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1.1 Introduction
Partial differential equations (PDEs) represent an effective tool to model phenomena in applied
sciences. Realistic problems usually depend on several physical and geometrical parameters that
can be calibrated exploiting real data. In real scenarios, however, these parameters are affected
by uncertainty due to measurement errors or scattered data information. To deal with more reli-
able models which take into account this issue, the numerical approximation of stochastic PDEs
can be exploited. In the Uncertainty Quantification (UQ) context, many simulations are run to
better understand the system at hand and to compute statistics of outcomes over quantities of
interest. In particular, the input parameters of the stochastic PDEs are assumed to be random
finite–dimensional variables.
Classical numerical approximations, i.e., the high fidelity solutions, can lead to unbearable com-
putational costs to compute statistical momenta. These are the leading motivations of this con-
tribution. Indeed, we will focus on projection-based reduction techniques which can lighten this
issue: reduced order methods (ROMs) [8, 17]. In many applications, the parameterized solutions
can be sought in a low-dimensional subset of the solution space. If one applies a Galerkin-
projection in this reduced space, the problem is solved more rapidly with respect to the original
discretization, still being accurate. These approaches, thus, might accelerate standard statisti-
cal analysis techniques, such as the Monte-Carlo methods (for alternative methods for forward
UQ with random inputs, e.g. Stochastic Galerkin, Stochastic collocation and Karhunen–Loève
approximation, we refer to [21]). More precisely, this Chapter focuses on weighted ROMs for
forward uncertainty problems, where the reduced algorithms are modified to comply with some
previous knowledge on the distribution of the parameters and to exploit this information to accel-
erate even more the reduced simulations, see e.g. [4, 24] and the references therein. Moreover,
the proposed weighted ROMs are not intrusive with respect to the classical ROM approaches,
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i.e., given a reduced model the wROMs just weigh its outcome without changing its form. We
refer to [13] for inverse problems applications and to [9] for polynomial chaos expansion reduced
techniques.
The contribution is outlined as follows: in section 1.2 we will present stochastic PDEs and their
approximation. Then, we will move toward weighted ROMs, describing standard algorithms
such as Weighted Proper Orthogonal Decomposition [4] and Weighted Reduced Basis [24] and
the related sampling strategies, in sections 1.3 and 1.4, respectively. Then, in section 1.5, we will
validate the proposed algorithms in several contexts, from heat transfer, Stokes problems and
advection dominated phenomena to optimal control for environmental sciences. Conclusions
follow in section 1.6.

1.2 Stochastic Partial Differential Equations and
Discretized Approximations

ch3:Stocastic_problem

In this section, we introduce the stochastic setting for PDEs in their high fidelity discretization.
Consider a complete probability space (A,F , P ), with A the set of the possible outcomes, F
is a σ–algebra of events and P is a probability measure. Let µ = µ(ω), µ : (A,F) → (Γ,B)
where Γ ⊂ RK is a compact set, B is the Borel measure and µ(ω) = (µ1(ω), . . . , µK(ω)) is a
random vector whose components are independent absolutely continuous random variables and
parameterizes the physical problem. Denote with ρ : RK → R the probability density function
of µ. Let D ⊂ Rd with d = 1, 2, 3 be a bounded physical domain. The physical problems we
are interested in can be modeled by PDEs over D, as follows

find u : Γ→ V such that P(u(µ(ω));µ(ω)) = 0, (1.1)

for almost every ω ∈ A. The solution u is usually sought in a Sobolev space, that we generi-
cally define as V. Here, P represent a parameterized PDE problem in its weak formulation, for
example an elliptic problem or a parabolic initial–valued problem, Navier–Stokes equations or a
shallow water problem.

