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and Gianluigi Rozza 

Introduction 

Parallel to the need for new technologies and renewable energy resources to address 
sustainability, the emerging field of Artificial Intelligence (AI) has experienced con-
tinuous high-speed growth in the application of its capabilities of modelling, manag-
ing, processing, and making sense of data in the entire areas related to the production 
and management of energy. Moreover, the current trend indicates that the energy 
supply and management process will eventually be controlled by autonomous smart 
systems that optimize energy distribution operations based on integrative data-driven 
Machine Learning (ML) techniques or other types of computational methods. 

Computational techniques can be applied in a broad range of applications related to 
sustainable implications including life and health sciences, environment and ecosys-
tem, and product and process optimization by taking data and analyzing them to 
provide recommendations for improving sustainability parameters. Thus, the inte-
gration of computational methods can be a solution to sustainability challenges. Any 
product can be designed to be more efficient and optimized if it is modelled, ana-
lyzed, and tested in advance before it is built. The Digital Twin (DT) is a novel 
coupled approach for any form of modelling and analysis based on big data and 
AI/ML techniques. 

Digital twin in general refers to the creation of computational models or platforms 
by monitoring, modelling, optimizing and predicting a complex interdisciplinary 
system based on real-time big data sets. In terms of the digital twin, any forms 
of computational techniques including the Internet of Things (IoT), AI, ML, and 
analytics may be integrated to create live digital models able to update and change 
information as needed. Digital twin models are self-learning systems in the sense of 
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Fig. 7.1 The classic design process 

Fig. 7.2 The sustainable computational design process 

continuous learning and updating from multiple sources to reach real-time status and 
are regarded to serve as a panoptic reflection of a physical body in the digital world. 

The physics-based computational digital twin is a unique technology that focuses 
on bilateral interdependency between virtual and physical representations, and as 
a consequence, benefits the product in the sense that it can adapt to modify its 
real-time behaviour simultaneously to the feedback generated by the digital twin. 
Conversely, the bridging allows the simulation to be able to precisely mirror the 
real-world condition of the physical body (see Fig. 7.1). 

An exciting aspect of the digital twin is the potential to break the classical Prod-
uct Lifecycle Management (PLM) paradigm with fixed static steps in which Need 
defines Concept of the meant system and then turns it into Digital Design to facilitate 
Manufacturing step. 

On the other hand, in the state-of-the-art design process, beyond all the initial 
and continuous sustainable resourcing and maintenance, an active step emerges to 
refine the product, i.e., Computations Aim at Sustainability. Moreover, the well-
structured PLM platform integrated with AI/ML techniques is capable of offering a 
sustainable solution (see Fig.7.2). 

Nowadays, computations in terms of numerical models and simulations play a 
significant role in reaching the optimal sustainable solution. Meanwhile, the expo-
nential growth of computational resources makes it available to utilize numerical 
methods in various scientific fields. To illustrate, a computational framework for 
the twin’s architecture in the form of data assimilation similar to that of weather 
prediction has shown a progressive accuracy concurrent with the development of 
computing technologies, especially in the last decade.
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Mathematics for Sustainability 

Real-Life Applications 

Environment 

Modelling of the Ocean Flows 

Anthropogenic climate change is the greatest threat the world has ever faced. Sophis-
ticated computational models simulating the physical dynamics of the atmosphere 
and oceans are essential to obtain a projection of future changes with respect to 
different scenarios designed by policy makers. Therefore, the availability of models 
that give accurate results in a feasible computational time is a substantial factor in 
decision-making to assess and prevent climate change’s catastrophic threats. 

Numerical modeling of geophysical currents is crucial for predicting the state of 
the ocean and weather. It provides knowledge and understanding of the mechanisms 
that drive climate change, however, in order to evaluate all the significant flow struc-
tures, a resolution of the order of 0.1 mm is required. Such refined mesh is beyond 
reach even with modern supercomputers. Moreover, memory demand due to the large 
amount of degrees of freedom in consideration for a proper description of the flow 
system can be prohibitive. Hence, it is a challenge to perform the simulations for 
a sufficiently long period to observe the variations in the quantities of interest. For 
this, advanced techniques from reduced order modelling are applied in order to make 
such simulations feasible. The reduced modeling will be discussed in the following 
section. One of the results of the modeling of instantaneous vorticity distribution in 
the North Atlantic Ocean is shown in Fig. 7.3. 

