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Abstract Classical model order reduction (MOR) techniques struggle in compress-
ing solution manifolds when local structures travel along the domain. We study MOR
algorithms for unsteady parametric advection dominated hyperbolic problems, giv-
ing a complete offline and online description, obtaining improved time saving in
the online phase. We work in an arbitrary Lagrangian–Eulerian (ALE) framework
in both offline and online phases. We calibrate the solutions aligning the advected
features in a reference domain. Then, a classical MOR algorithm (PODEI–Greedy) is
used in the ALE framework, while the calibration map is learned through regression
techniques. We test the algorithm on scalar one-dimensional hyperbolic problems
with various boundary conditions, showing that we outperform classical methods.
Finally, we compare the results obtained with different calibration maps.

1 Introduction

In this work, we develop model order reduction (MOR) algorithms for advection
dominated problems. These problems suffer of a slow decay of the Kolmogorov 𝑁–
width, see, inter alia, [6] for a specific problem. Hence, all classical MOR techniques
based on linear superposition of modes are not suited in this context.

Nonetheless, many nonlinear MOR techniques have been developed: Eulerian
methods, where the reduced structures are adapting to the moving frame, e.g. [17,22],
Lagrangian methods, where the solutions are transformed before applying the MOR
techniques [1, 9, 13, 14, 19, 20], and machine learning approaches [4, 10, 11, 15, 16,
18]. Among these, only the Lagrangian methods allow to apply the classical MOR
techniques in a new framework and to inherit their error estimators that are typically
missing in the other approaches. We present a Lagrangian approach for a wide class
of advection–dominated scalar 1D problems, performing a preliminary calibration
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procedure that aligns all solutions in order to minimize the effort of classical MOR
algorithms. This leads to an arbitrary Lagrangian–Eulerian (ALE) formulation of the
equations that must be solved both in the offline and online phase of the algorithms,
where a classical PODEI-Greedy [7] is used. To learn the mesh speed of the ALE
framework, we propose different cheap regression maps to be used also in the online
phase.

2 Model Order Reduction Techniques for Hyperbolic Problems

As a benchmark, we refer to the MOR algorithms by Haasdonk et al. [3,7], which are
suited for hyperbolic problems with different solvers. The PODEI–Greedy [2, 7, 8]
combines a proper orthogonal decomposition (POD) compression of the solutions
in time, a Greedy algorithm in the parameter space and an empirical interpolation
method (EIM) to approximate the nonlinearities of fluxes and scheme operators [8].

Let us consider an interval Ω ⊂ R, the final time 𝑡 𝑓 ∈ R+, a parameter set P ⊂ R𝑃 ,
a scalar unknown 𝑢 : Ω × [0, 𝑡 𝑓 ] × P → R and the conservation law

𝜕𝑡𝑢(𝑥, 𝑡, 𝝁) +
𝑑

𝑑𝑥
𝐹 (𝑢, 𝝁) = 0, 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑡 𝑓 ], 𝝁 ∈ P ⊂ R𝑃 , (1)

with appropriate boundary (BC) and initial (IC) conditions. 𝐹 : R × P → R is a
flux function. The full order model (FOM), an explicit discretization of (1) for an
approximation 𝑢N (𝑡, 𝝁) ∈ VN ⊂ 𝐿2 (Ω) of the solution 𝑢(𝝁, 𝑡), is given by

𝑢𝑘N (𝝁) = 𝑢𝑘−1
N (𝝁) − E(𝐹 (𝑢𝑘−1

N (𝝁), 𝝁)), 𝑘 = 1, . . . , 𝐾, ∀𝝁 ∈ P, (2)

being 𝑢𝑘N (𝝁) ∈ VN the FOM approximation at the time step 𝑡𝑘 and E : VN → VN
an evolution operator obtained through a numerical solver, e.g. finite volume, finite
difference, finite element. Here, N denotes the discrete dimension of VN .

