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Abstract. This work aims to introduce a heuristic timestep-adaptive algorithm
for Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI)
problems where the flow is dominated by the pressure. In such scenarios, many
time-adaptive algorithms based on the interplay of implicit and explicit time
schemes fail to capture the fast transient dynamics of pressure fields. We present
an algorithm that relies on a temporal error estimator using Backward Differen-
tiation Formulae (BDF𝑘) of order 𝑘 = 2, 3. Specifically, we demonstrate that the
implicit BDF3 solution can be well approximated by applying a single Newton-
type nonlinear solver correction to the implicit BDF2 solution. The difference
between these solutions determines our adaptive temporal error estimator. The
effectiveness of our approach is confirmed by numerical experiments conducted
on a backward-facing step flow CFD test case with Reynolds number 300 and on
a two-dimensional haemodynamics FSI benchmark.
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1 Introduction

In this manuscript, we are interested in solving nonlinear problems that arise from
computational fluid dynamics (CFD) and fluid-structure interaction (FSI) problems. We
denote byΩ ⊂ R2 the physical domain of interest; we further assume that 𝜕Ω = Γ𝐷∪Γ𝑁 ,
where Γ𝐷 is the Dirichlet boundary and Γ𝑁 is the Neumann one. Let [0, 𝑇], 𝑇 > 0 be
the time interval. For every 𝑡 ∈ (0, 𝑇], we seek the solution U (𝑡) ∈ 𝑊 to the following
PDE

𝑅(𝜕𝑡U (𝑡),U (𝑡)) = 0 in 𝑊 ′
0, (1)

where 𝑅 is the residual operator of our nonlinear PDE and 𝑊 and 𝑊0 are appropriate
trial and test function spaces, respectively. We can now introduce the weak formulation
of problem (1) corresponding to a CFD and a FSI problem, respectively.
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Navier-Stokes problem. Let u and 𝑝 be the two components of the solution U in-
troduced in Eq. (1), namely the fluid velocity and the fluid pressure. We introduce the
following function spaces 𝑊 = 𝑉 ×𝑄 and 𝑊0 = 𝑉0 ×𝑄 with

𝑉 := {v ∈ [𝐻1 (Ω)]2 s.t. v = u𝐷 on Γ𝐷},
𝑉0 := {v ∈ [𝐻1 (Ω)]2 s.t. v = 0 on Γ𝐷},
𝑄 := 𝐿2 (Ω),

whereu𝐷 is a given Dirichlet datum on Γ𝐷×(0, 𝑇] . The weak formulation of the Navier-
Stokes problem reads as follows: for every 𝑡 ∈ (0, 𝑇], find u(𝑡) ∈ 𝑉 and 𝑝(𝑡) ∈ 𝑄 such
that, for every v ∈ 𝑉0 and every 𝑞 ∈ 𝑄 the following holds

𝑚(𝜕𝑡u, v) + 𝑎(u, v) + 𝑐(u,u, v) + 𝑏(𝑝, v) = (u𝑁 , v)Γ𝑁
∀𝑡 ∈ (0, 𝑇],

𝑏(u, 𝑞) = 0 ∀𝑡 ∈ (0, 𝑇],
u(𝑡 = 0) = u0 in Ω,

(2)

where u0 is a given initial condition (IC) and u𝑁 is a Neumann datum defined on
Γ𝑁 × (0, 𝑇]. In system (2), (·, ·)𝑤 indicates 𝐿2 (𝜔) inner product and the bilinear and
trilinear forms are introduced in Table 1.

