt c(t) = H(t, c(t)), t ∈ [0, T f ],
c(0) = c0,

(4.1)

where c : [0, T f ] → R
Nc is the unknown solution, with Nc components, and

H : [0, T f ] × R
Nc → R

Nc is a given function satisfying the classical smoothness
assumptions, which guarantee the existence of a unique solution to the Cauchy prob-
lem (4.1). As is customary in the context of one-step methods, we focus on a generic
interval [tn, tn+1] of size �t := tn+1 − tn and, given cn ≈ c(tn), we seek an approxi-
mation cn+1 of c(tn+1).

Following (Abgrall 2017; Micalizzi and Torlo 2023), we introduce M + 1 subti-
menodes tm in the interval [tn, tn+1], which are such that

tn = t0 < t1 < . . . < t M = tn+1.

The DeC method under consideration consists in an explicit fixed point iterative pro-
cedure to compute the approximation of c at all subtimenodes simultaneously. The
update formula is given by

cm,(p) := c0 + �t
M∑

�=0

θm� H(t�, c�,(p−1)), m = 1, . . . , M, p ≥ 1, (4.2)

where cm,(p) is the approximation of the solution in the subtimenode tm obtained at the
pth iteration and, for eachm, the coefficients (θm� )�∈{0,...,M} are the normalizedweights

of the high-order quadrature formula over [t0, tm] associated to the subtimenodes. In

particular, in the previous update formula, we set cm,(p) = c0 := cn whenever m = 0
or p = 0. One can show that, for small enough �t , the iterative process converges
(Micalizzi 2024). Furthermore, the order of accuracy of cM,(p) with respect to c(tn+1)
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is min (p, R), i.e., each iteration corresponds to an increase in the order of accuracy by
one, until a saturation value R, which depends on the number and on the distribution of
the adopted subtimenodes. For example, equispaced subtimenodes lead to R = M+1,
while Gauss-Lobatto subtimenodes yield R = 2M . In this paper, we use Gauss-
Lobatto subtimenodes, therefore, the optimal way of reaching order P is to perform P
fixed-point iterations with M + 1 subtimenodes, where M = � P

2 
.
Hence, the arbitrarily high-order time integration method presented in this section,

combined with the space discretization described in Sect. 3, defines an arbitrarily
high-order, fully well-balanced framework for the numerical solution of the SW equa-
tions (2.1) – (2.2). However, at this level, nothing can be said, in general, about the
positivity of the water height. In the next subsection, we present the modification to
be performed in the time integration of the water height, guaranteeing unconditional
positivity.

4.2 Modified Patankar DeCmethod

In this section, we first focus, in Sect. 4.2.1, on the unconditionally positive time inte-
gration of a specific class of ODEs, namely Production-Destruction Systems (PDSs).
Then, we describe in Sect. 4.2.2 how to apply these notions to the SW equations.

4.2.1 Unconditionally positive time integration of PDSs

PDSs are systems of ODEs characterized by the following structure

⎧⎪⎨
⎪⎩

d

dt
cα =∑Nc

β=1 pα,β(c) −∑Nc
β=1 dα,β(c), α = 1, . . . , Nc,

c(0) = c0,

where c = (cα)α∈{1,...,Nc}, and where pα,β and dα,β are real non-negative Lipschitz-
continuous functions from R

Nc to R+
0 .

More specifically, we are interested in a subfamily of PDSs fulfilling two extra
constraints: conservation and positivity. A PDS is said to be conservative if, ∀α, β ∈
{1, . . . , Nc} and ∀c ∈ R

Nc , we have pα,β(c) = dβ,α(c), thus implying

Nc∑
α=1

cα(t) =
Nc∑

α=1

cα(0), ∀t ∈ [0, T f ]. (4.3)

A PDS is said to be positive if, starting by a positive initial condition, we get a positive
evolution of all the components, i.e.,

c(0) > 0 �⇒ c(t) > 0, ∀t ∈ [0, T f ], (4.4)

where the comparison operator, applied to vectors, is meant to be applied to each scalar
component.
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Conservative and positive PDSs arise in many applications and many numerical
methods have been developed to preserve such properties. A successful approach, in
this context, is given by the (modified) Patankar trick (Patankar 1980; Burchard et al.
2003), which is based on the introduction of some weights on the production and
destruction terms. In particular, the application of the modified Patankar trick to the
DeC scheme (mPDeC) (Öffner and Torlo 2020) is characterized by replacing (4.2)
with the following update

cm,(p)
α = c0α + �t

M∑
�=0

θm�

⎛
⎝

Nc∑
β=1

pα,β(c�,(p−1))
cm,(p)
γ (β,α,θm� )

cm,(p−1)
γ (β,α,θm� )