Given a reduced space V𝑁 =
{∑𝑁

𝑖=1 u𝑖𝜓𝑖 : u𝑖 ∈ R
}

generated by selected (orthog-
onal) basis functions {𝜓𝑖}𝑁

𝑖=1 ⊂ VN provided by the PODEI-Greedy [7], we want
to find a reduced solution 𝑢𝑁 ∈ V𝑁 . Denoting with Π : VN → V𝑁 the Galerkin
projection, given a parameter 𝝁 ∈ P, the reduced problem consists of solving

𝑢𝑘+1
𝑁 (𝝁) :=

∑︁𝑁

𝑖=1
u𝑘+1
𝑖 (𝝁)𝜓𝑖 =

∑︁𝑁

𝑖=1
u𝑘𝑖 (𝝁)𝜓𝑖 −

∑︁𝑁

𝑖=1
E𝑖 (𝐹 (𝑢𝑘𝑁 (𝝁), 𝝁))𝜓𝑖 . (3)

Here, E : VN → R𝑁 is the reduced evolution operator. To give the final description
of the reduced method, we highlight that the EIM allows to interpolate nonlinear
functions into a set of magic degrees of freedom (DoF) {𝝉𝐸𝐼𝑀𝑚 }𝑁𝐸𝐼𝑀

𝑚=1 ⊂ V∗
N and

basis functions {𝝆𝐸𝐼𝑀𝑚 }𝑁𝐸𝐼𝑀

𝑚=1 ⊂ VN . Applying EIM to interpolate the evolution
operators for different times and parameters in the reduced setting, we obtain

I𝐸𝐼𝑀 [E(𝐹 (𝑢N , 𝝁))] =
∑︁𝑁𝐸𝐼𝑀

𝑚=1
𝝉𝐸𝐼𝑀𝑚 (E(𝐹 (𝑢N , 𝝁))) 𝝆𝐸𝐼𝑀𝑚 ≈ E(𝐹 (𝑢N , 𝝁)). (4)
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In this way, one can compute just the few interpolation DoFs of the flux, which
depend on the parameter 𝝁, in an online phase and precompute, in an offline phase,
the projection of the interpolation functions 𝝆𝐸𝐼𝑀 onto the reduced basis space, i. e.,
Π(𝝆𝐸𝐼𝑀𝑚 ). We can cheaply compute the reduced evolution operator as

E𝑖 (𝐹 (𝑢𝑘𝑁 (𝝁), 𝝁)) :=
∑︁𝑁𝐸𝐼𝑀

𝑚=1
𝝉𝐸𝐼𝑀𝑚

(
E(𝐹 (𝑢𝑘𝑁 (𝝁), 𝝁))

)
Π𝑖 (𝝆𝐸𝐼𝑀𝑚 ). (5)

The error estimator in the EIM algorithm is an actual error computation between the
interpolated functions and the original evolution operators.

In the PODEI–Greedy setting, the cheap error indicator 𝜂𝑁,𝑁𝐸𝐼𝑀 ,𝑁
′
𝐸𝐼𝑀

on the
reduced solutions [2, 7] uses 𝑁 ′

𝐸𝐼𝑀
extra magic DoFs of the EIM space to measure

the error on this extra EIM space.

∥𝑢𝐾N (𝝁) − 𝑢𝐾𝑁 (𝝁)∥VN ≤ 𝜂𝐾𝑁,𝑁𝐸𝐼𝑀 ,𝑁
′
𝐸𝐼𝑀

(𝝁) :=∑︁𝐾

𝑘=1
𝐶𝐾−𝑘

(∑︁𝑁 ′
𝐸𝐼𝑀

𝑚=1
Δ𝑡𝜉𝑘𝑚 (𝝁)




𝝆𝐸𝐼𝑀′
𝑚





VN
+||Δ𝑡𝑅𝑘 (𝝁) | |VN

)
,

(6)

where 𝐶 is the Lipschitz continuity of E,

Δ𝑡𝑅𝑘 (𝝁) := 𝑢𝑘𝑁 (𝝁) − 𝑢𝑘−1
𝑁 (𝝁) + Δ𝑡I𝑁𝐸𝐼𝑀

[E(𝐹 (𝑢𝑘−1
𝑁 (𝝁), 𝝁))], (7)