Table 1: Navier-Stokes forms definitions

Form Definition

fluid velocity mass 𝑚(w, v) =
∫
Ω
w · v𝑑Ω

fluid stiffness 𝑎(u, v) =
∫
Ω
𝜈∇u : ∇v𝑑Ω

fluid incompressibility 𝑏(𝑝, v) = −
∫
Ω
𝑝 divv𝑑Ω

fluid advection 𝑐(u,w, v) =
∫
Ω
(u · ∇)w · v𝑑Ω

Fluid-Structure Interaction problem. Due to the different nature of the formalism
used to describe the motion of a fluid (Eulerian formalism) and the motion of a solid
(Lagrangian formalism), in this manuscript we make use of the so-called ALE formalism;
for more details on this, we refer to [9,6]. Hereafter, we will assume that all the variables
are considered on a reference configurationΩ, which is time-independent. We will resort
to the monolithic Lagrangian formulation as described in [1]. For an FSI problem, we
assume a partition of Ω into two disjoint open domains Ω 𝑓 (the fluid subdomain) and Ω𝑠

(the solid subdomain) and we denote by Γ𝐼 := Ω̄ 𝑓 ∩ Ω̄𝑠 the fluid-structure interface. We
further denote with Γ 𝑓 ,𝐷 and Γ𝑠,𝐷 the Dirichlet boundaries, and with Γ 𝑓 ,𝑁 and Γ𝑠,𝑁
the Neumann boundaries, for the fluid and the solid, respectively. The components of
U , for an FSI problem, are the following: the common velocity field for the fluid and
the structure subproblems u = (u 𝑓 ,u𝑠) : Ω → R2, the fluid pressure 𝑝 𝑓 : Ω 𝑓 → R and
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the common displacement field d = (d 𝑓 ,d𝑠) : Ω → R2. We introduce the following
function spaces 𝑊 = 𝑊0 = 𝑉 ×𝑄 × 𝐸 :

𝑉 :=
{
v ∈

[
𝐻1 (Ω)

]2 : v = 0 on Γ 𝑓 ,𝐷 and v is continuous across Γ𝐼

}
,

𝑄 := 𝐿2 (Ω 𝑓 ),
𝐸 :=

{
e ∈

[
𝐻1 (Ω)

]2 : e = 0 on Γ𝐷 ∪ Γ 𝑓 ,𝑁 and e is continuous across Γ𝐼

}
.

The weak formulation of the coupled FSI problem reads as follows: for every 𝑡 ∈
(0, 𝑇], find (u(𝑡), 𝑝 𝑓 (𝑡),d(𝑡)) = (u 𝑓 (𝑡),u𝑠 (𝑡), 𝑝 𝑓 (𝑡),d 𝑓 (𝑡),d𝑠 (𝑡)) ∈ 𝑉 ×𝑄 × 𝐸 , such
that the following holds: for every v = (v 𝑓 , v𝑠) ∈ 𝑉 , 𝑞 𝑓 ∈ 𝑄 and e = (e 𝑓 , e𝑠) ∈ 𝐸

𝑚 𝑓 (𝜕𝑡u, v;d) + 𝑚𝑠 (𝜕𝑡u, v) + 𝑎 𝑓 (u, v;d) + 𝑎𝑠 (d, v) + 𝑏𝐴
𝑓
(𝑝 𝑓 , v;d)

+𝑐𝐴𝐿𝐸
𝑓

(𝜕𝑡d, v,u;d) + 𝑐 𝑓 (u,u, v;d) = (u 𝑓

𝑁
, v 𝑓 )Γ 𝑓 ,𝑁

+
(
d𝑠
𝑁
, v𝑠

)
Γ𝑠,𝑁

,

𝑏𝐵
𝑓
(u, 𝑞 𝑓 ;d) = 0,

𝑎𝑒
𝑓
(d, e) + 𝑎

𝑒,𝜕 𝑓

𝑓
(d, e) + (𝜕𝑡d𝑠 − u𝑠 , e𝑠)Ω𝑠 = 0,

(3)

where (·, ·)𝜔 indicates 𝐿2 (𝜔) inner product and all forms are defined in Table 2.