Large-scale Modelling of Urban Air Pollution 

Urban air pollution leads to poor public health, global warming, and destruction of 
ecosystems. This dramatically increases deaths in the population, health care costs 
as well as magnifies even further the hazards of climate change. Therefore, mathe-
matical modeling of the evolution of urban air pollutants is a very important tool to 
extract the knowledge from the observed data on air quality and make the prediction 
about the pollutants propagation in time and space. For instance, one of such models 
is the transport-diffusion equation, where the convective field is given by the solution 
of the Navier-Stokes equation, and the source term is an empirical time series. An 
example on an output of the model is shown in Fig. 7.4. 

Optimization of Hybrid Energy System 

Hybrid Energy System (HES) are such energy systems that can satisfy the power 
demand with both non-renewable and renewable energy sources. They play one of the 
central roles in solving the challenge of reducing our dependence on non-renewable
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Fig. 7.3 Instantaneous vorticity distribution in the North Atlantic Ocean computed using methods 
of reduce order modelling 

Fig. 7.4 Streamlines of the velocity and a cross section of the concentration field 

energy sources when an immediate transition to renewables is not feasible. At the 
same, a clever way of managing the energy system is central in order to obtaining a 
substantial reduction in emissions. 

Mathematical optimization is a great tool for obtaining such values of the control 
variables that reduces the overall emissions while maintaining the satisfying power 
demand. For instance, in the work on minimizing the emissions associated with 
the fuel consumption during the navigation of a vessel, a significant reduction of 
the values of the key performance indicators has been obtained by applying such 
statistical optimization technique as Simulated Annealing. The results presented in 
Fig. 7.5 show the reduction up to 31% even though in the work highly heterogeneous 
examples of the missions were presented. Hence, one may conclude that similar 
approaches can be applied to real-world scenario when variability and uncertainty 
are present.
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Fig. 7.5 Comparison of the key performance indicators in standard energy management system 
(EMS) and SHEMS (Smart Hybrid EMS) 

Life Science 

Coronary artery diseases are one of the main causes of sudden death worldwide. 
Patient-specific nature of the arterial system makes it almost impossible to predict 
the appropriate time for the therapeutic intervention, empirically. Moreover, it is well-
accepted to use animals, as the closest biological system to that of humans, for con-
ducting research in this field [ 4, 18]. However, breeding laboratory animals demand 
high financial and human resources. Computational methods can be used to predict 
biological systems and reduce the necessity of laboratory experiments on animals. 
Blood flow hemodynamics has a direct influence on the biology of the arterial wall, 
and is closely linked with coronary artery disease development. Computational fluid 
dynamics (CFD) solvers can be employed to analyze the hemodynamic metrics, such 
as blood flow-induced shear stresses at the inner vessel lumen, to assess an individ-
ual’s coronary disease risk. Still, calculating hemodynamic indices using traditional 
CFD methods is relatively slow and relies on high computational resources. Conse-
quently, CFD-based hemodynamic computation is not reasonable for integrated and 
large-scale use in clinical settings. Novel model reduction techniques such as neural 
networks integrated with CFD make it possible to lower the computational cost of 
the numerical simulations and at the same time to provide accurate predictions of the 
blood flow hemodynamics. In traditional pure CFD methodology, a patient-specific 
geometry is derived by the image processing and 3-D model reconstruction of the 
CT-scan images, and then, is modelled by CFD solvers to evaluate hemodynamic 
indices. In general, several simulations on different geometries are needed to derive 
a general relationship. Hence, it demands a high level of computational time and 
resources. On the other hand, modern model reduction techniques can reduce the 
computational time from days to seconds. The technique utilizes advanced math-
ematical methods to parameterize a system of equations and is trained by the set 
of simulations, a stage known as the offline stage. Then, this trained model can be 
utilized to predict every other geometrical and flow case in terms of seconds. The 
procedure is shown in Fig. 7.6.
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Fig. 7.6 A sketch of  
reduced order framework for 
biomechanical models [ 6] 

