
Optimisation–Based Coupling of Finite Element
Model and Reduced Order Model for
Computational Fluid Dynamics

Ivan Prusak[0009−0008−2882−0576] , and
Davide Torlo[0000−0001−5106−1629] , and
Monica Nonino[0000−0002−5503−705𝑋] and
Gianluigi Rozza[0000−0002−0810−8812]

Abstract With the increased interest in complex problems, such as multiphysics
and multiscale models, as well as real–time computations, there is a strong need
for domain–decomposition (DD) segregated solvers and reduced–order models
(ROMs). Segregated models decouple the subcomponents of the problems at hand
and use already existing state–of–the–art numerical codes in each component. In
this manuscript, starting with a DD algorithm on non–overlapping domains, we aim
at the comparison of couplings of different discretisation models, such as Finite
Element (FEM) and ROM for separate subcomponents. In particular, we consider
an optimisation–based DD model on two non–overlapping subdomains where the
coupling on the common interface is performed by introducing a control variable
representing a normal flux. Gradient-based optimisation algorithms are used to con-
struct an iterative procedure to fully decouple the subdomain state solutions as
well as to locally generate ROMs on each subdomain. Then, we consider FEM or
ROM discretisation models for each of the DD problem components, namely, the
triplet state1–state2–control. We perform numerical tests on the backward–facing
step Navier-Stokes problem to investigate the efficacy of the presented couplings in
terms of optimisation iterations and relative errors.
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1 Introduction

In recent years, different techniques have been developed to reduce the computational
costs in numerical simulations. Domain decomposition (DD) achieves this goal
by using different solvers on different subcomponents of the domain, for example,
using discretisations of much smaller dimensions or already existing codes. Reduced
Order Models (ROMs) can be applied for multi–query or real–time tasks. They
split the computational effort into two stages: the offline stage, which contains the
most expensive part of the computations, and the online stage, which performs fast
computational queries using structures that were pre–computed in the offline stage.

The DD–ROM combination is very promising when dealing with different dis-
cretisation techniques on different subdomains. This small contribution inspired
by [1] aims at expanding the optimisation–based DD–ROM methods investigated
in [2, 3] to the hybrid numerical models, where separate subcomponents of the DD
problem can be approximated by either a full order model based on Finite Element
method (FEM) or a reduced order model.

The rest of the paper is constructed as follows. In Section 2, starting with a formu-
lation monolithic discretised Navier–Stokes equation we describe an optimisation–
based discrete DD model at each time step and we derive the optimality system of the
resulting optimal control problem. In section 3, we discuss the ROM based on Proper
Orthogonal Decomposition (POD) and the different FEM and/or ROM coupling tech-
niques. Finally, in Section 4 we provide numerical tests on the backward–facing step
Navier-Stokes problem and draw some conclusions.

2 Problem formulation

In this section, starting with a monolithic formulation of the time–dependent incom-
pressible Navier–Stokes equations, we introduce a discretised optimisation–based
domain decomposition (DD) problem employing the implicit Euler time–stepping
scheme and Finite Element method (FEM). The resulting optimal control problem is
set up at each time step, aiming at minimising the distance between the subdomain
velocity fields by finding an optimal normal flux at the interface.

2.1 Monolithic formulation

Let Ω be a physical domain of interest: we assume Ω to be an open subset of R2 and
Γ to be the boundary of Ω. We also consider a finite time interval [0, 𝑇] with 𝑇 > 0.
Let 𝑓 : Ω × [0, 𝑇] → R2 be the forcing term, 𝜈 the kinematic viscosity, 𝑢𝐷 a given
Dirichlet datum to be imposed on Γ𝐷 ⊂ Γ and 𝑢0 a given initial condition.

Following [2, 3], we can define usual Lagrangian FE spaces on a triangulation
Ωℎ of Ω as follows:
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• 𝑉ℎ ⊂
[
𝐻1 (Ω)

]2
, | | · | |𝑉ℎ

= | | · | | [𝐻1 (Ω)]2 ,

• 𝑉0,ℎ ⊂
{
𝑣 ∈

[
𝐻1 (Ω)

]2 : 𝑣 |Γ𝐷=0

}
, | | · | |𝑉0,ℎ = | | · | | [𝐻1 (Ω)]2 ,

• 𝑄ℎ ⊂ 𝐿2 (Ω), | | · | |𝑄ℎ
= | | · | |𝐿2 (Ω)

and a time discretisation, through the time step Δ𝑡 > 0, and we assume the following
time interval partition: 0 = 𝑡0 < 𝑡1 < .... < 𝑡𝑀 = 𝑇 , where 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 = 0, ..., 𝑀 .