We suppose, furthermore, that a high fidelity method, namely finite element or finite volume,
provides an approximation uN of the solution u. These solutions are characterized by an error
which is inversely proportional to a power of the number of degrees of freedom N of the dis-
cretized functional space VN and a computational cost which is proportional to a polynomial in
N . Let us define the high fidelity solver as

find uN : Γ→ VN such that PN (uN (µ(ω));µ(ω)) = 0, for a.e. ω ∈ A.eq:FOM (1.2)

The computation of the high fidelity solution can be unfeasible in real–time or many–query
situations, where a faster but still reliable solver is desired. In particular, we focus in this chapter
on stochastic problems, where statistical momenta are the objective of the study. Typically, aver-
aging algorithms, as Monte Carlo, are used to obtain such quantities and hence the computation
of many simulations for different parameters µ ∈ Γ are necessary.

To speed up these procedures, ROMs offer interesting strategies. The core idea of ROMs is
to search the parameterized solution inside a reduced functional space Vn ⊂ VN . This reduced
space is characterized by a dimension n � N . Model order reduction algorithms consists of
two phases: an offline phase, where the reduced space is built using some snapshots, i. e., high
fidelity simulations for some parameters µ, and an online phase where the reduced space structure
is exploited and a reduced solver with computational costs proportional to n is used to simulate
the solution for new parameters µ. The reduced problem will be denoted by

find un : Γ→ Vn such that Pn(un(µ(ω));µ(ω)) = 0, for a.e. ω ∈ A.eq:ROM (1.3)
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For the problem we deal with, the reduced space is built in order to control the error between
the high–fidelity solutions and the reduced ones ‖uN (µ)− un(µ)‖, and a cheap and sharp error
bound is available, i. e.,

ηn(un(µ(ω));µ(ω)) ≥ ‖uN (µ(ω))− un(µ(ω))‖VN
=: eVn

(µ(ω)), for a.e. ω ∈ A. (1.4)

1.3 Weighted Reduced Order Methods
ch13:wROMs

In this chapter we will focus on how the offline phase of different algorithms can be modified to
take into account the knowledge of the distribution of the random variable µ. This is done mainly
by the means of weighted algorithms that are derived from classical ROMs algorithms [8, 17]. We
will present the weighted Reduced Basis (wRB) method [4] and the weighted Proper Orthogonal
Decomposition (wPOD) [24]. Moreover, we will focus only on the offline modification of such
algorithms, as the online phase stays unmodified with respect to the original algorithms. The
difference is that now we are interested not only in one evaluation for a given µ but for the
momenta of the random variable un(µ). We refer to [8, 16] for the development of such parts of
the algorithms.

1.3.1 Weighted Reduced Basis Method

The wRB [4] is an extension of the (deterministic) Reduced Basis (RB) method [18]. In the
deterministic setting, the construction of the reduced space Vn is done following the Greedy
algorithm 1.1. It selects some of the high fidelity snapshots from a training set {uN (µ)}µ∈Ξt .
The construction of the reduced space is progressive and at every iteration the dimension of the
reduced space increases by adding the selected snapshot to the bases of the reduced space. The
chosen snapshot is the one that is worst approximated by the RB space at each iteration (in a
greedy fashion). This choice is quickly done through the use of the error bound, which allows
not to compute the high fidelity solution for all the parameters µ ∈ Ξt but only the ROM ones.

ALGORITHM 1.1. (Deterministic) Greedy Algorithm.
algo:RB

Sample Ξt ⊂ Γ
Let V0 = ∅
Pick an arbitrary µ1 ∈ Ξt
n = 0
while err > tol do
n := n+ 1
Solve (1.2) for µ = µn to get uN (µn)
Update Vn := Vn−1

⊕
span{uN (µn)}

Find µn+1 := arg maxµ∈Ξt
ηn(un(µn+1);µn+1)

err := ηn(un(µn+1);µn+1)
end

In the stochastic context, we want to give different importance to different parameters µ, i. e.,
different realizations, according to the underlying probability distribution. This must be done
modifying the error measure that we used in the deterministic setting, introducing a different
norm ‖ · ‖w that modifies the search of the worst represented snapshot in the greedy algorithm.
In particular, the new norm is defined as

‖u(µ)‖w := w(µ)‖u(µ)‖VN
, ∀u ∈ VN , ∀µ ∈ Γ. (1.5)
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The weight function w : Γ→ R+ depends on the target norm that one wants to minimize. As an
example, if we want to minimize the expected value of the 2-norm of the error, i. e.,