Ballarin et al. applied the mentioned methodology to conduct research on the 
blood hemodynamics study on patient-specific coronary artery bypass grafts [ 6]. 
Oscillatory Shear Index (OSI) is of great importance in recognition of the blood 
hemodynamics and vessel lifetime upon the rupture [ 5, 22]. Figure 7.7 shows the 
evaluation of OSI for different geometrical and flow conditions near the coronary 
arteries and bypass grafts near the anastomosis. 

In related studies, Siena et al. [ 45] and Balzotti et al. [ 8] utilized ROM-CFD based 
on the Feed-forward Neural Network (FNN) for the evaluation of the hemodynamic 
indices adjacent to the walls including wall shear stress. The predicted results based 
on the machine learning method showed a fantastic agreement with that of the Full 
Order Method (FOM), i.e., CFD simulation. To compare, the former took computa-
tional time of order of hours, whilst the latter is accomplished in just a few seconds 
(see Fig. 7.8). 

Process and Product Optimisation 

Freight and passenger transport (land, air, sea and water) provide assistance to eco-
nomic growth by making access to resources and markets. Eventually, it improves the 
quality of life linking persons to employment, health, education and other amenities. 
Thus, transportation takes an important role in economic and social development. 
Nevertheless, it comes with spillover negative effects such as congestion, pollution, 
depletion and resource-intensive consumption. Sustainable transportation is associ-
ated with the concept of clean transportation with the least impact on the environment.
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Fig. 7.7 Left internal thoracic artery (LITA) to diagonal branch of the left anterior descending 
artery (DIAG) anastomosis for different stenosis (rows 1 and 2) and inflow conditions (columns 1 
to 3). Coloured arrows denote blood flow direction [ 6] 

Above all, sea transport is one of the main components of the world’s economy, 
as the largest carrier of freight around the globe. Motorised transport is over 95% 
dependent on oil and accounts for almost half of the world’s use of oil [ 54]. As a 
consequence, it attained a lot of concentration in the past few years in order to reduce 
the carbon footprint of sea transport by adopting sustainable practices. 

Accordingly, the shipbuilding industry is making a radical change toward solutions 
with a smaller environmental impact by employing low emissions engines, optimized 
shape designs with lower wave resistance and noise generation, and by reducing 
the metal raw materials used during manufacturing. In a brand-new research study, 
Tezzele1 et al. carried out a structural optimization pipeline for modern passenger 
ship hulls which exploits advanced model order reduction techniques to reduce the
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Fig. 7.8 Time evolution of wall shear stress prediction provided by FNN (red line) and the FOM 
simulation (blue points) [ 6] 

Fig. 7.9 A complete view of the hull on the left, and a longitudinal section on the right [ 48] 

dimensionality of both input parameters and outputs of interest [ 48]. Figure 7.9 
demonstrates the geometry of the passenger ship in their research study. 

Figure 7.10 below depicts the successive runs performed using a novel model 
reduction technique called POD-NARGPAS, to predict the reduced mass. 

More than 7% of total carbon dioxide emission in the US is related to the health-
care industry, contributing to an estimated 479 million tons of CO. 2 each year [ 36, 
49]. When assessed by sector, hospitals and clinics, medical structures, and phar-
maceutics are the top emitters. Among these, pharmaceutical industries and drug 
development activities are believed to be among the top contributors [ 41]. Nowa-
days, drug development has become the exclusive activity of any pharmaceutical 
company. But interestingly, the output of new drugs has been decreasing for the past 
decade and the prices of new drugs have risen steadily, leading to access problems 
for many patients [ 31]. This may contribute to the fact that the drug development pro-
cess involves a range of operations such as blending, granulation, milling, coating, 
tablet pressing and filling, and therefore, regarded as an interdisciplinary science of
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Fig. 7.10 Results of relative mass reduction for different optimizations runs of the parametrized 
hull [ 48] 