−
Nc∑

β=1

dα,β(c�,(p−1))
cm,(p)
γ (α,β,θm� )

cm,(p−1)
γ (α,β,θm� )

⎞
⎠,

where cm,(p) = c0 := cn wheneverm = 0 or p = 0, and γ is a switch function defined
as

γ (α, β, θ) :=
{

α, if θ ≥ 0,
β, if θ < 0.

For guidelines concerning the number P of iterations to be performed, and the asso-
ciated accuracy, the reader is referred to the discussion regarding the standard DeC
scheme at the end of Sect. 4.1. The mPDeC method is positive and conservative, i.e.,
it satisfies

Nc∑
α=1

cα,n+1 =
Nc∑

α=1

cα,n and cn > 0 �⇒ cn+1 > 0,

which are nothing but natural translations, at the discrete level, of the continuous
constraints (4.3) and (4.4).

Moreover, the method is linearly implicit and can be recast in compact form as

Mcm,(p) = cn,

where the matrixM is defined as

M(c(p−1),m)α,β =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + �t
M∑

�=0

Nc∑
k = 1
k �= α

θm�

cm,(p−1)
α

(
dα,k(c�,(p−1))χ{θm� ≥0} − pi,k(c�,(p−1))χ{θm� <0}

)
, for β = α,

−�t
M∑

�=0

θml

cm,(p−1)
β

(
pα,β(c�,(p−1))χ{θm� ≥0} − dα,β(c�,(p−1))χ{θm� <0}

)
, for β �= α,

(4.5)

with χ{·} the indicator function, i.e., a switch with value equal to 1 if the argument
condition is true, 0 otherwise. One can prove that the matrix is column diagonally
dominant and hence invertible. Furthermore, it is possible to show (Micalizzi 2024)
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that, for any b > 0, the solution toMc = b is such that c > 0. At the implementation
level, the system is solved though the Jacobi method, which is provably convergent
due to the fact that M is column diagonally dominant. Moreover, in order to avoid
divisions by zero, as in Meister and Ortleb (2016); Öffner and Torlo (2020), the
following mollification of the ratios in the matrix (4.5) is considered

n

d
≈
{
0, if d < 10−8,

2d·n
d2+max{d2,10−8} , if d ≥ 10−8.

Further details are omitted to avoid lengthening the paper. However, they are thor-
oughly discussed in Ciallella et al. (2022).

We now explain how the presented notions can be applied to the finite volume
semi-discretization of the SW equations.

4.2.2 Application to the ShallowWater equations

The key idea is to reinterpret the water height semi-discretization as a PDS and to
apply the modified Patankar trick to the water height DeC update, while performing a
standard DeC time-stepping on the updates of the discharge in the x- and y-directions.
From (3.1), we note that each cell communicates with the neighboring cells, sharing
common edges, via numerical fluxes. Thus, in such a context, the components cα are
given by thewater height averages hi, j , with indices α identified as couples [i, j], while
the production and destruction terms are given by the associated numerical fluxes. Let
us recall that the water height equation has no source term contribution.

Considering all the neighbors to the cell [i, j] (i.e., cells sharing an edge with cell
[i, j]), one can define the following production and destruction terms

p[i, j],[i−1, j](U) = + 1

�x
F̂

(1)
i−1/2, j (U)+, d[i, j],[i−1, j](U) = − 1

�x
F̂

(1)
i−1/2, j (U)−,

p[i, j],[i+1, j](U) = − 1

�x
F̂

(1)
i+1/2, j (U)−, d[i, j],[i+1, j](U) = + 1

�x
F̂

(1)
i+1/2, j (U)+,

p[i, j],[i, j−1](U) = + 1

�y
Ĝ

(1)
i, j−1/2(U)+, d[i, j],[i, j−1](U) = − 1

�y
Ĝ

(1)
i, j−1/2(U)−,

p[i, j],[i, j+1](U) = − 1

�y
Ĝ

(1)
i, j+1/2(U)−, d[i, j],[i, j+1](U) = + 1

�y
Ĝ

(1)
i, j+1/2(U)+,

(4.6)

where the superscripts + and − respectively represent the positive and the negative
part, while the superscript (1) represents the first component of the numerical fluxes.
These production and destruction terms, as well as their relationships (4.6) with the
numerical fluxes, are sketched in Fig. 1, with all other production and destruction
contributions with non–neighboring cells being zero.