The discretised problem with FEM and implicit Euler reads as follows at each time
step: find the velocity field 𝑢𝑛

ℎ
: Ω×[0, 𝑇] → R2 and the pressure 𝑝𝑛

ℎ
: Ω×[0, 𝑇] → R

s.t.

𝑚(𝑢𝑛
ℎ
− 𝑢𝑛−1

ℎ
, 𝑣ℎ)

Δ𝑡
+ 𝑎(𝑢𝑛ℎ, 𝑣ℎ) + 𝑐(𝑢𝑛ℎ, 𝑢

𝑛
ℎ, 𝑣) + 𝑏(𝑣ℎ, 𝑝𝑛ℎ) = ( 𝑓 𝑛, 𝑣ℎ)Ω ∀𝑣𝑖 ∈ 𝑉0,ℎ,

(1a)
𝑏(𝑢𝑛ℎ, 𝑞ℎ) = 0 ∀𝑞ℎ ∈ 𝑄ℎ, (1b)

𝑢𝑛 = 𝑢𝑛𝐷,ℎ on Γ𝐷 , (1c)

where
• 𝑚 : 𝑉ℎ ×𝑉0,ℎ → R, 𝑚(𝑢ℎ, 𝑣ℎ) := (𝑢ℎ, 𝑣ℎ)Ω,
• 𝑎 : 𝑉ℎ ×𝑉0,ℎ → R, 𝑎(𝑢ℎ, 𝑣ℎ) := 𝜈(∇𝑢ℎ,∇𝑣ℎ)Ω,
• 𝑏 : 𝑉ℎ ×𝑄ℎ → R, 𝑏(𝑣ℎ, 𝑞ℎ) := −(div𝑣ℎ, 𝑞ℎ)Ω,
• 𝑐 : 𝑉ℎ ×𝑉ℎ ×𝑉0,ℎ → R, 𝑐(𝑢ℎ, 𝑤ℎ, 𝑣ℎ) := ((𝑢ℎ · ∇)𝑤ℎ, 𝑣ℎ)Ω.
Moreover, since Navier–Stokes equations have a saddle–point structure, we require
the pairs of spaces 𝑉ℎ − 𝑄ℎ and 𝑉0,ℎ − 𝑄ℎ to be inf–sup stable and this is achieved
by using, for example, the Taylor–hood P2 − P1 FE spaces.

ΩΓ𝐷 Γ𝑁

(a) Physical domain

Γ0

Ω1

Ω2

Γ𝐷,1

Γ𝑁,2

Γ𝑁,1

Γ𝐷,2

(b) Domain Decomposition

Fig. 1: Domain and boundaries

2.2 Discrete Domain Decomposition formulation

As mentioned in the introduction, we resort to the optimisation–based approach
for DD as described in [2, 3]. Let Ω𝑖 , 𝑖 = 1, 2, be open subsets of Ω, such that



4 Ivan Prusak, and Davide Torlo, and Monica Nonino and Gianluigi Rozza

Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅. Denote Γ𝑖 := 𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2, and Γ0 := Ω1 ∩Ω2. In
the same way, we define the corresponding boundary subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2,
see Fig. 1b.

Next, following [2, 3], we assume to have at hand two well–defined triangulations
T1 and T2 over the polygonal domainsΩ1 andΩ2 respectively, and a one–dimensional
discretisationT0 of the interfaceΓ0. We assume meshesT1,T2 andT0 to be conforming
on the interface Γ0 in the sense that they all share the same degrees of freedom (Dofs)
on the interface.

We can then define the restriction of the FE spaces 𝑉ℎ, 𝑉ℎ,0, 𝑄ℎ onto the subdo-
main Ω𝑖,ℎ as 𝑉𝑖,ℎ, 𝑉0,𝑖,ℎ, 𝑄𝑖,ℎ and we define a FE space for the interface as

𝑋ℎ ⊂
[
𝐿2 (Γ0)

]2
, | | · | |𝑋,ℎ = | | · | | [𝐿2 (Γ0 )]2 .

Similarly, we define the restriction of the bilinear and trilinear forms onto the re-
stricted FE spaces as 𝑚𝑖 , 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 .