chemistry, mechanics and medicine [25]. Granulation, the process of particle enlarge-
ment by agglomeration technique, is one of the most significant unit operations in 
the production of pharmaceutical dosage forms, mostly tablets and capsules [ 44]. 
The complex physics of the granulation process can be predicted by mixing several 
numerical methods. Dompé Farmaceutici S.p.A. is one of the greatest biopharmaceu-
tical companies and is engaged in innovative drug processes and biotechnologies. In 
this regard, in a novel research study, in collaboration with SISSA, they have devel-
oped a hybrid CFD-DEM model to describe the granulation process by taking into 
account both a thermal and dynamic balance between particles and flow. Discrete 
Element Method (DEM) is based on the Lagrangian frame of reference and is able to 
simulate particles with any shape and inter-bonds. Figure 7.11 shows the CFD-DEM 
simulation steps for granulation process modelling in the drug production system. 

Interestingly, to exploit maximum computational capacity, the machine learn-
ing technique based on offline/online phases for training/evaluation of the data was 
employed on the model. Figure 7.12 compares the FOM results with that of ROM. In 
this model, due to a high number of particles (.106 .∼ .109), the computational time of 
FOM is of the order of days, while the ROM model took only a few seconds/minutes. 

The invention of the first electrical appliances goes back to the first decades of 
the 19th century, meaning that home appliances have been making our lives easier 
for more than two centuries. Addressing appliance energy consumption is important 
both because of its present consumption and emissions, and also for its exponential 
growth. Household energy consumption represents a great portion of energy con-
sumption in developed countries and in some cases even higher than that of the 
industry [ 24]. Although there have been many innovations over the past years, we 
still need to take a long way to reach a sustainability standpoint. Sustainable modern 
home appliances can reduce energy consumption by up to 50% [ 2]. Moreover, another 
aspect of sustainability is water consumption, especially in water-using appliances 
such as dishwashers and washing machines. Electrolux is a Swedish multinational 
home appliance manufacturer, headquartered in Stockholm. It is consistently ranked 
one of the top world’s largest appliance makers by units sold. Electrolux brand appli-
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Fig. 7.11 Steps for the CFD-DEM simulation of particle granulation process 

Fig. 7.12 CFD-DEM simulation of the granulation process. Left: the computational model. Right: 
comparison of ROM results a, b and c and ROM result d 

ances have been making housework easier for more than a century. The Company’s 
products include refrigerators, dishwashers, washing machines, cookers, vacuum 
cleaners, air conditioners and small domestic appliances. Electrolux, as one of the 
leading providers of technological and modern home appliances, has been developing 
Research and Development (R&D) projects, particularly to pursue sustainable less 
energy- and resource-intensive products. In a recent collaboration with SISSA, they 
aim to reduce the water and electricity consumption of a professional dishwasher. A 
dishwasher is regarded as an energy-intensive home appliance. To illustrate, one cycle
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Fig. 7.13 Architecture of a typical CNN which includes Feature Learning and Classification parts 
[ 29] 

of dishwashing is equivalent to 20 hours of continuous TV running. The current tech-
nology uses an identical washing program for all the items in the washing machine. 
Whereas, rinsing for plates should be different from that of glasses, for instance. The 
idea was to implement an optimized image recognition device in the dishwasher to 
obtain a correct and suitable washing cycle. Meneghetti et al. developed an image 
processing technique for the image recognition device in the dishwasher based on 
the Convolutional Neural Network (CNN) algorithm to differentiate objects in the 
machine [ 29]. In Fig. 7.13 is the workflow of the CNN method used in the research. 
Such a system results in optimized water consumption in the washing cycle. 

The next step of the project was to reduce the memory consumption of the image 
recognition device. To do so, they proposed a novel reduced approach for CNN and 
successfully developed a less energy-intensive device. More details of the project 
can be found in [ 30]. 