I𝑁𝐸𝐼𝑀
is the interpolation operator into basis functions and magic points of the EIM

space and the coefficients 𝜉𝑘𝑚 (𝝁) are

𝜉𝑘𝑚 (𝝁) = 𝝉𝐸𝐼𝑀
′

𝑚

(
E(𝐹 (𝑢𝑘−1

𝑁 (𝝁), 𝝁))
)
, ∀𝑚 = 1, . . . , 𝑁 ′

𝐸𝐼𝑀 . (8)

The so–defined error estimator is an error bound under strict hypotheses, which
are not always met in the simulations. Nevertheless, in practice, it shows a reliable
behavior even with small 𝑁 ′

𝐸𝐼𝑀
also when the hypotheses are not fulfilled [3]. Hence,

we choose the number of extra EIM bases 𝑁 ′
𝐸𝐼𝑀

to be 5 in all simulations.

Remark 1 (Online Phase) The online phase of the PODEI-Greedy algorithm is given
by (3), where the reduced evolution operator (5) is computed with the EIM algorithm
and with 𝑁𝐸𝐼𝑀 · 𝑁 flux evaluations instead of N with 𝑁𝐸𝐼𝑀 , 𝑁 ≪ N .

3 Arbitrary Lagrangian–Eulerian Framework for MOR

This algorithm, but also all other MOR algorithms based on linear superposition of
modes, struggles in capturing the advection of local structures. This is well described
by the slow decay of the Kolmogorov 𝑁-width [6].

As emphasized in Section 1 and by Taddei in [19], various approaches exist,
including both Eulerian and Lagrangian, to address this issue. Many make use of
geometrical transformation maps to move the solutions or the reduced bases onto a
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reference domain, see [1, 12, 14, 17, 19, 20]. These transformations in the Eulerian
approach change the bases with the parameters, hence, classical hyper–reduction
methods are no longer applicable and the online phase becomes involved.

What we aim to do in this work is to align the discontinuities or some features of
the solution for every parameter and time step. To do so, we will use a transformation
of the domain Ω into a reference one R and we will rewrite the whole equation into
an arbitrary Lagrangian–Eulerian (ALE) setting. Hence, we will be able to apply the
PODEI–Greedy algorithm to the ALE problem on the reference domain, where the
decay of the Kolmogorov 𝑁–width will be faster.
Arbitrary Lagrangian–Eulerian (ALE) Framework.
Inspired by the transformations of the works of [1, 14, 17, 19], let 𝑇 : Θ × R → Ω

be a map such that the function 𝑇 (𝜃, ·) : R → Ω is a bijection for every calibration
point 𝜃 ∈ Θ and let 𝑇 be such that

• 𝑇 (·, ·) ∈ C1 (Θ × R,Ω),
• ∃𝑇−1 : Θ ×Ω → R such that 𝑇−1 (𝜃, 𝑇 (𝜃, ·)) = IdR and 𝑇 (𝜃, 𝑇−1 (𝜃, ·)) = IdΩ,
• 𝑇−1 (·, ·) ∈ C1 (Θ ×Ω,R).

Moreover, suppose that there exists a calibration map 𝜃 : P × [0, 𝑡 𝑓 ] → Θ such that

• 𝜃 (·, 𝝁) ∈ C1 ( [0, 𝑡 𝑓 ],Θ) for all 𝝁 ∈ P ,
• 𝑣N (𝑦, 𝑡, 𝝁) := 𝑢N (𝑇 (𝜃 (𝑡, 𝝁), 𝑦), 𝑡, 𝝁) ≈ 𝑣̄(𝑦), ∀𝝁 ∈ P, 𝑡 ∈ [0, 𝑡 𝑓 ], 𝑦 ∈ R,

where the last condition expresses the way we want to align the solutions and will
be explained more carefully in Section 4.