E[‖uN − un‖2VN
] =

∫
D

‖uN (µ(ω))− un(µ(ω))‖2VN
dP (ω)

eq:wExpValueProb

(1.6)

=

∫
Γ

‖uN (µ)− un(µ)‖2VN
ρ(µ)dµ,

eq:wExpectedValue

(1.7)

the natural choice for the weight function is w(µ) =
√
ρ(µ) [4]. Consequently, also the error

estimator reflects this modification by introducing a new error bound ηwn (µ) = w(µ)ηn(µ),
resulting in

E[‖uN − un‖2VN
] ≤

∫
Γ

ηwn (µ)2dy =

∫
Γ

ηn(µ)2ρ(µ)dµ. (1.8)

Other choices may be more meaningful in other contexts, e.g. different norms, output error
minimization [22, 25]. The modified algorithm is reported in algorithm 1.2.

ALGORITHM 1.2. Weighted Greedy Algorithm.
algo:wRB

Properly sample Ξt ⊂ Γ
Let V0 = ∅
Pick an arbitrary µ1 ∈ Ξt
n = 0
while err > tol do
n := n+ 1
Solve (1.2) for µ = µn to get uN (µn)
Update Vn := Vn−1

⊕
span{uN (µn)}

Find µn+1 := arg maxµ∈Ξt
ηwn (un(µn+1);µn+1)

err = ηwn (un(µn+1);µn+1)
end

Another important aspect in this algorithm is the choice of the sampling strategy of the param-
eter training set Ξt. In Section 1.4 we will investigate in more details the different possibilities
and their effects on the overall results.

1.3.2 Weighted Proper Orthogonal Decomposition

The other well–known algorithm in the ROMs community is the Proper Orthogonal Decompo-
sition (POD) [8]. Its weighted version (wPOD), originally introduced in [24], is useful when an
error estimator ηn is not available.

The POD algorithm 1.3 finds the global minimum of the mean square error

eq:squareErrorPOD

∫
Γ

‖uN (µ)− un(µ)‖2VN
dµ (1.9)

over all the possible reduced spaces Vn ⊂ VN of dimension n. In practice, a tolerance on the
error can be set and the dimension n will be provided by the algorithm. In the discrete situation
(1.9) becomes

1

|Ξt|
∑
µ∈Ξt

‖uN (µ)− un(µ)‖2VN
, (1.10)



1.4. Sampling Strategies 5

with Ξt being the training set. The reduced space Vn is defined by the eigenvectors correspond-
ing to the n leading eigenvalues of the operator C : VN → VN defined by

C(v) :=

|Ξt|∑
i=1

〈v, uN (µi)〉VN
uN (µi). (1.11)

In practice, this is computed by an eigenvalue analysis on the correlation matrix Ĉij := 〈uN (µi), uN (µj)〉VN
.

The bases of the reduced space Vn are defined by ξi =
∑|Ξt|
j=1 ψ

i
juN (µj), where ψj are the eigen-

vectors of Ĉ.

ALGORITHM 1.3. POD.
algo:POD

Sample Ξt ⊂ Γ
for µ ∈ Ξt do

Solve (1.2) for µ to get uN (µ)
end
Assemble the matrix Ĉij = 〈uN (µi), uN (µj)〉VN

Compute the biggest n eigenvalues λk and the eigenvectors ψk of Ĉ for k = 1, . . . , n

Define Vn := span{ξ1, . . . , ξn}, being ξi =
∑|Ξt|
j=1 ψ

i
juN (µj).

The stochastic setting modifies the mean square error (1.9) as the expected value (1.7). This
leads to a modified correlation matrix

eq:wCorrMatrix

Ĉwij := w(µi)〈uN (µi), uN (µj)〉VN
. (1.12)

We remark that Ĉw is not diagonalizable in the usual sense, but it is with respect to the scalar
product induced by C, therefore this allows to obtain n orthogonal leading eigenvectors.