Another energy-intensive home appliance is the fridge. In general, experimental 
and numerical methods are used to predict and improve refrigeration efficiency in 
terms of energy saving and temperature maintenance. The cabinet and door gaskets 
play an important role in the heat transfer phenomena in the fridge. This complex 
system involves several physical phenomena including natural/forced convection, 
conjugate heat transfer (CHT), recirculation made by a fan and radiative heat transfer. 
Electrolux company, in another collaboration with SISSA, modelled air flow and heat 
transfer in the fridge and successfully validated numerical results (see Fig. 7.14). The 
model was based on the mass, momentum and energy conservation principles and 
the set of equations was solved with the well-known open-source flow dynamics 
solver, OpenFOAM. 

Interestingly, CFD could provide us with every detail of the flow in the cabinet 
in terms of velocity and temperature for every working condition. For instance, the 
effect of fan on the ventilation in the cabinet is shown in Fig. 7.15. 

The next part of the project deals with creating high fidelity database based on the 
validated CFD model for the real fridge geometry. To do so, an offline phase consist-
ing of approximately one hundred simulations for different geometrical parameters
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Fig. 7.14 Sensor position in the fridge and validation of the temperature against experimental data
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Fig. 7.15 Temperature distribution and velocity contour in the ventilated fridge, in the presence 
of: up) fan is off down) fan is on 

was carried out. After implementing a suitable model reduction technique, the con-
cluded library could estimate temperature distribution at any point of the fridge within 
a few seconds. Figure 7.16 compares the temperature distribution of FOM (CFD) 
and that of ROM. The ROM could predict temperature distribution with an error less 
than .0.6 ◦C.
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Fig. 7.16 Comparison of temperature distribution between FOM and CFD and error 

Enhancement of Computational Performance 

While the examples above themselves demonstrated the indispensable role of the 
computational modelling for sustainability, these simulations can demand high power 
and frequently high performance computing is required in order to make them acces-
sible. Hence, in this section, we discuss how the simulations themselves can be more 
sustainable and use less energy to obtain nevertheless reliable results. Thus, one of 
the class of methods that provides an “energy-efficient” version of the original model 
is the Reduced Order Modelling (ROM) [ 10– 12, 43]. 

Reduced Order Models 

Many techniques have been developed in order to decrease the computational costs 
and the energy consumption of computational simulations. In the context of time-
dependent or parameter-dependent problems, Reduced Order Models (ROMs) aim
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at building a surrogate model that can accurately represent the solution of the full 
order model (FOM) simulation within smaller computational costs. In some of these 
techniques, there are two phases: an “offline” phase, where a reduced space is com-
puted and the ROM is learned and that still requires the costly computation of few 
solutions of FOMs, and an “online” phase, where the ROM is used for a fast and 
energy-saving evaluation of many ROM solutions [ 20]. 

One of the first developed model order reduction (MOR) techniques to compute 
reduced spaces is the proper orthogonal decomposition (POD) method [ 23, 26]. It 
uses some FOM solutions to extract the most representative reduced space that will 
be the basis for the ROM. Then, in the online phase, the much smaller ROMs can be 
used to run many simulations for different parameters/times using an infinitesimal 
amount of the energy used by the FOMs. Examples of the application of the POD 
can be found in [ 47] for optimal control flow in water simulations, in [ 52] within a 
weighted method for stochastic problems or in [ 51] for dispersive wave equations. 
The greedy algorithm is a technique that aims at reducing the energy consumption 
also in the “offline” phase [ 38, 39]. Indeed, it does not require the FOM solutions 
of the whole training set from which we want to learn the reduced space. Instead, it 
iteratively selects a new parameter, thanks to an error estimator, and it computes the 
FOM only of very few parameters and uses them directly to constitute the reduced 
space. The resulting method reduces the energy consumption also in the offline phase, 
though slightly worsening the accuracy of the found reduced space. As an example, 
in [ 50] there is an application of the Greedy algorithm in uncertainty quantification 
problems, in [ 1] for Navier–Stokes problems or in [ 13] for Euler equations. 