In light of the previous discussion, it is therefore easy to apply themodified Patankar
trick to the DeC update of the water height. Let us remark that the strategy pro-
vides unconditional positivity of the water height with respect to the time step �t .
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[

[

d[i,j],[

Ωi,j+1

i,j+1] p[i,j], i,j+1]

d[i,j],[i
Ωi−1,j

p[i,j],[i

−1,j] d[i,j]
Ωi,j

−1,j] p[i,j]

,[i+1,j]
Ωi+1,j

,[i+1,j]

p[i,j],[i,j−1] d[i,j],

Ωi,j−1

i,j−1]

Fig. 1 Sketch of the PDS structure for the control volume �i, j

This results in great computational advantages with respect to standard explicit time
integration techniques subjected to the typical positivity-preserving CFL constraints.
Further details, including a detailed description of a possible implementation, can
be found in Ciallella et al. (2022). In that reference, numerical costs are also com-
pared. It has been shown that avoiding the CFL restriction that positivity preserving
SSPRK requires speeds up the code of a factor of 6 for WENO3 and a factor of 12
for WENO5, while the solution of the sparse linear system generated by MPDeC,
also with a very simple Jacobi iterative method, is slowing down the code by around
10%. So, overall, MPDeC-WENO is around 5 (resp. 10) times faster than positivity
preserving DeC-WENO for order 3 (resp. order 5).

5 Numerical results

In this section, we report the results of several numerical experiments demonstrating
the good properties of the scheme, including its robustness. In particular, the tests
are meant to verify the high-order accuracy in Sect. 5.1, the WB property for both
stationary and moving equilibria (in Sect. 5.2 and 5.3), and the ability to deal with
tough flood simulations involving dry areas in Sect. 5.4. We conclude the section
with several comparisons of the proposed method. The first one involves two runup
experiments simulated at theCalifornia Institute of Technology in Pasadena (Synolakis
1987) (in Sect. 5.5); while the second one concerns a quantitative comparisons with
many state-of-the-art works on the subject (in Sect. 5.6). We assume g = 9.81 unless
otherwise specified. Let us remark that the basic ingredients of the scheme allow us
to reach arbitrarily high-orders of accuracy. Here, we focus on the fifth order version.

5.1 Unsteady vortex

Through this test (Ricchiuto and Torlo 2021), we verify the high-order accuracy of the
space and time discretizations, without considering the source term for themoment. To
that end, we set b ≡ 0. Therefore, this test is meant to verify the high-order accuracy
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of the flux discretization; the high-order accuracy of the source term discretization
will be checked in a later test.

The considered computational domain is the square � := [0, 3] × [0, 3], and the
vortex is given by a perturbation δ of a homogeneous background field (h0, u0, v0) :=
(1, 2, 3). Let us define the variable r(x, y, t) := √(x − xc(t))2 + (y − yc(t))2,
expressing the distance between (x, y) and vortex center (xc(t), yc(t)) := (1.5, 1.5)+
(u0t, v0t).

The water height is then given by h(r) := h0 + δh(r), with

δh(r) := −γ

⎧⎪⎨
⎪⎩
exp

(
− 1

arctan3(1 − r2)

)
, if r < 1,

0, otherwise,

where γ := 0.1 is the vortex amplitude. The velocity field, defined by (u, v) :=
(u0, v0) + (δu, δv), is characterized by the following perturbation

(
δu
δv

)
=
√
g

r

∂h

∂r

(
y − yc

−(x − xc)

)
,

where ∂h
∂r is the derivative of h with respect to r, which depends only on the radial

distance from the center of the vortex

∂h

∂r
(r) =

⎧⎪⎪⎨
⎪⎪⎩

6 γ r exp(− 1
arctan3(1−r2)

)

arctan4(r2 − 1)(1 + (r2 − 1)2)
, if r < 1,

0, otherwise.

We assume periodic boundary conditions and a final time T f := 0.1. It is important to
highlight the fact that this solution is C∞, which is a fundamental property for testing
arbitrarily high-order schemes (Ricchiuto and Torlo 2021).