ALGORITHM 1.4. wPOD.
algo:wPOD

Properly sample Ξt ⊂ Γ
for µ ∈ Ξt do

Solve (1.2) for µ to get uN (µ)
end
Assemble the matrix Ĉw as in (1.12)
Compute the biggest n eigenvalues λk and the eigenvectors ψk of Ĉw for k = 1, . . . , n

Define Vn := span{ξ1, . . . , ξn}, being ξi =
∑|Ξt|
j=1 ψ

i
juN (µj).

1.4 Sampling Strategies
sec:sampling

In the previously proposed algorithms, the choice of the training set Ξt over which the mini-
mization occurs is fundamental. There are different strategies that one could consider. In the
stochastic setting it is very common to use Monte Carlo algorithms to approximate the momenta
of interest. In the numerical analysis setting, it can be seen as a collection of quadrature points
for a specific quadrature formula. These two perspectives lead to different methods that one can
use, with different pro and cons:

• Monte Carlo uniform sampling to approximate (1.7);

• Monte Carlo with sampling lead by the underlying distribution of the random variable µ,
approximating directly (1.6);
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Figure 1.1. Comparison of multivariate quadrature rules with order of accuracy 15. fig:Smolyak

• Tensor product quadrature rules of univariate quadrature rules;

• Sparse Smolyak quadrature rule.

The Monte Carlo rules, very common in the stochastic world, suffer of a slow decay of the error
of the integral, which scales as an O(|Ξt|−1/2). The sampling using the underlying distribution
may lead to some advantages, in the case of very concentrated distributions, but it is strongly not
recommended for rare events prediction.

The classical quadrature rules that generalize with tensor products in more dimension suffer
of the curse of the dimensionality. In particular, according to the smoothness of the function we
want to approximate, they will behave as O(|Ξt|−n̄/K), where n̄ is the minimum between the
regularity of the function and the accuracy degree of the quadrature rule, and K is the dimension
of the (parameter) space Γ.

Sparse quadrature rules can improve this by putting the quadrature points in different loca-
tions. The Smolyak quadrature rule [10, 2, 26] allows to not fall into the curse of dimensionality,
using different refinement levels of the grids on the different parameters. Consider Γ := ΠK

j=1Γj

and define by U (j)
i the univariate quadrature rule at the refinement level i on the interval Γj ⊂ R,

introducing the differences opeators on Γj as

∆
(j)
0 = 0, ∆

(j)
i := U

(j)
i+1 − U

(j)
i for i ≥ 0, (1.13)

the Smolyak quadrature rule of order q in Γ is defined as

eq:SmolyakQuadrature

QKq :=
∑

|α|1≤q, α∈NK

K⊗
i=1

∆(i)
αi
. (1.14)

The difference could be observed in Figure 1.1, where a 2 dimensional example shows the tensor
product and the Smolyak rule.

In the next section, we will alternate different quadrature strategies to show the advantages of
choosing samples distributed with the underlying probability law and the cost reduction without
loss of quality of sparse quadratures.

1.5 Applications
ch13:applications

In this section we apply the strategies presented above to different problems. In a first section
we applied directly the presented strategies on a heat equation problem and on Stokes problems.
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In Section 1.5.2 we will exploit the proposed methods for a selective stabilization technique in
the context of uncertainty quantification. Finally, in Section 1.5.3 we will apply the weighted
algorithms to parameterized optimal control problems in environmental sciences.

1.5.1 Averaging Uncertain Parameter Simulations for Heat Equation
and Stokes Problems

The first problem we consider is a heat transfer problem on a squared domain D = [0, 1]2. The
equation that we solve is

−µ(x1, x2)∆u(x1, x2) = 1 (1.15)

where µ : [0, 1]2 → R is defined piecewise constant on 9 subsquares defined by Dij = [i/3, (i+
1)/3] × [j/3, (j + 1)/3], i, j = 0, . . . , 2 by 9 parameters µij ∈ R with i, j = 0, . . . , 2. In
particular, we consider these heat transfer coefficients to behave like some Beta(20,10) random
variables, i.e., µij∼Beta(20,10) rescaled on the interval [1, 10]. The Beta distribution is defined
through the Beta functionB(α, β) =

∫ 1

0
µα−1(1−µ)β−1dµwith the probability density function

ρ(µ) =
µα−1(1− µ)β−1

B(α, β)
. (1.16)

We compare the reduced algorithm presented before in their weighted and classical formu-
lations and we compare the Uniform Monte Carlo (MC) sampling strategy with the Beta(20,10)
Monte Carlo sampling one, in both cases with |Ξt| = 100.