Table 2: FSI forms definitions

Form Definition

fluid velocity mass 𝑚 𝑓 (w, v;d) =
∫
Ω 𝑓 𝐽𝜌 𝑓w · v𝑑Ω

fluid stiffness 𝑎 𝑓 (u, v;d) =
∫
Ω 𝑓 𝐽𝜎

𝑑𝑢
𝑓

(u 𝑓 ;d 𝑓 )𝐹−𝑇 : ∇v 𝑓 𝑑Ω

fluid ALE 𝑐𝐴𝐿𝐸
𝑓

(w, v,u 𝑓 ;d) = −
∫
Ω 𝑓 𝐽𝜌 𝑓

[
∇u 𝑓 𝐹

−1] w · v 𝑓 𝑑Ω

fluid incompressibility A 𝑏𝐴
𝑓
(𝑝 𝑓 , v;d) =

∫
Ω 𝑓 𝐽𝜎

𝑝

𝑓
(𝑝 𝑓 )𝐹−𝑇 : ∇v 𝑓 𝑑Ω

fluid incompressibility B 𝑏𝐵
𝑓
(u, 𝑞 𝑓 ;d) = −

∫
Ω 𝑓 div

(
𝐽𝐹−1u 𝑓

)
𝑞 𝑓 𝑑Ω

fluid advection 𝑐 𝑓 (u 𝑓 ,w 𝑓 , v 𝑓 ;d 𝑓 ) =
∫
Ω 𝑓 𝐽𝜌 𝑓

[
∇w 𝑓 𝐹

−1] u 𝑓 · v 𝑓 𝑑Ω

extension fluid stiffness 𝑎𝑒
𝑓
(d, e) =

∫
Ω 𝑓 ∇d 𝑓 : ∇e 𝑓 𝑑Ω

extension interface stiffness 𝑎
𝑒,𝜕 𝑓

𝑓
(d, e) = −

∫
Γ𝐼

[
∇d 𝑓

]
n 𝑓 : e 𝑓 𝑑𝑆

structure displacement mass 𝑚𝑠 (d, e) =
∫
Ω𝑠 𝜌𝑠d𝑠 · e𝑠𝑑Ω

structure stiffness 𝑎𝑠 (d, v) =
∫
Ω𝑠 𝑃(d𝑠) : ∇v𝑠𝑑Ω

There, 𝜌 𝑓 and 𝜌𝑠 represent the fluid and the solid density, respectively. System (3)
is then completed by some suitable ICs on u 𝑓 , d𝑠 and 𝜕𝑡d𝑠 . In system (3), u 𝑓

𝑁
and d𝑠

𝑁

are given Neumann data for the fluid and the solid; 𝜎 𝑓 (u 𝑓 , 𝑝 𝑓 ;d 𝑓 ) = 𝜎𝑑𝑢
𝑓
(u 𝑓 ;d 𝑓 ) +

𝜎
𝑝

𝑓
(𝑝 𝑓 ) is the fluid Cauchy stress tensor, 𝑃(d𝑠) is the Piola-Kirchhoff tensor for the
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solid, 𝐹 is the Jacobian of the ALE map and 𝐽 is the determinant of 𝐹 (see [9] for
more details); finally, n 𝑓 and n𝑠 are the normals to Γ𝐼 , outgoing the fluid and the solid
subdomain, respectively.

At this stage, we presented the problems of interest in the time-continuous setting:
no time-stepping scheme has been introduced so far.