Given this map and a solution 𝑢N (𝑥, 𝑡, 𝝁) of the equation (1), we want to evolve
the calibrated solution 𝑣N (𝑦, 𝑡, 𝝁) := 𝑢N (𝑇 (𝜃 (𝑡, 𝝁), 𝑦), 𝑡, 𝝁) through another PDE.

If we try to compute the time derivative of the calibrated solution 𝑣N , setting
𝑥 := 𝑇 (𝜃 (𝑡, 𝝁), 𝑦), and removing the dependence of all variables to simplify the
notation, we obtain

𝑑

𝑑𝑡
𝑣N+

𝑑𝑇−1

𝑑𝑥

𝑑

𝑑𝑦
𝐹 (𝑣N) −

𝑑𝑇−1

𝑑𝑥

𝑑

𝑑𝑦
𝑣N
𝑑𝑇

𝑑𝑡
= 0, (9)

where, 𝑑𝑇−1

𝑑𝑥
is the Jacobian of the inverse transformation 𝑇−1 (𝜃, ·) and the time

derivative 𝑑𝑇 (𝜃 (𝑡 ,𝝁) ,𝑦)
𝑑𝑡

is also called the grid speed in ALE context. In particular,
when we compute 𝑑𝑇

𝑑𝑡
we mean 𝑑𝑇 (𝜃 (𝑡 ,𝝁) ,𝑦)

𝑑𝑡
= 𝜕𝜃𝑇 (𝜃 (𝑡, 𝝁), 𝑦) 𝑑𝜃 (𝑡 ,𝝁)𝑑𝑡

. In this work,
we consider only scalar, 1D problems with one moving feature. We are working on
the generalization to systems in more dimensions [21].
MOR for ALE.
It is crucial to write the MOR algorithm and the RB space for the reference variables
𝑣N on the reference domainR, in order to perform the reduction and in the application
of collocation methods. So, introducing the ALE evolution operator

Ẽ
(
𝑣𝑁 ,

𝑑𝑇−1

𝑑𝑥
,
𝑑𝑇

𝑑𝑡
, 𝝁

)
:=
𝑑𝑇−1

𝑑𝑥
E (𝐹 (𝑣𝑁 )) +

𝑑𝑇−1

𝑑𝑥

𝑑𝑇

𝑑𝑡
E (𝑣𝑁 ) , (10)
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we can write∑︁𝑁

𝑖=1
(v𝑘+1 − v𝑘) (𝝁)𝜓𝑖 (𝑦)

+
∑︁𝑁

𝑖=1

∑︁𝑁𝐸𝐼𝑀

𝑚=1
𝝉𝐸𝐼𝑀𝑚

(
Ẽ
(
𝑣𝑁 ,

𝑑𝑇−1

𝑑𝑥
,
𝑑𝑇

𝑑𝑡
, 𝝁

))
Π𝑖 (𝝆𝐸𝐼𝑀𝑚 )𝜓𝑖 (𝑦) = 0.

(11)

The ALE formulation for the RB algorithm (11) introduces a couple of major differ-
ences compared to the original RB formulation (3). First of all, we have to compute
new terms regarding the transformation 𝑑𝑇−1

𝑑𝑥
and 𝑑𝑇

𝑑𝑡
, which must be easily com-

putable, in a way not to affect the computational costs in the online phase. Then,
the evolution scheme must be applied not only on the flux 𝐹 (𝑣𝑁 ) but also on 𝑣𝑁
itself. Considering a compact stencil scheme, this can affect the computational costs
of around a factor of 2. Nevertheless, we expect that the decreased number of basis
functions will compensate the increased cost of the evolution operator.

Remark 2 (Error indicator) The error indicator introduced in (6) can be used exactly
as it is in the new framework by substituting the evolution operator E with the ALE
one Ẽ. As before, it is not always guaranteed to be an error bound, but it shows good
behaviors in the experiments.