Also in the subcomponents, we choose the Taylor–hood P2 − P1 FE spaces to be
inf-sup stable. Concerning the space 𝑋ℎ, our choice is to use P2 FE space implying
that the space 𝑋ℎ share the DoFs with the spaces 𝑉𝑖,ℎ, 𝑖 = 1, 2 on the curve Γ0.

The discretised optimisation–based DD formulation of the problem (1) then
reads as follows: for 𝑛 ≥ 1 minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

J (𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) =

1
2

∫
Γ0

���𝑢𝑛1,ℎ − 𝑢𝑛2,ℎ

���2 𝑑Γ (2)

subject to the variational problem:
for 𝑖 = 1, 2 find 𝑢𝑖,ℎ ∈ 𝑉𝑖,ℎ and 𝑝𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfying

𝑚𝑖 (𝑢𝑛𝑖,ℎ − 𝑢𝑛−1
𝑖,ℎ

, 𝑣𝑖,ℎ)
Δ𝑡

+ 𝑎𝑖 (𝑢𝑛𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖 (𝑢𝑛𝑖,ℎ, 𝑢
𝑛
𝑖,ℎ, 𝑣𝑖)

+𝑏𝑖 (𝑣𝑖,ℎ, 𝑝𝑛𝑖,ℎ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,ℎ)Ω𝑖
+
(
(−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,ℎ, (3a)

𝑏𝑖 (𝑢𝑛𝑖,ℎ, 𝑞𝑖,ℎ) = 0, ∀𝑞𝑖,ℎ ∈ 𝑄𝑖,ℎ (3b)
𝑢𝑛𝑖 = 𝑢𝑛𝑖,𝐷,ℎ on Γ𝑖,𝐷 , (3c)

where 𝑢𝑛
𝑖,𝐷,ℎ

is the Galerkin projection of 𝑢𝐷 onto the trace–space 𝑉𝑖,ℎ |Γ𝑖,𝐷 .

2.3 Optimality system and the gradient of the objective functional

This section aims at providing the necessary elements to set up a gradient–based
iterative optimisation algorithm of the DD minimisation problem (2)– (3). For this
purpose, in order to deal with variational constraint optimal control problem, we use
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the Lagrangian functional and sensitivity derivatives approaches; we refer to [2, 3,
4, 5] for more details.

The optimality system arising for the optimal control is defined as follows:

• state problem (3),
• adjoint problem: for 𝑖 = 1, 2, find 𝜉𝑖,ℎ ∈ 𝑉𝑖,0,ℎ and 𝑝𝑖,ℎ ∈ 𝑄𝑖,ℎ satisfying

𝑚𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ)
Δ𝑡

+ 𝑎𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑐𝑖 (𝜂𝑖,ℎ, 𝑢𝑛𝑖,ℎ, 𝜉𝑖) + 𝑐𝑖 (𝑢𝑛𝑖,ℎ, 𝜂𝑖,ℎ, 𝜉𝑖,ℎ) (4a)

+𝑏𝑖 (𝜂𝑖,ℎ, 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,ℎ, 𝑢
𝑛
1,ℎ − 𝑢𝑛2,ℎ)Γ0 ∀𝜂𝑖,ℎ ∈ 𝑉𝑖,0,ℎ,

𝑏𝑖 (𝜉𝑖,ℎ, 𝜇𝑖,ℎ) = 0 ∀𝜇𝑖,ℎ ∈ 𝑄𝑖,ℎ . (4b)

• optimality condition:

(𝑟ℎ, 𝜉1 − 𝜉2)Γ0 = 0 ∀𝑟ℎ ∈ 𝑋ℎ . (5)

Resorting to the sensitivity derivatives approach [2, 3] allows us to obtain the
gradient representation of the objective functional (2): for a given 𝑔ℎ ∈ 𝑋ℎ the
gradient is defined as

𝑑J
𝑑𝑔

(𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) = 𝜉1,ℎ

��
Γ0

− 𝜉2,ℎ
��
Γ0
, (6)

where 𝑢𝑛
𝑖,ℎ

, 𝑖 = 1, 2 are the solutions to the state equations (3) and 𝜉𝑖,ℎ, 𝑖 = 1, 2 are the
solutions to the adjoint equations (4). Please note that the optimality condition (5)
ensures that the solutions to the coupled optimality system (3)– (5) are the stationary
points of the functional (2).

