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Motivation: high order accurate explicit method

We want to solve a hyperbolic PDE system for v : Rt x Q — RP
Opu + VxF(u) = 0.
Or ODE system for a : Rt — R
oo+ F(a) = 0.

Applications:
@ Fluids/transport
@ Chemical/biological processes

How?
@ Arbitrarily high order accurate
°
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Motivation: high order accurate explicit method

We want to solve a hyperbolic PDE system for u : Rt x Q — RP
O + Vi F(u) = 0.
Or ODE system for a : R* — R®
oo+ F(a) = 0.

Applications:
@ Fluids/transport
@ Chemical/biological processes

How?
@ Arbitrarily high order accurate
@ Explicit (if nonstiff problem)
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DeC

Deferred Correction + Residual distribution
@ Residual distribution (FV = FE) = High order in space
@ Prediction/correction/iterations = High order in time
@ Subtimesteps =- High order in time

M
Ugnv(k‘-i-l) — Ugnv(k?) _ ‘Cp‘*l Z (/ (I)§ (Um,(k) o Un,O) dx + AtZQTmR?(UT,(k))>7
El¢ccE NP r=0

with

S RE(u) = /E VP (1)dx.

ek
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ADER

@ Cauchy—Kovalevskaya theorem
@ Modern automatic version

@ Space/time DG

@ Prediction/Correction

@ Fixed-point iteration process

Prediction: iterative procedure

/ Ors(x,1)0i0pq(z, t) 2P dzdt + / Ors(x,t)Vx - F(Opg(x,t)2P)dxdt = 0.
T xV; T xV;

Correction step: communication between cells

/ B, (u(t™) - u(t)) de + / By (2)G(=~, 21) -ndSdt — [ Vidy - F(z)dadt =0,
Vi T x0V; T xV;
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ADER' and DeC?; immediate similarities

@ High order time-space discretization

@ Start from a well known space discretization (FE/DG/FV)
@ FE reconstruction in time

@ System in time, with M equations

@ lterative method / K corrections

M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction of
one-step finite volume and discontinuous galerkin schemes on unstructured meshes. Journal of
Computational Physics, 227(18):8209-8253, 2008.

2R. Abgrall. High order schemes for hyperbolic problems using globally continuous approximation and
avoiding mass matrices. Journal of Scientific Computing, 73(2):461-494, Dec 2017.
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e DeC
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DeC high order time discretization: £

an+1 — aM
High order in time: we discretize our variable on [t7, "]
in M substeps (a™).
O+ F(a(t)) = 0.
Thanks to Picard—Lindel6f theorem, we can rewrite a™
tm
am=a’ - / F(a(t))dt.
tO
1
and if we want to reach order » + 1 we need M = r. o
o = aO
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DeC high order time discretization: £

More precisely, for each o we want to solve £?(a™?, ..., a™M)

where

tM

aM —a® — M I F(ar)e,(s)ds
' 1
al —a® =M 10 F(ar)pr(s)ds
@ L% =0is asystem of M x S coupled (non)linear equations
@ £?is an implicit method

@ Not easy to solve directly £?(a*) =0
@ High order (> M + 1), depending on points distribution
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DeC high order time discretization: £

M
(8%
More precisely, for each o we want to solve £2(a™?,...,a™M) = 0,
where
aM —a® — AtSM oM (ar)
[,2(010, ’ aM) _
a' —a’ - At Zyzo 0, F(a”) a™

@ L£? =0is asystem of M x S coupled (non)linear equations

@ £2is an implicit method

@ Not easy to solve directly £?(a*) =0 o
@ High order (> M + 1), depending on points distribution
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DeC low order time discretization: £!

M
(8%
Instead of solving the implicit system directly (difficult), we introduce
a first order scheme £!(a™?, ... a™M):
oM —a® — AtBMF(a?)
£1(a0, ,OCM) —
a! —a’ — AtB F(a?) a™

@ First order approximation
@ Explicit Euler 1
@ Easy to solve £!(a) =0
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Deferred Correction?®

How to combine two methods keeping the accuracy of the second and the stability and
simplicity of the first one?

@ L!'(a) = 0, first order accuracy,
®® = (), k=0,..., K, easily invertible.
@ L%*(a) = 0, high order M + 1.

™0 = a(t"), m=1,...M
Cl(g(k‘)) LY 1>) gz@ Dwithk=1,...,K. tMQ%
Theorem (Convergence DeC) 2 L2
° L(a*) =0 t
@ If L' coercive with constant C, /1 a®l
@ If L' — £? Lipschitz with constant Cy At (0
Then [|a®) — o*|| < C(At)K VIR S R

0 1 2 k K
SA. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241—266, 2000.
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Deferred Correction?®
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DeC and Residual Distribution

In practice
£a®W) =L@ D) - L2(a* ), k=1, K,

Form=1,.... M
a®mal— grALP(af) — oD @l AL (of)

M
+ o= o0 Ay Z o F (k=D =0
r=0
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DeC and Residual Distribution

In practice
£a®W) =L@ D) - L2(a* ), k=1, K,

Form=1,.... M
a®m o0 gmAFRY) — BT o0y g AR
M
+ BT o 0_A¢ Z O F(aF~Dy =0
r=0
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DeC and Residual Distribution

In practice
LY a®) =c'@* ) -2 Y), k=1, K,

Form=1,...,.M
athm o gmatE(Q) — o= oy gmatF(al)
M
+ o= aO—AtZ o F(aF=Dry =0
r=0

M
ak)m _af — Atz O F(aF=Dr) = 0.
r=0
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DeC and Residual Distribution

In practice
LY a®) =c'@* ) -2 Y), k=1, K,

Form=1,...,.M
P o0 gmAtF(al) — B o0 gmAtEa”)
M
+ = aO—AtZ O F(ak~Hy =0
r=0

M
ak)m _af — Atz O F(aF=Dr) = 0.
r=0

@ Operators can be extended for space time discretization.