Overview of time–adaptive techniques. The choice of the time-step in numeri-
cal solvers for ODEs and PDEs has always been a crucial topic. Already from 1911,
Richardson [8] proposed an extrapolation procedure to estimate the error during a single
time-step and to use it to correct its length. This procedure was based on a second
simulation run within the same time-step but using two time-steps of half the size of the
original one. The resulting difference between the two simulations is of the order of the
error of the simulation with the large time-step and, hence, gives an estimation of the
local error. Many estimators are still based on this idea. A generalization of this concept
involves to two different simulations in one time-step with different accuracies [5]. From
there on, various embedded methods were developed. They exploit the stages/steps struc-
ture to create two different approximations, typically of different orders. Through their
difference it is possible to obtain an error estimate for the worst approximated solution
[3]. Commonly, a tolerance is set for the local error and the time-step is adjusted to
fulfil this error bound in the current or following time-step. Various strategies have been
used to set the time-step and other regularity constraints may be enforced not to vary
the time-step too much [3]. When dealing with saddle-point simulations, most of these
strategies fail at bounding errors for all the variables, such as the pressure in FSI and
NS. Hence, different options are available and the choice of the error estimator leads to
great changes in the simulations.

In Section 2, we will describe a couple of error estimators based on the difference
between BDF2 and BDF3 formulations which is able to address the issues stated above
and provide an extensive numerical analysis of the proposed techniques on various CFD
and FSI benchmark problems in Section 3.

2 Time discretization and error estimator

At the beginning of this section, we will briefly describe Backward Differentiation
Formulae (BDF𝑘) of order 𝑘 = 2, 3 for non–constant time discretisation. Then, we will
present a temporal error estimator based on the interplay of BDF2 and BDF3 implicit
schemes and discuss the efficient approximation of the implicit error estimator.

2.1 Backward Differentiation Formulae (BDF) with varying time-steps

We assume the following partition of the time interval [0, 𝑇]: 0 =: 𝑡0 < 𝑡1 < · · · <
𝑡𝑀 := 𝑇, 𝑀 > 0 and denote by Δ𝑛

𝑡 := 𝑡𝑛 − 𝑡𝑛−1 for 𝑛 = 1, . . . , 𝑀 . Furthermore, we
introduce the following notation: U 𝑛 := U (𝑡𝑛), 𝑛 = 0, . . . , 𝑀 . In the BDF, the term
𝜕𝑡U

𝑛 is approximated with BDF formulae of order 𝑘 ≥ 1, while the RHS of the ODE
is solved (in this case) implicitly at time 𝑡𝑛. For a given 𝑛 ≥ 1 the BDF formulae read

𝜕𝑡U
𝑛 ≈ ΞBDF𝑘

𝑛 (U ) :=
𝑘∑︁

𝑝=0
𝜉𝑛,𝑘𝑝 U 𝑛−𝑝 , (4)
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where the coefficients 𝜉
𝑛,𝑘
𝑝 , 𝑝 = 0, . . . , 𝑘 can be obtained by a Taylor expansion in 𝑡𝑛

and are reported in Table 3 for 𝑘 = 2, 3 for variable time-steps.

Table 3: BDF2 and BDF3 expansion coefficients

𝑝 BDF2 coefficient BDF3 coefficient

0 2Δ𝑛
𝑡 +Δ𝑛−1

𝑡

Δ𝑛
𝑡 (Δ𝑛

𝑡 +Δ𝑛
𝑡 )

3(Δ𝑛
𝑡 )2+4Δ𝑛

𝑡 Δ
𝑛−1
𝑡 +2Δ𝑛

𝑡 Δ
𝑛−2
𝑡 +(Δ𝑛−1

𝑡 )2+Δ𝑛−1
𝑡 Δ𝑛−2

𝑡

Δ𝑛
𝑡 (Δ𝑛

𝑡 +Δ𝑛−1
𝑡 ) (Δ𝑛

𝑡 +Δ𝑛−1
𝑡 +Δ𝑛−2

𝑡 )
1 −Δ𝑛

𝑡 +Δ𝑛−1
𝑡

Δ𝑛
𝑡 Δ

𝑛−1
𝑡

− (Δ𝑛
𝑡 )2+2Δ𝑛

𝑡 Δ
𝑛−1
𝑡 +Δ𝑛

𝑡 Δ
𝑛−2
𝑡 +(Δ𝑛−1

𝑡 )2+Δ𝑛−1
𝑡 Δ𝑛−2

𝑡

Δ𝑛
𝑡 Δ

𝑛−1
𝑡 (Δ𝑛−1

𝑡 +Δ𝑛−2
𝑡 )