3 Reduced Order Model setting and FEM–ROM couplings

As highlighted in Section 1, reduced–order methods are efficient tools for significant
reduction of the computational time for parameter–dependent PDEs. This section
deals with the reduced–order model for the problem obtained in the previous sec-
tion, where the state equations, namely Navier–Stokes equations, are assumed to be
dependent on a set of physical parameters. We study then different coupling options
choosing for each subcomponent of the DD problem either the FEM or the ROM.

3.1 Reduced Order Model setting

In this section, we will list all the necessary components to set–up a reduced order
model. All the details can be found in [2, 3].
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Our goal is to generate linear low–dimensional subspaces of the FE spaces pre-
sented in Section 2.2. We rely on the Proper Orthogonal Decomposition (POD)
compression technique; see, for instance, [2, 3, 6]. The POD procedure is based
on the sampling of the parameter space P with a discrete set P𝑀 and storing the
snapshots associated with each parameter 𝜇 ∈ P𝑀 and each time instance. Since we
aim at constructing linear spaces, we need to introduce parameter–dependent lifting
functions 𝑙𝑛

𝑖,ℎ
(𝜇) ∈ 𝑉𝑖,ℎ, for 𝜇 ∈ P𝑀 , such that 𝑙𝑛

𝑖,ℎ
(𝜇) = 𝑢𝑖,𝐷,ℎ on Γ𝑖,𝐷 and define

homogenised snapshots 𝑢𝑛
𝑖,0,ℎ (𝜇) := 𝑢𝑛

𝑖,ℎ
(𝜇) − 𝑙𝑛

𝑖,ℎ
(𝜇) which implies that 𝑢𝑛

𝑖,0,ℎ (𝜇)
belongs to 𝑉𝑖,0,ℎ. The reduced spaces 𝑉𝑢1

𝑁
, 𝑉

𝑝1
𝑁
, 𝑉

𝑢2
𝑁
, 𝑉

𝑝2
𝑁

and 𝑉
𝑔

𝑁
are then built as it

is described in [2, 3] together with the velocity supremiser technique [7] in order to
guarantee the inf–sup stability of the velocity–pressure reduced spaces.

Having at our disposal the reduced spaces, we perform the Galerkin projection
of the state problem (3): for a given parameter 𝜇 ∈ P and 𝑔𝑁 ∈ 𝑉

𝑔

𝑁
, find 𝑢𝑛

𝑖,𝑁
=

𝑢𝑛
𝑖,0,𝑁 + 𝑙𝑛

𝑖,𝑁
with 𝑢𝑛

𝑖,0,𝑁 ∈ 𝑉
𝑢𝑖
𝑁

and 𝑝𝑖,𝑁 ∈ 𝑉
𝑝𝑖
𝑁

satisfying

𝑚𝑖 (𝑢𝑛𝑖,𝑁 − 𝑢𝑛−1
𝑖,𝑁

, 𝑣𝑖,𝑁 )
Δ𝑡

+ 𝑎𝑖 (𝑢𝑛𝑖,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢𝑛𝑖,𝑁 , 𝑢𝑛𝑖,𝑁 , 𝑣𝑖,𝑁 )

+𝑏𝑖 (𝑣𝑖,𝑁 , 𝑝𝑛𝑖,𝑁 ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,𝑁 )Ω𝑖
+
(
(−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁

)
Γ0

∀𝑣𝑖,𝑁 ∈ 𝑉
𝑢1
𝑁
, (7a)

𝑏𝑖 (𝑢𝑛𝑖,𝑁 , 𝑞𝑖,𝑁 ) = 0 ∀𝑞𝑖,𝑁 ∈ 𝑉
𝑝𝑖
𝑁
, (7b)

where 𝑙𝑛
𝑖,𝑁

is the Galerkin projection of the lifting function 𝑙𝑛
𝑖,ℎ

to the finite dimen-
sional space 𝑉𝑢𝑖

𝑁
and 𝑖 = 1, 2.

In a similar way we can write the reduced counterpart of the adjoint equations (4):
for a given parameter 𝜇 ∈ P and 𝑢𝑁

𝑖,𝑁
∈ 𝑉

𝑢𝑖
𝑁
+ {𝑙𝑛

𝑖,𝑁
}, find 𝜉𝑖,𝑁 ∈ 𝑉

𝑢𝑖
𝑁

and 𝜆𝑖,𝑁 ∈ 𝑉
𝑝𝑖
𝑁

satisfying

1
Δ𝑡

𝑚𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑎𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑐𝑖

(
𝜂𝑖,𝑁 , 𝑢

𝑛
𝑖,𝑁 , 𝜉𝑖

)
+ 𝑐𝑖

(
𝑢𝑛𝑖,𝑁 , 𝜂𝑖,𝑁 , 𝜉𝑖,𝑁

)
(8a)