@ The £? operator contains also the complications of the spatial discretization (e.g.
mass matrix)

@ L! operator further simplified up to a first order approximation (e.g. mass lumping)
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© ADER
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ADER: space-time discretization

Originally exploitation of Cauchy—Kovalevskaya theorem (many computations)
Modern approach is DG in space time for hyperbolic problem

Owu(z,t) + V- F(u(x,t)) =0, reQCRY t>0. (3)
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ADER: space-time discretization

Originally exploitation of Cauchy—Kovalevskaya theorem (many computations)
Modern approach is DG in space time for hyperbolic problem

Owu(z,t) + V- F(u(x,t)) =0, reQCRY t>0. (3)

Defining 0,s(x,t) = ®,(x)¢s(t) basis functions in space and time

/ v (2, 6)040 (. £)uPIdcdt + / Ors(, )V - POy, )l dadt = 0. (4)
T xV; T xV;

This leads to
M uP? = 2(2)7"87 (5)
—rspq

solved with fixed point iteration method.

+ Correction step where cells communication is allowed (derived from (4)).
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ADER: time integration method

Simplify!
- (1) Oy (t)dt + - V() F(a(t)dt =0, Yo:T"=[t" "] - R,
LYa):= [ ¢0)ast)Tadt+ [ st)F((t)Ta)dt =0
o(t) = (%(z)’: o (D)’ B
Quadrature. ..

L*() == Ma —r(a) = 0 <= Ma = r(a). (6)

Nonlinear system of M x S equations
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ADER: Fixed point iteration

Iterative procedure to solve the problem for each time step

a® =M r(a® V), k=1,... convergence (7)

with a(®) = a(t").
Reconstruction step

n

a(t") = a(t") - / F(a®)(#))dt.

@ Convergence?
@ How many steps K?
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© similarities
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ADER as DeC
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ADER as DeC

@(k) — a0y — @(k—l) +M+ @(k—l) —r(a® My =0
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ADER as DeC

Ma® — p(@B¥] — MalH 1 (0= | M4 r(a+) = 0
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ADER as DeC
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ADER as DeC

Apply the DeC Convergence theorem!

@ [!is coercive because M is always invertible

e L' — £?is Lipschitz with constant C At because they are consistent approx of the
same problem

@ Hence, after K iterations we obtain a Kth order accurate approximation of o*
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DeC as ADER

aM —af - T(]fto Pr )d

al —a® — M [ F(an) g, (s)ds
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DeC as ADER

oM — - r O fto Pr )d
£:al...,aM)={ ...
al —a® — M [ F(an) g, (s)ds
tm M
X[t0 tm] (™)™ — X[t0,tm] (to)ao - /O X[t0,tm] (t) Z F(a")pr(t)dt =0
t r=0
tM tM M
[ xwm@@@)dt— [ o m(® > Fae b =0,
¢ t r=0

/ Pm(OO(t)dt — | () F(u(t))dt = 0.
™ TN

D. Torlo (Inria) ADER vs DeC 21/29



Runge Kutta vs DeC-ADER

Classical Runge Kutta (RK)

@ One step method DeC — ADER

@ Internal stages @ One step method
Explicit Runge Kutta @ Internal subtimesteps
+ Simple to code @ Can be rewritten as explicit RK
(for ODE)

- Not easily generalizable to arbitrary order
- Stages > order

Implicit Runge Kutta
+ Arbitrarily high order + lterations = order

- Require nonlinear solvers for nonlinear + Arbitrarily high order
systems - Large memory storage

+ Explicit
+ Simple to code

- May not converge

v
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@ simulations
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A—Stability

¢(a) stability region ¢(a) stability region

C) s
Es -4 Es -4
EEm ADER GL
BN DeC GLB BN ADER GLB O
BN ADER GLB BN ADER EQ

Re(a) Re(a)
Figure: Stability region
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Convergence

--- ADER GL
—— ADERGLB
- ADER EQ
—— DeCGLB
- DeC EQ

y'(t) = —ly(®)ly(),
y(O) =1, (8)
t €1[0,0.1].

Error
=
°

10-114

Convergence curves for ADER and DeC, varying
the approximation order and collocation of nodes
for the subtimesteps for a scalar nonlinear ODE

o m=11
%4 m=10

10-15 4

10-17 :
10-° 104 1073 1072 101
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Lotka—Volterra

Ref P1 —— ADER 03
—— ADER 03

—— ADER 05
—— ADER 05
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T T T
40 60 80 100

ADER vs DeC

Figure: Numerical solution of
the Lotka-Volterra system
using ADER (top) and DeC
(bottom) with Gauss-Lobatto
nodes with timestep AT = 1.
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PDE: Burgers with spectral difference

1072 102
——- ADEREQ 5 --— DeCEQ
---- ADER GLB -- DeC GLE
-- ADER GL
1074 107+ 4
107 10-° .
Figure: Convergence
- error for Burgers
w0 105 ] equations: Left ADER
< right DeC. Space
discretization with
o i spectral difference
107 107 :—
% "F’"
10 - T w0 - T
2x107% 3x104%107% 6x 107 101 2%107% 3x104x1072 6x 107 10-1
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Extensions

Other versions

Other spatial discretizations (FV/DG
ADER, FEM/DG DeC)

Implicit or implicit—explicit time
discretizations (implicit DeC and
implicit ADER by making implicit £1)
Positivity preserving versions
(modified Patankar DeC)

On going projects
@ Stability study of implicit versions
@ Entropy stable high order ADER DeC
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Questions?

Thanks for the attention!
Questions?
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