To assess the quality of the algorithms we compute reduced solutions onto a Beta(20, 10)
distributed test set and we average the error obtained with such solutions.
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Figure 1.2. Heat transfer problem: error decay with respect to the number of reduced basis func-
tions, comparison between weighted and not weighted algorithms and between uniform and Beta(20,10)
distributed training samples. Left POD, right Greedy algorithm. fig:ROMUQWeightHeatTransferErrorDecay

In figure 1.2, we notice that for the POD the weighting of the algorithm does not lead to great
improvement in the decay of the error, while sampling of the training set with the underlying dis-
tribution extremely reduces the error, by even a factor 10. Conversely, for the greedy algorithm
we see already a great improvement with only the weighted algorithm of a factor 5. Also here the
sampling strategy plays a bigger role in the training phase and gives an overall improvement of
at least a factor 10. The combination of the 2 strategies slightly improves this result. We remark
that a uniform sample considers parameters which are not at all well represented in the reduced
space, hence, this leads to worse average errors.
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We now focus on the stochastic steady Stokes equations results shown in [7]: here we extend
the deterministic problem presented in [6] following the strategies first discussed in [5]. In this
case, we will deal with physical and geometrical parameterization. Namely, we consider the
random domain D(µ(ω)) : A → R2 and a random inlet condition gin(x, µ(ω)) : ∂Din ×A →
R2. From now on, for the sake of notation, we will use µ or µ(ω) indistinctly. The random
boundary of the domain is given by the following partition

∂D(µ) = ∂DD,0(µ) ∪ ∂Din(µ) ∪ ∂DN (µ),

where ∂DD,0(µ) and ∂Din(µ) represent the portions of the boundary with homogeneous and
non-homogeneous Dirichlet conditions, respectively, while ∂DN (µ) is characterized by Neu-
mann boundary conditions. The stochastic Stokes problem reads: given an outcome ω ∈ A, find
the µ−dependent pair (u, p) : D ×A → R2 × R such that

eq:S_stokes



−∆u(x) +∇p(x) = 0 in D(µ),
∇ · u(x) = 0 in D(µ),
u(x) = 0 on ∂DD,0(µ),
u(x) = gin(x, µ) on ∂Din(µ),

ν
∂u
∂n

(x)− p(x)n = 0 on ∂DN (µ).

(1.17)

The parameter we consider is

µ = (µ0, µ1, µ2, µ3, µ4) ∈ (0.2, 1.9)× (0.2, 2.)× (0.2, 2.)× (0.2, 2.)× (0.2, 20.),

where the first four parameters are related to the shape of the considered computational domain,
while the last one is related to the diffusivity of the flow since it changes the inlet condition:
indeed, we define gin(x, µ) = (−µ4x1(x1 − 3), 0).

Figure 1.3. Reference domain D. The reference parameter is µ = (1., 1.5, 1., 1.5, µ4).fig:domain_julien

The domain is given by

D(µ) = {[0, 6]× [0, 3]} \ {([2, 2 + µ0]× [0, µ1]) ∪ ([3 + µ0, 3 + µ0 + µ2]× [0, µ3])}.

The boundary portions are ∂DN (µ) = {6}×[0, 3] and ∂Din(µ) = {0}×[0, 3], while ∂DD,0(µ) =
∂D(µ) \ {∂DN (µ) ∪ ∂Din(µ)}. In order to deal with geometrical parameterization, we need
to consider a reference domain, say D, that we represent in Figure 1.3. At each new parameter
evaluation the system (1.17) is traced back to D, see e.g. [17]. To build the reduced model
we applied wPOD with supremizer enrichment [1, 19], which guarantees the well-posedness of
the Stokes problem at the reduced level for each new realization of µ. Furthermore, we assume
that the parameters verify µi ∼ Beta(75,75), for i = 0, . . . , 4. The testing set has cardinality
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Figure 1.4. Stokes problem: error decay with respect to the number of reduced basis functions,
comparison between not weighted (left) and weighted (right) algorithms and between Smolyak, tensor prod-
uct, uniform, Beta(75,75) distributed training samples. For the weighted algorithm, Smolyak rule, tensor
product rule and Beta(75,75) sampling coincide. fig:CH13StokesErrorDecay