2 Δ𝑛
𝑡

Δ𝑛−1
𝑡 (Δ𝑛

𝑡 +Δ𝑛−1
𝑡 )

Δ𝑛
𝑡 Δ

𝑛−1
𝑡 +Δ𝑛

𝑡 Δ
𝑛−2
𝑡 +(Δ𝑛

𝑡 )2

Δ𝑛−1
𝑡 Δ𝑛−2

𝑡 (Δ𝑛
𝑡 +Δ𝑛−1

𝑡 )
3 − (Δ𝑛

𝑡 )2+Δ𝑛
𝑡 Δ

𝑛−1
𝑡

Δ𝑛−2
𝑡

(
(Δ𝑛−1

𝑡 )2+2Δ𝑛−1
𝑡 Δ𝑛−2

𝑡 +Δ𝑛
𝑡 Δ

𝑛−1
𝑡 +(Δ𝑛−2

𝑡 )2+Δ𝑛
𝑡 Δ

𝑛−2
𝑡

)

We now have all the necessary ingredients to introduce the time–adaptive algorithm
based on the BDF2 and BDF3 schemes for the problem (1).

2.2 Time-adaptive algorithm and temporal error estimators

First of all, we assume that the continuous problem (1) is well approximated by a mixed
Finite Element (FE) method with appropriately chosen well-defined triangulations of
the domains of interest and FE spaces 𝑊ℎ ⊂ 𝑊 and 𝑊0,ℎ ⊂ 𝑊0 which are inf-sup stable
to ensure the well-posedness of the FE formulation; we refer to [9] for more details.
In the following exposition, we will use Uℎ (𝑡) to denote the FE approximation of the
solution U (𝑡) at time 𝑡 ∈ [0, 𝑇].

As mentioned in the introduction, time–adaptive algorithms are of extreme impor-
tance for complex physical models to produce the numerical simulations in feasible
computational time. In this work, we resort to a methodology proposed already in 1961
in [2], reported in [3], and successfully studied in the context of FSI problems in [4].
The core idea of the method lies in the next time-step size prediction:

Δ∗
𝑡 = min

{
Δmax
𝑡 ,max

{
min {𝜅𝑚𝑎𝑥 ,max {𝜅min, 𝜅𝑠𝜅

∗}}Δ𝑛
𝑡

}
,Δmin

𝑡

}
. (5)

The main component in (5) is the scaling factor 𝜅∗ which is defined as follows:

𝜅∗ =

(
𝜀

est𝑛+1

) 1
𝑞+1

, (6)

where 𝑞 is the desired order of accuracy, 𝜀 is the user-defined tolerance and est𝑛+1 is the
measure of the local temporal error. Forgetting all other terms, the new time-step would
be defined by Δ∗

𝑡 = 𝜅∗Δ𝑛
𝑡 . Then, one needs to add several safety factors. 𝜅𝑚𝑖𝑛 and 𝜅max

are user–specified parameters which indicate the minimal and the maximal ratio Δ∗
𝑡 /Δ𝑛

𝑡

by which the time-step is allowed to increase or decrease. 𝜅𝑠 < 1 keeps the local error
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incorporated in 𝜅∗ away from the set tolerance. Furthermore, the bounds Δmin
𝑡 and Δmax

𝑡

are defined in order not to have an over/undershoot in the time–step prediction and they
are usually chosen based on the physical knowledge of the problem at hand.