For more complicated problems, where these techniques do not achieve enough 
accurate results, recent nonlinear tools can be used to still catch the underlying 
reduced latent space. One of the many techniques that can be used to this end is the 
autoencoder neural network [ 17, 28, 42]. These networks are able to obtain very 
small reduced spaces even when the solutions cannot be well represented by a linear 
combination of basis functions. Once the reduced space has been found, the reduced 
order model can be obtained with different techniques. 

In case of linear problems with affine dependence on the parameters, a sim-
ple Galerkin projection onto the reduced space can guarantee very accurate results 
consuming much less energy [ 7, 20, 46, 51]. When there is the presence of non-
linearities, further reduction techniques (hyperreduction) can be used to recast the 
problem into a linear one. Among these techniques, it is worth mentioning the empir-
ical interpolation method [ 9, 20, 40, 51], the empirical quadrature method [ 33, 55] 
and Gappy POD [ 34, 53]. These techniques aim at reducing the computations of 
nonlinear terms, through the evaluation of only a few points in the domain, saving, 
again, energy consumption. More recent techniques have been developed to solve 
these nonlinear problems in less intrusive ways. A broad class of neural networks 
has been tailored to solve such problems [ 17, 21, 27, 35, 42, 56] as well as the  
dynamic mode decomposition (DMD) [ 3, 14, 16, 19, 37]. The common denomina-
tor of all these techniques is the ability to strongly reduce the computational cost and 
the energy consumption in the online phase after a learning procedure in the offline 
one.
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Dimensionality Reduction 

When one examines the main sources of the computational cost of a simulation, 
the dimensionality of the model parameters should not be omitted. In fact, the cost 
of some computations may grow exponentially with the increase in the number of 
parameters in the system. Therefore, the methods that obtain the estimates on how 
important 1 the parameter of the model may drastically reduce the computational 
burden of the experiments. 

One such method reduces the parameter space by unveiling the directions in the 
parameter space along which the model function has the greatest fluctuations. This is 
achieved by normalizing the inputs in a reference domain centered in the origin and 
then by rotating the parameter space until a lower-dimensional structure is identified 
[ 15]. 

Sensitivity Analysis (SA) can be used as well for identifying the most important 
parameters for the model results. However, SA methods can be highly computation-
ally intensive by themselves. Alternatively, for the computational models that have 
some types of coupling stricture, some advanced techniques that adopt SA can be 
applied. Thus, in [ 32], the coupled structure of some multiscale models is exploited 
to perform SA on the less computational-intensive pieces such that the results are 
applicable for the dimension reduction of the overall model. 

Reduction of Memory Storage 

We go even further and suggest an additional reduction of the computational load 
of the reduced simulation by improving the storage system of the reduced model. 
In fact, the reduced order models have a significantly better performance in time, 
however, they can occupy large memory space and, thus, its sustainability decreases. 
There exist several approaches to address this issue, like the one presented in [ 29] 
where the memory storage of a Convolutional Neural Network was reduced by 90%. 
This reduction was obtained by replacing a finite set of the network layers with 
a response surface, involving dimensionality reduction techniques to operate on a 
low-dimensional space. The main idea of the approach is presented in Fig. 7.17. 

Conclusions 

This chapter mainly focused on the computational methods in achieving sustainable 
products. The surging growth of computational resources in the last two decades 
make it possible to simulate any actual system in the context of the digital twin.

1 Here, the term “important” means that the change in the value of an important parameter has a 
great effect on the value of the quantity of interest. On the contrary, fluctuations in the value of an 
unimportant parameter do not affect significantly the value of the studied output. 
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Fig. 7.17 A reduced order approach for artificial neural networks (ANNs) applied to object recog-
nition 

Digital twin in particular integrates data from various sources and process these 
data accordingly. Moreover, utilizing data smart asset solutions are a key to reduce 
operational costs. 

This chapter, in such sense, divided into two sections; first a couple of industrial 
examples of utilization of computational methods in modelling a process or system 
was introduced. The section includes a vast number of examples in environment 
and pollution, life sciences and product life cycle optimization. Second part mainly 
focused on implementation of novel techniques of machine learning and artificial 
intelligence for model order reduction to predict the system solution. 
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