|Ξt| = 241 when dealing with the Smolyak rule, while |Ξt| = 243 for all the other test cases.
Increasing the value n, we compare several sampling techniques: Smolyak rule, tensor product
rule, uniform and Beta(75, 75) sampling over a testing set of 100 outcomes from a Beta(75,
75) sampling. In figure 1.4, we show results for the not weighted algorithm (left plot) and the
weighted one (right plot). For the sake of brevity we report only the velocity averaged log-errors
since the pressure has a comparable behavior. First of all, we notice that, apart from the uniform
sampling, we reach very good results in term of relative errors with values around 10−4 for both
the algorithms. Focusing on the not weighted algorithm, we see how the sampling strategies
might strongly help in accuracy with respect to uniform MC sampling. Indeed, uniform MC
suffers from the curse of dimensionality. As already seen in the left plot of figure 1.2, the wPOD
performs slightly better for the uniform sampling. We remark that the two approaches are not
equivalent as the resulting reduced bases are different. For the other sampling strategies, the
weighted algorithm gives comparable results with respect to the not weighted.

1.5.2 Stabilization of Advection Dominated Problems Conditioned to
Parameters

sec:stabAdvectionDominatedUQ

In this section we will make use of the weighted and distributed algorithms presented above to
further reduce computational costs in the online phase.

Let us consider the Graetz problem, an advection-diffusion problem

10µx2(1− x2)∂xu−∆u = 0, (1.18)

on the domain D = [0, 2]× [0, 1] with Dirichlet boundary condition equal to 1 on the boundaries
with x1 ≤ 1 and equal to 0 on the boundaries with x1 > 1. We suppose that the parameter
µ is distributed as a Beta(5,3) rescaled on the interval [0, 6]. The considered problem will be
advection dominated as µ increases and a standard finite element method would fail in providing
an accurate solution, as it would be lead by oscillations due to the instability of the problem. In
order to stabilize the method, we introduce in the offline phase a stabilization term, represented
by streamline upwind Petrov-Galerkin (SUPG) [15], which keeps the consistency of the method,
but adds a stabilization effect.



10 Chapter 1. Weighted Reduced Order Methods for Uncertainty Quantification

In this simple example the stabilization is not computationally expensive, but in more realistic
cases the stabilization term might include more elaborated nonlinear terms.

In the online phase we can choose whether we want to apply again the stabilization or not.
As for the high fidelity model, it is necessary to use it in the advection dominated regime. We
see this behavior running an online error decay study with respect to the dimension of n in figure
1.5. There, it is clear that, both with POD and Greedy without online stabilization, the error has
a plateau at 10−1 which is the distance between the non stabilized solutions and the stabilized
ones [22].
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Figure 1.5. Graetz problem: error decay with respect to the number of reduced basis functions,
comparison between weighted and not weighted algorithms and between uniform and Beta(5,3) distributed
training samples. With online stabilization (left), without online stabilization (right). POD algorithm (top),
greedy algorithm (bottom). fig:ROMUQWeightAdvectionErrorDecay

In figure 1.5 for stabilized methods, we observe the same order of convergence but smaller
errors for weighted algorithms and distributed training samples. Hence, for the rest of this section
we consider only this type of algorithms.

We can observe in figure 1.6 that the unstabilized and stabilized online solutions show dif-
ferences in the error in particular in the advection dominated regime, while, in the diffusive
regime, the two solutions show similar errors. Hence, one may be more interested in solving
these solutions without the stabilization terms to save computational time.