+ 𝑏𝑖 (𝜂𝑖,𝑁 , 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,𝑁 , 𝑢
𝑛
1,𝑁 − 𝑢𝑛2,𝑁 )Γ0 , ∀𝜂𝑖,𝑁 ∈ 𝑉

𝑢𝑖
𝑖,𝑁

,

𝑏𝑖 (𝜉𝑖,𝑁 , 𝜇𝑖,𝑁 ) = 0, ∀𝜇𝑖,𝑁 ∈ 𝑉
𝑝𝑖
𝑖,𝑁

. (8b)

where 𝑖 = 1, 2.

3.2 FEM–ROM couplings: exploring different options

In this section, we will provide a setting where different types of models, i.e. FEM
or ROM, can be chosen for each of the components of the DD problem, namely the
triplet state1–state2–control. In particular, we investigate four different scenarios —
FEM–FEM–FEM, FEM–ROM–FEM, FEM–ROM–ROM and ROM–ROM–ROM.
Each of these choices is characterised by a different optimisation problem.
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To proceed we need to define the following parameter–dependent projection and
lifting operators from the reduced spaces onto the FE spaces:

• Π𝑛
𝑖
(𝜇) : 𝑉𝑖,ℎ → 𝑉

𝑢𝑖
𝑁

+ {𝑙𝑛
𝑖,𝑁

(𝜇)}, (Π𝑛
𝑖
(𝜇))𝑇 : 𝑉𝑢𝑖

𝑁
+ {𝑙𝑛

𝑖,𝑁
(𝜇)} → 𝑉𝑖,ℎ,

• Π𝑖,0 : 𝑉𝑖,0,ℎ → 𝑉
𝑢𝑖
𝑁

, Π𝑇
𝑖,0 : 𝑉𝑢𝑖

𝑁
→ 𝑉𝑖,0,ℎ.

Now, we will list the minimising problem and the corresponding expression of
the objective functional gradient for each of the scenarios mentioned above:

• FEM–FEM–FEM (FFF) coupling: minimise over 𝑔ℎ ∈ 𝑋ℎ the functional (2)
under the constraints (3). The gradient in this case is given by the formula (6).

• FEM–ROM–FEM (FRF) coupling: minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

J (𝑢𝑛1,ℎ, 𝑢
𝑛
2,𝑁 ; 𝑔ℎ) =

1
2

∫
Γ0

���𝑢𝑛1,ℎ − (Π𝑛
2 (𝜇))

𝑇𝑢𝑛2,𝑁

���2 𝑑Γ, (9)

where 𝑢1,ℎ is the FEM solution to (3) with 𝑖 = 1 and 𝑢2,𝑁 is the ROM solution
to (7) with 𝑖 = 2. The gradient in this case is defined as

𝑑J
𝑑𝑔

(𝑢𝑛1,ℎ, 𝑢
𝑛
2,𝑁 ; 𝑔ℎ) = 𝜉1,ℎ

��
Γ0

−
[
Π𝑇

2,0𝜉2,𝑁
] ��
Γ0
, (10)

where 𝜉1,ℎ is the solution to (4) with 𝑖 = 1 and 𝜉2,𝑁 is the solution to (8) with
𝑖 = 2.

• FEM–ROM–ROM (FRR) coupling: minimise over 𝑔𝑁 ∈ 𝑉
𝑔

𝑁
the functional

J (𝑢𝑛1,ℎ, 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) =

1
2

∫
Γ0

���Π𝑛
1 (𝜇)𝑢

𝑛
1,ℎ − 𝑢𝑛2,𝑁

���2 𝑑Γ, (11)

where 𝑢1,ℎ is the FEM solution to (3) with 𝑖 = 1 and 𝑢2,𝑁 is the ROM solution
to (7) with 𝑖 = 2. The gradient in this case is defined as

𝑑J
𝑑𝑔

(𝑢𝑛1,ℎ, 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) =

[
Π1,0𝜉1,ℎ

] ��
Γ0

−
[
𝜉2,𝑁

] ��
Γ0
, (12)

where 𝜉1,ℎ is the solution to (4) with 𝑖 = 1 and 𝜉2,𝑁 is the solution to (8) with
𝑖 = 2.