4 Transport Map and Learning of the Speed

The requirements on the transformation presented in Section 3 are also necessary to
obtain an easily parametrizable map. For the simulations, we will use two maps.

The translations of the type 𝑇 (𝜃, 𝑦) = 𝑦 + 𝜃 on the domain Ω = R = [0, 1] with
periodic BC, such that the calibration point 𝜃, which tracks a feature (e.g. a shock, a
peak of the solution on the physical domain), is mapped always in 0.5 in R.

The dilatation 𝑇 and its inverse 𝑇−1 defined by

𝑇 (𝜃, 𝑦) = 𝑦 𝜃

(2𝜃 − 1)𝑦 + 1 − 𝜃 , 𝑇−1 (𝜃, 𝑥) = 𝑥 𝜃 − 1
(2𝜃 − 1)𝑥 − 𝜃 , (12)

on the domains Ω = R = [0, 1] with Dirichlet BC. The maps are smooth for
𝜃 ∈ (0, 1), moreover, 𝑇 (𝜃, 0) = 0, 𝑇 (𝜃, 1) = 1 and 𝑇 (𝜃, 0.5) = 𝜃.

The alignment process, i. e., how we find the map 𝜃 (𝑡, 𝝁), is more challenging.
Classically in ALE framework, one could use physical information to impose the
mesh speed [12]. Nevertheless, this way does not allow to detect the initial calibra-
tions 𝜃 (𝑡0, 𝝁) for different parameters 𝝁 ∈ P. Another possibility is given by the
registration procedure [19] done through an optimization process.

What we will use here is a more naı̈ve approach, where we detect a feature (a
peak of the solution, a shock, a change in sign) and we track this feature along time
and parameter domains. First, we define this map for few snapshots in a training set
of Eulerian solutions {𝑢N (𝑡, 𝝁)}𝝁∈P𝑡𝑟𝑎𝑖𝑛 , then, we extend it to the whole parameter
and time domain using regression/machine learning techniques.
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4.1 Learning of the calibration map

Now, we present three possible regression processes that we tested in our simulations.
Piecewise Linear Interpolation. The first and most empirical method consists of a
piecewise linear interpolation of the parameters of the training set (all the time steps
are always spanned). Given a 𝝁∗ of which we want to compute 𝜃, we consider the
𝑝+1 closest parameters {𝝁 𝑗 }𝑝+1

𝑗=1 and we write 𝜇∗ =
∑𝑝+1
𝑗=1 𝛼 𝑗𝝁

𝑗 , where
∑𝑝+1
𝑗=1 𝛼 𝑗 = 1.

Using these coefficients, we define 𝜃 (𝑡, 𝝁∗) = ∑𝑝+1
𝑗=1 𝛼 𝑗𝜃 (𝑡, 𝝁

𝑗 ). Drawbacks of this
approach are that the online phase scales as the number of the training parameters
and that, as the dimension of the parameter space increases, the less probable is to
have a convex combination of points. A positive aspect is that few training parameters
are often enough to catch a (simple) calibration map.
Polynomial Regression. A second option is a polynomial representation of the map
𝜃 (𝑡, 𝝁). Given a maximum degree 𝑠, we look for

𝜃 (𝑡, 𝝁) =
∑︁

𝛾:∥𝛾 ∥ℓ∞ ≤𝑠
𝛽𝛾𝑡

𝛾0
∏𝑝

𝑖=1
𝜇
𝛾𝑖
𝑖
, (13)

where 𝛾 is a multi–index of size 𝑝 + 1 and the coefficients 𝛽𝛾 can be found through a
least–square method on the training set. Here, the hyperparameter 𝑠must be carefully
chosen. We can easily see that the number of parameters 𝛽𝛾 involved in this regression

are
(
𝑝 + 𝑠 + 1

𝑝

)
. This means that the number of parameters grows exponentially with

the dimension of the parameter space and the degree of the polynomials. It is really
easy to overfit when the training set is not large enough. On the other side, a small
degree 𝑠 may not catch the nature of the calibration points.
Multilayer Perceptron. The last option we will use is an artificial neural network
(ANN) strategy. We learn the map 𝜃 (𝑡, 𝝁) with a multilayer perceptron [5] that takes
as inputs 𝑡 and 𝝁 and that returns 𝜃. The activation function used is tanh and after
some hyper-parameter tuning, we choose 4 hidden layers with 8 nodes each. The
main drawback of this method is that we have to use a large training set, as we will
see in the simulations. We are investigating strategies to improve this aspect [21].