The convergence test is run onCartesianmeshes of sizes 252, 502, 1002, 2002, 3002,
and 4002. The error, denoted by ||εh(u)||, is computed as theL1 norm of the difference
between the approximated solution and the exact one. Figure 2 shows the initial water
height for this test case (left panel) and the retrieved fifth order convergence trend
expected from theory (right panel). These results are also reported in Table 1, where
fifth order accuracy is shown to be achieved.

5.2 Lake at rest

We now focus on showing the capability of the proposed scheme to exactly preserve
the lake at rest steady state, governed by (2.4). We first tackle the exact capture of the
steady state in Sect. 5.2.1, and we then perform a perturbation analysis in Sect. 5.2.2.
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Fig. 2 Unsteady vortex from Sect. 5.1: convergence test. Left panel: depiction of the initial condition. Right
panel: error lines, showing that the scheme is indeed of fifth order accuracy

Table 1 Errors and orders of accuracy, with respect to the number Nx of cells, for the traveling vortex from
Sect. 5.1. We indeed observe fifth-order accuracy

Nx h qx qy

Error Order Error Order Error Order

25 1.77 · 10−3 − 2.28 · 10−2 − 2.08 · 10−2 −
50 3.43 · 10−4 2.37 5.08 · 10−3 2.17 4.59 · 10−3 2.18

100 3.41 · 10−5 3.33 7.81 · 10−4 2.70 6.90 · 10−4 2.73

200 1.85 · 10−6 4.20 7.70 · 10−5 3.34 6.62 · 10−5 3.38

300 2.93 · 10−7 4.55 1.34 · 10−5 4.31 1.11 · 10−5 4.40

400 7.98 · 10−8 4.52 3.86 · 10−6 4.33 3.13 · 10−6 4.41

5.2.1 Exact capturing

In this section, we demonstrate that the proposed scheme is able to exactly capture the
lake at rest steady solution in two situations: a fully wet case, where the water height
never vanishes, and a wet-dry case, where the water height may vanish.

5.2.2 Wet lake at rest

We first consider the lake at rest steady state given by

b(x, y) = 0.1 sin(2π x) cos(2π y), h(x, y, t) = 1 − b(x, y), u = v = 0,

on the computational domain � := [0, 1] × [0, 1] with periodic boundary conditions
and final time T f := 0.1. In this case, we test the scheme with and without the WB
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Fig. 3 Wet lake at rest from Sect. 5.2: convergence test. Left panel: non-WB scheme; we observe fifth order
accuracy. Right panel: WB scheme; we observe an accuracy up to machine precision for each mesh size

modification. The purpose of this test is twofold. First, with the WB modification, the
lake at rest should be exactly preserved (up to machine precision). This will confirm
that the WB property is satisfied in this case. Second, without the WB modification,
the method should converge to fifth order accuracy. This will verify the correct imple-
mentation of the source term. Both convergence trends are presented in Fig. 3 and the
expected results are obtained. The resolutions of the Cartesian meshes used for this
test are 252, 502, 1002 and 2002.

5.2.3 Wet-dry lake at rest

We now present a numerical experiment to show the preservation of a lake at rest
steady state in the presence of dry areas. That is to say, the water height will vanish in
some parts of the domain. In particular, by virtue of themPDeC approach, the proposed
method is able to deal with such dry states while having amuch relaxed CFL constraint
compared to traditional high-order techniques. Indeed, we can set CFL � 1 rather than
CFL � 1/12.

We consider, on the domain � := [−5, 5] × [−5, 5], the following bathymetry

b(x, y) :=

⎧⎪⎨
⎪⎩
exp

(
1 − 1

1 − r2

)
, if r2 < 1,

0, otherwise,
where r2 = x2 + y2. (5.1)

This bathymetry represents an island located in the center of the domain. The water
height is defined as h(x, y, t) := max(0.7 − b(x, y), 0). In Fig. 4, we display the
water height (left panel) and then bathymetry (right panel). We observe that dry areas
occur in the center of the domain, where the island is located. The test is performed
with periodic boundary conditions and final time T f := 1. Just like before, we present
the results of a convergence analysis obtained with and without the WB blending. It
should be noted that, due to the discontinuity in the derivative of the water height,
the non-WB scheme can achieve at most second order convergence, while machine
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Fig. 4 Wet-dry lake at rest from Sect. 5.2: depiction of the water height (left panel) and of the bathymetry
(right panel)

Fig. 5 Wet-dry lake at rest from Sect. 5.2: convergence test. Left panel: non-WB scheme; we observe second
order accuracy. Right panel: WB scheme; we observe an accuracy up to machine precision for each mesh
size

precision is expected by the WB version. The results are reported in Fig. 5; they agree
with the expected behavior.