The task that we aim to solve in this section is to compute some statistical quantities of the
stochastic solution u(µ), for example the average. A classical strategy could be to approximate
the average via Monte Carlo algorithm, i.e.,

E(u(µ)) =

∫
A
u(µ(ω))dP (ω) =

∫
A
u(µ(ω))ρ(µ(ω))dω ≈

NMC∑
i=1

u(µi)ρ(µi)

NMC
,

eq:averageMC

(1.19)
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Figure 1.6. Graetz problem: weighted algorithms and Beta(5,3) distributed training samples.
Error of stabilized and not stabilized online with respect to the advection parameter µ. Comparison with
selective online strategy. Left POD, right Greedy. fig:ROMErrorWrtParameter

POD algorithm
ε Mean Error Stabilized Rate

0.0 5.43329 10−5 100 %
1.0 5.62446 10−5 83%
1.5 6.79605 10−5 78%
2.0 3.61034 10−4 71%
2.5 1.46119 10−3 65%
3.0 4.17433 10−3 56.5%
6.0 2.42411 10−1 0.0%

Greedy algorithm
ε Mean Error Stabilized Rate

0.0 2.55161 10−6 100 %
1.0 8.02889 10−6 85.5%
1.5 8.069458 10−5 75%
2.0 5.031474 10−4 68 %
2.5 3.192200 10−3 60 %
3.0 1.066145 10−2 52.5 %
6.0 3.217842 10−1 0%

Table 1.1. Tables for the selective stabilization approach, given a certain threshold advection
coefficient ε, we obtain the mean error in table computing only a percentage of all the stabilization terms.

tab:advectionUQselectiveStab

where ρ is the probability density function of the underlying distribution of µ, and µi are Monte
Carlo samples uniformly distributed in the domain of interest.

Computing many high fidelity simulations uN (µi) is too expensive for this task, so we con-
sider the reduced solutions instead un(µi). Now, the stabilization term is important to guarantee
an accurate solution in the advection dominated regime, i.e., µ� 0. Conversely, in the diffusion
dominated regime, the stabilization term is not necessary and would be time consuming.

What we present here is a selective approach on the reduced solutions, which will be com-
puted with the stabilization term or not according to a rule lead by a threshold value ε. Namely,
while computing (1.19), for every ui we will use un(µi) with the stabilization term if µi > ε,
else we will use un(µi) without the stabilization term. This idea is illustrated in figure 1.6 by the
selective online plot.

In table 1.1 we see the result of this approach changing different values of the threshold ε.
In the POD case we see that for an ε = 1.5 we save the computational costs of the 22% of the
stabilization terms and we obtain a negligible worsening of the error. Already with ε = 2 the
error is a bit larger though increasing to almost the 30% of stabilizations not computed. Higher
thresholds make less sense. For the Greedy approach we observe similar results, even if the error
increases a bit more even with small thresholds.
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1.5.3 Weighted POD for Optimal Control for Environmental Sciences
sec:optimizationUQWeighted

This section focuses on the application of wROMs to parameterized Optimal Control Problems
(OCP(µ)s) applied to environmental sciences. Namely, we extend the results of [20] in a stochas-
tic setting, as presented in [3]. UQ combined with OCP(µ) is of utmost interest in the field of
natural sciences, that are strongly related to in situ data. Furthermore, there is the need of reliable
simulations based on PDEs which are similar to the collected measurements. OCP(µ)s comply
with this task: they aim at changing the classical behavior of a system towards a desired con-
figuration, namely, the collected information. This scope is reached through the employment of
external factors called controls. The control, thus, acts on the system and guides it in order to
lower as much as possible a cost functional dependent on the data observations of the physical
phenomenon. The ingredients of an OCP(µ) are