4.2 Overall Algorithm

Offline phase. We compute the Eulerian solutions of the training and validation
sets P𝑡𝑟𝑎𝑖𝑛, P𝑣𝑎𝑙𝑖𝑑 . We compute the calibration points for these sets. We learn the
calibration map with one regression technique. We check on the validation set that
the error of the calibration process is smaller than a tolerance (something related to
the discretization scale, we chose 5Δ𝑥). Thus, we use the approximated calibration
map 𝜃 to compute the PODEIM–Greedy algorithm on the ALE solutions.
Online phase. The online phase of the ALE PODEI-Greedy algorithm is given by
(11), where the reduced evolution operator is computed with the EIM algorithm. We
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recall that the evaluation of the reduced evolution operator necessitates of the map
𝜃 in the ALE framework. The final solution on the original domain can be quickly
recomputed through the maps𝑇−1. The computation costs of the calibration map and
of the reconstruction are negligible with respect to the computation of the solution.

With the ALE strategy we wish to strongly decrease the dimensions 𝑁𝐸𝐼𝑀 and
𝑁 , in order to gain computational advantages in the online phase.

5 Results

In this section, we present some 1D scalar hyperbolic problems with one moving
feature and their hyperparameter analysis. We will consider the linear advection
equation, the Burgers’ equation and the Buckley–Leverett equation, respectively,

𝜕𝑡𝑢 + 𝜇0𝜕𝑥𝑢 = 0, 𝜕𝑡𝑢 + 𝜇0𝜕𝑥
𝑢2

2
= 0, 𝜕𝑡𝑢 + 𝜕𝑥

𝑢2

𝑢2 + 𝜇0 (1 − 𝑢2)
= 0. (14)

We use an explicit Euler Finite Volume method for the FOM with Rusanov numerical
flux and CFL=0.25. The spatial domain Ω is discretized with 1000 cells. We study
5 tests summarized in Table 1 with the auxiliary IC functions{

𝑢3
0 (𝑥, 𝝁) := sin(2𝜋(𝑥 + 0.1𝜇1))𝑒−(60+20𝜇2 ) (𝑥−0.5)2 (1 + 0.5𝜇3𝑥),
𝑢5

0 (𝑥, 𝝁) := 0.5 + 0.2𝜇1 + 0.3𝜇1 sin(2𝜋(𝑥 − 𝜇1 − 0.5)).
(15)

Test 1 is a smooth Gaussian traveling on a periodic domain, while all other tests have
a discontinuity at least from a certain time on. For test 1 we calibrate the peak of the
Gaussian, while for the others we calibrate the steepest point. We use the dilatation
transformation for Dirichlet BC and the translation for periodic BC.

Table 1 Test parameters and definition summary
Test Equation Ω 𝑡 𝑓 IC BC Parameters

1 Advection [0, 1] 0.6 𝑒−(100+500𝜇1 ) (𝑥−0.2+0.1𝜇2 )2 Per. 𝝁 ∈ [0, 2] × [−1, 1]2

2 Advection [0, 1] 0.15 𝜇1 (𝑥 < 0.35 + 0.05𝜇2 ) Dir. 𝝁 ∈ [0, 2] × [−1, 1]2

3 Burgers [0, 1] 0.6 𝑢3
0 (𝑥, 𝝁) Dir. 𝝁 ∈ [0, 2] × [0, 1] × [−1, 1]2

4 Burgers [0, 𝜋 ] 0.15 | sin(𝑥 + 𝜇1 ) | + 0.1 Per. 𝝁 ∈ [0, 2] × [0, 𝜋 ]
5 Buckley [0, 1] 0.25 𝑢5

0 (𝑥, 𝝁) Per. 𝝁 ∈ [0.001, 2] × [0.1, 1]