5.2.4 Perturbation analysis

Let us consider the computational domain � := [−5, 5] × [−2, 2], the bathymetry
b defined in Equation (5.1), and the lake at rest steady state characterized by a total
water height η0 := 1.5. Then, we consider the following perturbation of the steady
condition
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η := η0 +

⎧⎪⎨
⎪⎩
0.05 exp

(
1 − 1

(1 − ρ2)2

)
, if ρ2 < 1,

0, otherwise,
,

where we have set

ρ2 = 9((x + 2)2 + (x − 0.5)2).

We adopt a Cartesian mesh of 100× 30 elements, with periodic boundary conditions,
CFL = 0.8 and a final time T f := 0.375. We still test the non-WB and WB versions
of the method, in order to highlight the advantages of the latter setting. However, in
this case, we suppress the blending by adopting all the coefficients θ of Sect. 3.2 equal
to 0 in such a way to always use the WB discretization.

The results are displayed in Fig. 6. It can be noticed that the evolution of the
perturbation is sharply captured by the WB version of the scheme. Instead, in the
non-WB case, numerical oscillations, due to the discretization error, propagate from
the bathymetry and prevent the proper capturing of the perturbation evolution.

5.3 Moving equilibria

In this section, we test the WB properties of the scheme to capture moving equilibria
satisfying (2.5). As already specified, they are pseudo-1D states. Therefore, in the
context of this section, we focus on the variable s = x , and we drop the dependency
on y, being clear that all quantities are constant along the y-direction. At the numerical
level, the variable y does not play any role either. Hence, the adopted mesh configura-
tions will be characterized by a uniform distribution of cells along the x-direction, with
various values of Nx ranging from 25 to 200, and a constant number Ny := 5 of cells
along the y-direction, with periodic boundary conditions assumed in such direction.

In this 1D frictionless case, moving equilibria are characterized by constant equi-
librium variables (2.6). Therefore, although there is no closed-form expression of such
steady solutions, they can be computed pointwise, for a given bathymetry, by solving
a cubic equation derived from (2.5), see for example (Delestre et al. 2013; Ciallella
et al. 2023; Micalizzi et al. 2024). The steady flow regime then depends on the pre-
scribed boundary conditions, and is obtained after a transient phase. We focus here on
subcritical and supercritical flows, numerically obtained with the initial and boundary
conditions described in Table 2, where the final time T f is chosen such that the sim-
ulation reaches the steady state (i.e., to make the time residual vanish). We take the
following smooth bathymetry

b(x) := 0.05 sin(x − 12.5) exp(1 − (x − 12.5)2),

on the computational domain � := [0, 25] × [0, 1]. The gravity constant is set here
to g := 9.812 as in Ciallella et al. (2023).

Again, we test the WB and the non-WB versions of the scheme. We emphasize that
we do not try to merely exactly preserve the steady solution, but to capture it: the WB
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Fig. 6 Perturbation analysis of the lake at rest solution: η = h + b isocontours at different times. Top
panel, subfigure (a): initial condition. Left panels, subfigures (b), (d) and (f): non-WB scheme; right panels,
subfigures (c), (e) and (g): WB scheme

Table 2 Initial and boundary conditions for the subcritical and supercritical flows from Sect. 5.3. The
simulation is always initialized to a lake at rest. Empty cells correspond to Neumann boundary conditions

Flow regime T f h(x, 0) q(x, 0) h(0, t) h(25, t) q(0, t) q(25, t)

Subcritical 400 2 − b(x) 0 – 2 4.42 –

Supercritical 50 2 − b(x) 0 2 – 24 –
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numerical scheme is expected to converge towards the steady solution with machine
accuracy, even after the transient, unsteady phase.