We refer to [4] for more insights on the general pipeline of the presented time–
adaptive step selection, the choice of user–defined parameters and tolerances. Instead,
we will focus on presenting a local temporal error estimator based on the interplay of
implicit BDF2 and BDF3 schemes. Following the notation introduced in the equation (1),
we denote by U 𝑛,BDF𝑘

ℎ
, 𝑘 = 2, 3 the solution to the following implicit in time problem:

𝑅

(
ΞBDF𝑘
𝑛

(
UBDF𝑘

ℎ

)
,U 𝑛,BDF𝑘

ℎ

)
= 0 in 𝑊 ′

0,ℎ, 𝑛 = 3, 4, . . . , (7)

where the values U 1,BDF𝑘
ℎ

and U 2,BDF𝑘
ℎ

for 𝑘 = 2, 3 are obtained by the implicit
Euler and BDF2 schemes with constant time-step Δmin

𝑡 , respectively, and the value
𝑈

0,BDF𝑘
ℎ

, 𝑘 = 2, 3 comes from the prescribed ICs. As we aim to construct a second–
order time advancing scheme, the value of parameter 𝑞 in (6) is chosen to be 𝑞 = 2.

The choice of using BDF implicit schemes is beneficial for many aspects for highly–
nonlinear coupled problems, as the FSI problem (3). With respect to fully implicit multi–
stage schemes, BDF implicit schemes lead to smaller nonlinear systems and they do not
require the modification of the residual functional (1) for different orders [3]. Moreover,
both problems (2) and (3) are of the form of differential–algebraic equations, i.e. some
of the components (namely, the fluid pressure) or subequations (e.g., incompressibility
constraints) do not contain the time derivative. The explicit schemes might not be able
to capture fast transient dynamics strongly dominated by these components.

For the above reasons, we propose the following form of the local temporal error
estimator in (6):

est𝑛+1 = max
𝑢∈U

| |𝑢𝑛+1,BDF2
ℎ

− 𝑢
𝑛+1,BDF3
ℎ

| |𝐿2 (Ω) , (8)

that is the maximum absolute 𝐿2–error over all the components of the problem (1). We
will be referring to this estimator as implicit time estimator.

The obvious issue of the estimator (8) is that it requires a lot of computational
resources as it needs two non–linear highly–dimensional solvers. In order to mitigate
this, we propose instead of solving for implicit BDF3 solution an approximation as
a one–step Newton correction of the BDF2 solution as follows: find Ũ 𝑛+1,BDF3

ℎ
=

U 𝑛+1,BDF2
ℎ

+ 𝛿U 𝑛+1,BDF3
ℎ

∈ 𝑊 , where 𝛿U 𝑛+1,BDF3
ℎ

∈ 𝑊0 is the solution of the following
linearised equation

𝐽

[
𝑅

(
ΞBDF3
𝑛+1

(
UBDF2

ℎ

)
,U 𝑛+1,BDF2

ℎ

)] (
𝛿U 𝑛+1,BDF3

ℎ

)
= −𝑅

(
ΞBDF3
𝑛+1

(
UBDF2

ℎ

)
,U 𝑛+1,BDF2

ℎ

)
in 𝑊 ′

0. (9)

In the equation above 𝐽 represents the Jacobian operator which is computed by means
of automatic differentiation and already used for the nonlinear solver of the BDF2. With
this the time estimator (8) is approximated by the following:

est𝑛+1 = max
𝑢∈U

| |𝑢𝑛+1,BDF2
ℎ

− 𝑢̃
𝑛+1,BDF3
ℎ

| |𝐿2 (Ω) , (10)
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which requires only one nonlinear solver to get the BDF2 solution and one linear solver
for (9). We will be referring to this estimator as linear-implicit (LI) time estimator.

It is possible to prove, relying on approximation properties of BDF𝑘 schemes,
𝑘 = 2, 3 and a priori estimates as the ones, for instance, in [7], that the LI approximation
defined by (9) leads to the same order of accuracy as the implicit BDF3 solver (7). In
the next section, we will show that estimators (8) and (10) have the same behaviour.