• a state variable y ∈ Y,

• a control variable u ∈ U,

• an observation yd ∈ Z ⊃ Y,

for Y,U and Z Hilbert spaces. The problem we are dealing with is the minimization over Y and
U of

eq:ocpfunctionalJ (y, u;µ) :=
1

2
‖y − yd‖2Z +

α

2
‖u‖2U, (1.20)

constrained to
eq:ocp_stateP(y(µ), u(µ);µ) = 0, (1.21)

where P is a linear stochastic constraint in weak formulation. The interested reader may refer
to [23] for a survey on optimal control theory. This problem formulation has been employed
in data assimilation contexts, where the variable u(µ) steers the system towards the desired
configuration yd making the solution y(u(µ)) the most similar to the observation. The stochastic
parameter still plays an important role since both the data and the system may be affected by
uncertainty. In the following, we report some results concerning this framework applied to an
hypothetical loss of pollutant in the Gulf of Trieste. Let us indicate this geographical region
with D ⊂ R2, represented in figure 1.7. We call Du the subdomain where the pollutant loss is
happening (green subdomain in figure 1.7). The goal is to determine the maximum loss allowed
inDu to keep harmless the pollutant concentration inDobs, the Miramare natural reserve (orange
subdomain in figure 1.7). The boundary is partitioned in ∂DD, the coastline, and ∂DN , the open
sea, where Dirichlet and Neumann boundary conditions have been applied, respectively. The
state concentration is y ∈ Y := H1

∂DD
, u ∈ R and yd = 0.2 over Dobs. The observation

represents a safe threshold for the pollutant concentration in the Miramare area.
For this specific test case, P is an advection-diffusion equation of the following form:∫

Ω

µ1∇y · ∇zdD +

∫
Ω

([µ2, µ3] · ∇y) zdD − Lu
∫

Ωu

zdDu = 0 ∀z ∈ Y. (1.22)

Here, the random parameter µ = (µ1, µ2, µ3) ∈ (0.5, 1) × (−1, 1) × (−1, 1) models the
sea dynamics under several meteorological phenomena. The constant L = 1000 is used to make
the system non-dimensional [20]. Furthermore, we impose α = 10−7. We want to compare the
performances of informed sampling with respect to standard POD. We will show how exploiting
data information in such a context might help in monitoring and solve in real time potentially
dangerous situation. Thus, we exploit the not weighted version of the POD with aggregated
space strategy [11, 12, 14], since, as already said in the aforementioned applications, the POD



1.6. Conclusions 13

Figure 1.7. Domain D, the Gulf of Trieste. Orange: Miramare reserve Dobs. Pollutant spill Du.fig:gulf13

Figure 1.8. Optimal control problem: error decay with respect to the number of reduced basis
functions, comparison between state variable (left) and control variable (right) with a not weighted POD
algorithm between uniform, Beta(20, 5), Beta(5, 5) and Beta(75,75) distributed training samples.fig:CH13OCPErrorDecay

is slightly affected by the weights, while the sampling strategy is of great importance. In this
experiment |Ξt| = 100. In figure 1.8 we present the average relative error for the state and the
control variables where the sampling for the test coincides with the one of the offline phase.
This assures good performances for all the samplings. However, we would like to underline
that adding distribution information can be crucial when dealing with random variables. Indeed,
thanks to some previous knowledge about parameter distribution, one can employ a much lower
number of bases. This is due to the nature of the algorithm that focuses on a very specific
parameter setting both in creating the reduced spaces and in assessing their accuracy. It is the
case of µ ∼ Beta(75,75) (rescaled on the respective parameter ranges), where n = 4 is sufficient
to reach errors values around 10−6 for both the variables, gaining two orders of magnitude with
respect to uniform sampling. Less bases translate in a gain of computational time that can be
exploited in UQ analysis even for very complicated problems such as OCPs that are usually
characterized by high computational costs due to the minimization framework.

1.6 Conclusions
ch13:conclusions

This chapter focuses on weighted ROMs for a broad class of stochastic PDEs-based models. First
we introduce stochastic PDEs with random inputs and their standard discretizations. Thus, we
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introduced ROM strategies in order to deal with them in a faster way, following the POD and the
RB fashion. The related weighted approaches are described too. Furthermore, we highlighted
the role of several sampling strategies based on different (possibly sparse) quadrature rules. We
validated this setting in many contexts, such as heat transfer equation, Stokes problems, stabi-
lization of advection dominated problems and optimal control for environmental sciences. The
results show the better performances of weighted approaches and distributed quadratures with
respect to standard algorithm based on a deterministic viewpoint.
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