We start by presenting the numerical results obtained for the subcritical steady flow.
The solution computed with the WB method, with Nx := 200, is presented in Fig. 7.
We display three quantities: the water height h, the x-discharge qx , and the second

component of the equilibrium variables E (2)
x := 1

2
q2x
h2

+ g(h + b). Recall that both qx

and E (2)
x should be constant in this case; we can indeed appreciate the ability of the

WB blending to capture constant qx and E (2)
x . The exact capture of qx and E (2)

x is also
visible from the results of the convergence test reported in Fig. 8. In particular, we
observe that theWBversion of the scheme is able to obtain exact results (up tomachine
precision). Notice that the errors on the water height can be computed following two
approaches: the first one, which takes as a reference the exact bathymetry function
b(x); the second one, which considers the discrete bathymetry in cell average bi, j .
Usually the first approach is employed for classical convergence analysis, however the
second one is very common in the field of well-balanced schemes to check whether

x

2.02

2 

1.98

4.42001

4.42

1.96
0 10 20 

x

4.41999 
0 10 20 

x
(a) free surface η and bathymetry b, shi�ed 
and rescaled

(b) discharge qx

22.066149

22.066099

22.066049

22.065999

22.065949
0 10 20 

x
(c) second equilibrium variable E(2)

η
shi�ed b 

qx

Fig. 7 Subcritical flow, test case from Sect. 5.3. Top left panel: free surface water level η, and bathymetry
b rescaled by a factor of 0.15 and shifted by 1.97. Top right panel: discharge qx . Bottom panel: second

equilibrium variable E(2)
x
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Fig. 8 Subcritical flow, test case from Sect. 5.3: convergence test. Left panel: non-WB scheme; we observe
fifth-order accuracy. Right panel: WB scheme; we observe machine precision accuracy for the equilibrium

variables qx and E(2)
x and h when considering the discrete bathymetry, and second-order accuracy for

h when considering the exact bathymetry function

the scheme is able to preserve the discrete version of the considered equilibrium.
While the first method computes the error by using the exact bathymetry evaluated at
quadrature points, the second one considers the reconstructed bathymetry to measure
the reference equilibrium. For the first convergence test, in line with Remark 2, we
expect the error h to scale with first order. However, a second order superconvergence
is obtained, due to the exact preservation of qx and E (2)

x . For the second convergence
analysis, the error h (discrete b) provides the proof of the exact preservation of discrete
steady states of the WB scheme with machine precision obtained for all meshes. On
the other hand, the non-WB scheme produces, as expected, bigger errors which scale
with the expected fifth order. Let us notice that a very high level of mesh refinement
would be needed in order to obtain, with the non-WB scheme, errors comparable to
the ones obtained with the WB version, especially on qx and E (2)

x . This ensures that,
for a given error, the WB method has a much smaller computational cost than the
non-WB one.

Similar considerations apply to the supercritical case. The numerical solution com-
puted with the WB method, with Nx := 200, is reported in Fig. 9. In addition, the
convergence plots of both WB and non-WB schemes can be found in Fig. 10. Also
in this case, we observe features and trends as before: the ability of the WB version
to capture h with discrete bathymetry and the constant equilibrium variables qx and
E (2)
x up to machine precision, and to obtain much smaller errors with respect to the

non-WB version.
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Fig. 9 Supercritical flow, test case from Sect. 5.3. Top left panel: free surface water level η, and bathymetry
b rescaled by a factor of 0.45 and shifted by 1.92. Top right panel: discharge qx . Bottom panel: second

equilibrium variable E(2)
x

Fig. 10 Supercritical flow, test case fromSect. 5.3: convergence test. Left panel: non-WBscheme;weobserve
fifth-order accuracy. Right panel: WB scheme; we observe machine precision accuracy for h when consid-

ering the discrete bathymetry and for the equilibrium variables qx and E(2)
x , and second-order accuracy for

h when considering the exact bathymetry function
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5.4 Flooding simulations

We finally present the numerical results of flooding simulations performed with the
proposed high-order WB positivity-preserving method. While we so far have focused
on the validation of the proposedmethod on standard academic test cases, we now deal
with more challenging applications. These applications correspond to waves over dry
areas, and prove the suitability of the proposed approach in the context of real-world
situations. We start by presenting a wave over a dry island in Sect. 5.4.1, and then we
move to the simulation of a tsunami over three obstacles in Sect. 5.4.2.

5.4.1 Wave over a dry island

In this test, we simulate a wave over a dry island. The computational domain is the
rectangular region � := [−5, 5] × [−2, 2], partitioned into a mesh with 400 × 120
elements. We refer to Ciallella et al. (2022), Section 6.8, for the bathymetry function
b(x, y) and the specific initial and boundary conditions. The simulation was run until
a final time T f := 5, with a CFL number set to 0.9.