In Table 2, we present the results for all the tests and different methods (Eulerian
or ALE) and, for ALE, for different regression used to calibrate. A tolerance of
10−3 on the error is set as stopping criterion for the PODEI–Greedy algorithm as
well as maximum 600 EIM magic points. Clearly, the ALE approach outperforms the
classical Eulerian in most of the cases. In many tests, the Eulerian is not able to reach

1 The computations are performed with a Intel(R) Xeon(R) CPU E7-2850 @ 2.00GHz.
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Table 2 Times and reduced dimensions of the tests for tolerance 10−3

Test Method Dim RB Dim EIM FOM time1 RB time1 Time Ratio Online error2
1 ALE Poly2 4 7 516s 18s 3 % 5.2 10−4

1 ALE ANN 12 20 516s 38s 7 % 1.7 10−4

1 Eulerian 52 54 191s 24s 12 % 2.4 10−4

2 ALE Poly2 17 22 125s 6s 5 % 7.6 10−5

2 Eulerian 64 124 49s 9s 18 % 5.3 10−4

3 ALE Poly3 50 60 314s 35s 11 % 2.9 10−4

3 ALE ANN 139 167 298s 66s 22 % 6.4 10−4

3 Eulerian3 153 335 119s 50s 42% 1.2 10−3

4 ALE Poly4 19 41 444s 53s 11% 3.8 10−4

4 Eulerian failed > 600 167s ∞ ∞ ∞
5 ALE pwL 25 45 462s 79s 17% 5.5 10−4

5 Eulerian3 16 270 190s 69s 36%3 9.2 10−3

the prescribed tolerance or it even makes the offline process fail as the oscillations
and Gibbs phenomena are predominant. In Table 2, we compare different calibration

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Dimension Reduced Basis

10 3

10 2

10 1

Er
ro

r

EIM=1

EIM=3

EIM=5
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Error of greedy algorithm

Max error indicator
Max error
Average error

(a) Offline error in ALE framework with Poly2
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100
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(b) Offline error in Eulerian framework

Fig. 1 Test 1: Offline phases of advection of solitary wave

techniques. For such simple tests with linear (or close to linear) speeds, piecewise
linear and polynomials of degree 2 are very effective, while higher polynomials suffer
of overfitting and the ANN needs many simulations in the training set to learn the
calibration behavior. In Figures 1(a) and 1(b) for Test 1 and in Figures 2(a) and 2(b)
for Test 5, we compare the offline phases of Eulerian and ALE approach plotting
the average error over the training set, the maximum error and the maximum error
estimator. For Test 1, we simply see that the ALE is much faster in its decay. In Test 5,
we observe that the Eulerian framework fails in finding adequate EIM space for the

2 This error refers to the simulation run for one parameter.
3 For these tests, the algorithm does not reach the requested tolerance 10−3.
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(a) Offline error of Greedy in Eulerian frame-
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Fig. 2 Offline phase of Test 5 (top) and online phase of Test 3 (bottom)

ROM space, while the ALE one, even, if it needs few refinements of the EIM space,
manages to obtain the required tolerance within few basis for EIM and ROM spaces.
A qualitative example of the online simulations is given for Test 3 in Figure 2(c),
where the ALE approach smoothly captures the shocks, while the Eulerian one, in
Figure 2(d), shows wild oscillations. More simulations are available here [20].

In conclusion, the ALE with calibration approach is more reliable and efficient
than the Eulerian approach and it is applicable to different nonlinear problems
with different BC. The error estimator, though not being provably a bound, is well
representative of the error behavior and it is usable in the PODEI–Greedy algorithm.
We are also working to extend the framework to more geometrical dimensions and
systems of equations with multiple discontinuities moving at different speeds [21].
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