• ROM–ROM–ROM (RRR) coupling: minimise over 𝑔𝑁 ∈ 𝑉
𝑔

𝑁
the functional

J (𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) =

1
2

∫
Γ0

���𝑢𝑛1,𝑁 − 𝑢𝑛2,𝑁

���2 𝑑Γ, (13)

where 𝑢𝑖,𝑁 is the ROM solution to (7) with 𝑖 = 1, 2. The gradient in this case is
defined as

𝑑J
𝑑𝑔

(𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) = 𝜉1,𝑁

��
Γ0

− 𝜉2,𝑁
��
Γ0
, (14)

where 𝜉𝑖,𝑁 is the solution to (8) with 𝑖 = 1, 2.



8 Ivan Prusak, and Davide Torlo, and Monica Nonino and Gianluigi Rozza

4 Numerical results

Γ𝑖𝑛

Γ𝑤𝑎𝑙𝑙

Γ𝑜𝑢𝑡

Γ𝑤𝑎𝑙𝑙

4 cm

2 cm

9 cm5 cm

3 cm

9 cm 9 cm

5 cmΩ1 Ω2

Fig. 2: Physical domain and domain decomposition for the backward–facing step
problem

We consider the backward–facing step flow test case presented in [3]. Fig. 2
represents the physical domain of interest and the two–domain decomposition per-
formed by dissecting the domain by a vertical segment. In the offline phase, we
consider two physical parameters:the viscosity 𝜈 ∈ [0.4, 2] and the maximal mag-

nitude �̄� ∈ [0.5, 4.5] of the inlet profile 𝑢𝑖𝑛 (𝑥, 𝑦) =

(
�̄� · 4

9 (𝑦 − 2) (5 − 𝑦), 0
)𝑇

on
Γ𝑖𝑛 = {(𝑥, 𝑦) : 𝑥 = 0, 𝑦 ∈ [2, 5]}.

In our test case, the FOM FEM solutions are obtained on discrete state problems
with a total of 27,890 DoFs carrying out the minimisation in the interface space
𝑋ℎ with 130 DoFs by the limited–memory Broyden–Fletcher–Goldfarb-–Shanno
(L–BFGS–B) optimisation algorithm [8] using the scipy library [9]. Snapshots
are sampled from a training set of 64 parameters randomly sampled from the 2–
dimensional parameter space for 100 time steps with Δ𝑡 = 0.01 and 𝑇 = 1.

We perform a numerical analysis of the four couplings described in Section 3.2 for
a test parameter value

(
�̄�, 𝜈

)
= (4.5, 0.4). For the couplings using the ROM model,

we choose the following number of reduced basis modes: 30 for 𝑢1, 12 for 𝑢2, and 5
for each of 𝑝1 and 𝑝2 and the corresponding supremisers. Fig. 3 shows the number
of optimisation iterations over time for couplings FFF, FRF, FRR and RRR, and the
relative error of each state subcomponent with respect to the monolithic solution of
the Navier–Stokes problem (1). It can be easily seen that the FFF coupling has the
overall highest number of iterations while the RRR coupling has the lowest, and the
FRF and FRR are in between the other two. This is because the optimisation in the
case of ROM model for the control variable is carried out over a much smaller set
of admissible solutions, which is constructed on preliminary physical information,
i.e., FEM snapshots. On the other hand, as expected, this is balanced by the relative
errors as it is shown in Fig. 3, where the relative error in the FFF coupling scenario
is much smaller (at least for the velocity fields 𝑢1 and 𝑢2) than for other types of
coupling. The irregular nature of the relative errors for the pressure fields 𝑝1 and
𝑝2, which are nevertheless sufficiently low, is most probably due to the fact that we
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(a) Iterations of the optimization at each time step
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(d) Relative error for 𝑝1
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Fig. 3: Iterations and relative errors of FFF, FRF, FRR, and RRR solutions w.r.t. the
monolithic solution
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use a “black–box” optimisation algorithm. Indeed, we do not have access to how
the search direction for the control variable representing the approximation of the
normal flux on the interface is chosen. We believe this can be ameliorated by the
use of different minimisation algorithms where we can have more control over the
iterative procedure and impose some additional constraints also on the pressures,
e.g., relative error reduction of the pressure with respect to the previous optimisation
iteration.

Overall, we can conclude that already choosing one state variable to be in the
reduced space can alleviate the costs of the optimization by a factor of 2. Nevertheless,
a fully ROM approach gives a much–improved optimization process using only a
seventh of the original number of iterations, while in terms of errors all reduced
approaches are comparable and lead to an overall good approximation.
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