Finally, the next time-step prediction is defined as:

Δ𝑛+1
𝑡 := 𝛼0Δ

𝑛
𝑡 + 𝛼1Δ

∗
𝑡 , (11)

where the weights 𝛼0, 𝛼1 ≥ 0 satisfy 𝛼0 + 𝛼1 = 1 and are chosen in order to prevent an
overshooting effect which may lead to the need for significant reduction of the following
time-steps. In the numerical results, we set 𝛼0 = 0.3 and 𝛼1 = 0.7. As prescribed in [4],
we reperform the timestep evaluation until the condition est𝑛+1 < 𝜀 is satisfied and, in
any case, for a maximum of 5 iterations.

3 Numerical simulations

In this section, we will provide a few numerical test cases to show the efficiency of the
presented time–adaptive algorithm. We will provide the numerical results on two bench-
mark problems: the backward–facing step flow and a two–dimensional haemodynamic
FSI test case.

Γ𝑖𝑛

Γ
𝑤𝑎𝑙𝑙

Γ𝑜𝑢𝑡

Γ
𝑤𝑎𝑙𝑙

Ω

(a) Backward-facing step domain

Γ𝑖𝑛

Γ
𝑓
𝑤

Γ
𝑓
𝑤

Γ𝑜𝑢𝑡

Γ𝑠𝑤

Γ𝑠𝑤

Γ𝐼

Γ𝐼

(b) Reference FSI domain

Fig. 1: Domains of interest for the CFD (a) and FSI (b) test cases

Backward-facing step flow CFD test case. Figure 1a represents the physical domain
of interest. The upper part of the channel has a length of 18𝑐𝑚, the lower part 14𝑐𝑚;
the height of the left chamber is 3𝑐𝑚, and the height of the right one is 5𝑐𝑚. The spatial
discretisation is carried out by FE method using Taylor-Hood P2−P1 FE pair with 27, 890
degrees of freedom (DoFs). We impose homogeneous Dirichlet boundary conditions
(BCs) on the top and the bottom walls of the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity, the
homogeneous Neumann (free–outflow) conditions on the outlet Γ𝑜𝑢𝑡 on this portion

of the boundary, and the parabolic profile 𝑢𝑖𝑛 (𝑥, 𝑦, 𝑡) =
(
𝜑(𝑡) 20

9 (𝑦 − 2) (5 − 𝑦), 0
)𝑇

on
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Γ𝑖𝑛 = {(𝑥, 𝑦) : 𝑥 = 0, 𝑦 ∈ [2, 5]}, 𝑡 = [0, 2], where 𝜑 ∈ C1 (R+) is given by

𝜑(𝑡) =
{

1
2 (1 − cos(𝜋𝑡)) for 𝑡 ≤ 1,
1 for 𝑡 > 1.

Below we will provide the numerical simulation of the proposed time–adaptive algorithm
for the value of the viscosity parameter 𝜈 = 0.05 resulting in Reynolds numbers equal
to 300. We will refer to this test case as CFD-300 in the following.

Two–dimensional haemodynamics FSI test case (FSI-H2). Figure 1b represents

(a) Fluid velocity (b) Fluid pressure

Fig. 2: FSI-H2 solution at time instance 𝑡 = 0.01 in the current fluid configuration

the physical domain in the reference configuration: the reference fluid domain Ω 𝑓 in
blue, the reference solid domain Ω𝑠 in red and the fluid–structure interface Γ𝐼 in green.
the fluid domain is 2.5𝑐𝑚 in height 10𝑐𝑚 long; the leaflets are situated 1𝑐𝑚 downstream
the inlet boundary Γ𝑖𝑛, they are 0.2𝑐𝑚 thick and 1.1𝑐𝑚 in height. The values of physical
parameters are the following: 𝜈 𝑓 = 0.035, 𝜌 𝑓 = 1, 𝜌𝑠 = 1.1, 𝜆𝑠 = 8 ·105 and 𝜇𝑠 = 4 ·105.
The spatial discretisation is carried out by FE method using a generalised Taylor-Hood [9]
FE triple P2 − P1 − P2 with 67, 390 DoFs. We consider zero ICs for fluid velocity and
the structure displacement, homogeneous Dirichlet BCs on Γ