The results are presented at various times in Fig. 11. The variable η, along with the
bathymetry b, have been displayed. Indeed, it allows for a clearer understanding of
the underlying physics.

The simulation starts with a background state moving from left to right at speed
u = 1, propelling the wave towards the island. This causes the island to get wet
from the left side and to dry from the right side. Thus, the top of the island, initially
dry, undergoes multiple wet and dry cycles throughout the whole simulation, without
encountering any issue related to negative water height. This is not guaranteed for
classical time integration schemes, among which SSPRK schemes, for such high CFL
numbers. Various structures are observable in this simulation like vortices and shocks,
and the recurring wetting/drying processes are optimally tackled by the proposed
scheme.

5.4.2 Tsunami on three obstacles

Finally, the simulation of a tsunami over several obstacles is presented. Simulations
of this kind are often performed (Guermond et al. 2022) since they represent a good
starting point to move towards the simulation of real coastal engineering problems. In
this simulation, we consider a shock impacting three conical obstacles. More specif-
ically, we consider the domain � := [−5, 7] × [−2, 2], partitioned into 960 × 320
elements, and the bathymetry

b(x, y) :=
3∑

i=1

bi (x, y) +
⎧⎨
⎩
1 + 0.2x, for x < 0,
1, for 0 ≤ x ≤ 3,
1 + 0.4(x − 3), for x > 3,

with bi (x, y) := c(x, y, xi , yi , Ri , Ai ), where c is a cone function defined as
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Fig. 11 Wave over a dry island test case from Sect. 5.4.1: η := h + b and b at different times

c(x, y, xc, yc, R, A) :

=
{

A
R

(
R −√(x − xc)2 + (y − yc)2

)
, i f

√
(x − xc)2 + (y − yc)2 < R,

0, otherwise.

In particular, we have Ri := 0.5 and Ai := 3, for all i, and (x1, y1) := (1,−1)T ,
(x2, y2) := (1, 1) and (x3, y3) := (2, 0). The initial condition is given by

⎡
⎣
h
u
v

⎤
⎦(x, y, 0) :=

{ [1.5 − b(x, y), 4, 0]T , if x < −3.5,
[0, 0, 0]T , otherwise.

(5.2)

The prescribed boundary conditions are
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• inflow at the left of the domain, obtained by imposing
q(x = −5, y, t) := 3(1 + cos(2π t))e−2t ;

• transmissive at the right of the domain;
• solid walls at the top and bottom of the domain.

We remark that, to simulate a realistic configuration, a time-dependent inlet condition
has been chosen to represent a series ofwaves impacting the obstacles after the tsunami.
The final time is T f := 3, and we take a CFL condition of 0.8 for added stability.

The results are reported in Fig. 12. We start from an initial configuration where
the majority of the domain is dry and where the initial tsunami is represented by a
discontinuity in the water height, defined in (5.2). Already from the first snapshots in
Figs. 12(c) and 12(d), we can appreciate the wetting process happening with several
structures forming on the right of the three bodies. Thanks to the time-dependent
inlet condition, the dynamic of the simulation keeps evolving with shock interactions

Fig. 12 Tsunami on three obstacles, test case from Sect. 5.4.2: η : h + b and b at different times
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occurring due to the crushing between new and old wave fronts, while wetting and
drying processes keep happening in many parts of the domain.

This simulation best represents the potential of this framework, which is able to
retain high-order accuracy, preserve important structures of the model, and deal with
complex fluid phenomena. Simulations of this kind are not only challenging but also
computationally expensive, due to the accuracy required to capture all flow features.
The choice of the considered time-stepping scheme, able to relax the typical severe
CFL constraints imposed by positivity preservation, has a huge impact on the com-
putational resources needed to perform these simulations. In fact, keeping the same
fifth-order accuracy, we are able to consistently reduce the computational time with
respect to classical time integration techniques, provably guaranteeing positivity of
the discrete water height. Moreover, the well-balanced procedure is non-intrusive and
computationally cheap, and it is able to preserve the equilibriumvariables of themodel,
which are crucial in the context of flooding simulations.