𝑓
𝑤 for the fluid velocity

and on Γ𝑠
𝑤 for the structure displacement, and homogeneous Neumann (free–outflow)

conditions on Γ𝑜𝑢𝑡 . A pressure impulse u
𝑓

𝑁
(𝑥, 𝑡) = −𝑝𝑖𝑛 (𝑡)n 𝑓 (𝑥) = (𝑝𝑖𝑛 (𝑡), 0)𝑇 ,∀𝑥 ∈

Γ𝑖𝑛,∀𝑡 ∈ [0, 2], is applied as a Neumann condition at Γ𝑖𝑛 with:

𝑝𝑖𝑛 (𝑡) =
{

5
(
1 − cos( 𝜋𝑡

0.2 )
)

for 𝑡 ≤ 0.1,
5 for 𝑡 > 0.1.

In Fig. 2, we provide a plot of the fluid subcomponents of the FSI-H2 test case
at the time 𝑡 = 0.01 in the current fluid domain configuration. The magnitude of the
displacement at this time instance is of order 10−6, and it can be seen that the pressure
field dominates the dynamics of the problem.

Validation of the time–adaptive algorithm. Having established the test cases,
we will now provide a numerical analysis of the time–adaptive algorithm described
in Section 2. In both test cases we fix the following parameters entering the timestep
prediction (5): 𝜅max = 1.5, 𝜅min = 0.1, 𝜅𝑠 = 0.9 and the tolerance 𝜀 = 10−3 in (6).
For CFD-300 we choose Δmin

𝑡 = 10−4 and Δmax
𝑡 = 10−1 whereas for FSI-H2 we set

Δmin
𝑡 = 10−4 and Δmax

𝑡 = 10−2. In Figure 3a for CFD-300, we observe the timestep
chosen by the algorithm and the error w.r.t. a reference solution (computed via Δmin

𝑡
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(a) CFD-300: errors and timestep
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(b) CFD-300: error estimators
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(c) FSI-H2: errors and timestep
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(d) FSI-H2: error estimators

Fig. 3: Adaptive time-steps distribution and relative errors w.r.t. constant-timestep solu-
tion (left) and the comparison of implicit and LI time estimators (right)

Table 4: Computational cost comparison between constant BDF2 and time adaptive
algorithms: total simulation time (left) and time of one evaluation of the error estimator
(mean ± std)

Computational time Estimator cost Steps number
Test case Constant LI adaptive Implicit LI Const. Impl. LI
CFD-300 12 hours 2 hours 2.1 ± 0.2 sec 1.68 ± 0.1 sec 20,000 976 976
FSI-H2 132 hours 5 hours 37 ± 4 sec 25 ± 2 sec 20,000 347 360

constant–timestep BDF2 scheme). We observe that the global error is somewhat under
control during the whole simulation. The errors and the time steps are particularly
sensitive to the discontinuity of the second derivative in time of the BCs at 𝑡 = 1. The
error estimator in Figure 3b is indeed based on Taylor expansions of the second order
and it correctly detects a singularity and decreases the timestep in that point, maintaining
the error of the pressure (that varies widely at that time) under control. The differences
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between the fully implicit and the LI error estimators are negligible in terms of accuracy,
but they sum up to a strong reduction in computational costs as evidenced in Table 4.

Similarly, for FSI-H2 in Figure 3c we notice that the error is always under control.
In this simulation, the relative errors are comparable among components in particular
for pressure and displacement. On the other hand, the error estimator in Figure 3d is
led by the pressure and it is of paramount importance to include such a component in
the error estimator. Again, there is essentially no difference between the fully implicit
estimator and the LI one, but great computational saving is achieved as can be seen in
Table 4.
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