5.5 Comparison with experimental data

In this section, we simulate two runups of a single wave on a simple beach based on
experiments conducted at the California Institute of Technology in Pasadena (Syn-
olakis 1987). The setup, see Fig. 13, consists of a solitary wave of height H on a
flat surface of depth d moving towards a runup with slope β = −1/19.85. We set
up the test in adimensional coordinates with g = d = 1. We run two simulations
for H/d = 0.3 and H/d = 0.0185, used also to validate other codes, e.g. Claw-
pack (LeVeque 1996), and used in the National Tsunami Hazard Mitigation Program
Workshop as benchmark (2012), with data reported in this repository (Chamberlain
and LeVeque 2011).

In Fig. 14, we plot the simulations at different times. We can see that in the case
of breaking waves (for H/d = 0.3), the shallow water simulation does not well
approximate the dispersion effects, but, nevertheless, it is able to correctly catch the
height of the wet area at its maximum. This is a well known behavior of SW based
models, see (Wei et al. 2006; Li andRaichlen 2002). One can see that, from time t = 25
on, numerical results perfectly match the experimental data. Even better results are
appreciable for the more linear case with H/d = 0.0185, where the measured data
are essentially overlapped to the obtained numerical solution at all times.

Fig. 13 Setup and initial
conditions of runup test
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Fig. 14 Runup simulations at different times, on the left for the value H/d = 0.3 and on the right for
H/d = 0.0185. In blue the simulation and in red the experimental data

5.6 Comparison to other modern schemes

In the following, we compare our method with other state-of-the-art schemes. More
in detail, we consider

• GF-CU the second order global flux finite volume central upwind method from
Chertock et al. (2022);

• GF-WENO the arbitrary high-order global fluxWENO finite volume method from
Ciallella et al. (2023);

• GF-CG an arbitrary high-order global flux continuous Galerkin discretization pro-
posed in Micalizzi et al. (2024) (the scheme is referred as “WB-GF jg” there);

• GF-DG the arbitrary high-order global flux discontinuous Galerkinmethod (Mantri
et al. 2024).

In particular, we considered the third-order version of GF-WENO (Ciallella et al.
2023), as no second order version is available due to the WENO construction, and the
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second order one for GF-CG (Micalizzi et al. 2024) and GF-DG (Mantri et al. 2024).
For GF-CG, we have used P1 basis functions. The errors produced on the subcritical
and supercritical moving equilibria from Section Sect. 5.3 are reported in Tables 3
and 4 respectively. It should be noticed that the outcome of the proposed scheme on
these tests is comparable to the one of the other modernWB approaches. In particular,
for the considered mesh refinements, the proposed method outperforms GF-CU, GF-
CG andGF-DG in the subcritical case, while, it outperformsGF-CU andGF-DG in the
supercritical one. However, it is hard to make fair comparisons since all these methods
have been developed by different researchers in different computational frameworks.
We have chosen to compare all methods for the same number of cells, but this choice
is arbitrary. Comparing also the computational costs would be extremely unfair as all
the codes are written in different programming languages. Let us remark that, on such
steady states, the blending of the proposed scheme determines the employment of the
WB second-order discretization.

6 Summary and outlook

In this paper, we presented a high-order, fully well-balanced, unconditionally
positivity-preserving framework for flood simulations. The discretization based on
the notion of production-destruction terms, presented in Ciallella et al. (2022), has
been extended to treat general pseudo-monodimensional moving equilibria as well as
general two dimensional water at rest equilibria appearing in SW systems. The advan-
tage of this framework lies in the possibility of preserving the positivity of the water
height with no constraints on the CFL. This is a real strength with respect to classical
time integration schemes, which experience strong CFL reductions as the order of the
method increases, and allows for real applications thanks to the huge computational
gain. In order to achieve the general WB property, while keeping the production-
destruction formulation, the high-order reconstruction is blended with a WB one, as
proposed in Berthon et al. (2022); Michel-Dansac et al. (2016). This allows to achieve
structure preservation for moving equilibria reached after a transient simulation, as
shown in Sect. 5.3. On the contrary, whenwet-dry simulations are considered, far from
existing equilibria, the approach is able to properly perform high-order space and time
integration without experiencing simulation crashes.

There are several perspectives to this work. They range from deep questions on
the numerical analysis and stability of modified Patankar schemes, which is an open
research topic (Torlo et al. 2022; Izgin et al. 2022; Izgin and Öffner 2023), especially
when coupled to space discretizations in the context of PDEs, to the possible devel-
opment of this approach on unstructured meshes to exploit advanced mesh adaptation
algorithms to capture flow features with even higher resolution, saving even more
computational resources.
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