ADER and DeC: arbitrarily high order (explicit) methods for PDEs (and ODEs)

Davide Torlo

Inria Bordeaux - Sud Ouest Team Cardamom

2nd March 2021

joint work with Maria Han Veiga and Philipp Öffner

Based on: Han Veiga, M., Öffner, P. & Torlo, D. *DeC and ADER: Similarities, Differences and a Unified Framework.* J Sci Comput 87, 2 (2021). https://doi.org/10.1007/s10915-020-01397-5

Outline

- Motivation
- 2 DeC
- 3 ADER
- Similarities
- Simulations

Outline

- Motivation
- 2 DeC
- 3 ADEF
- Similarities
- Simulations

Motivation: high order accurate explicit method

We want to solve a hyperbolic PDE system for $u: \mathbb{R}^+ \times \Omega \to \mathbb{R}^D$

$$\partial_t u + \nabla_{\mathbf{x}} \mathcal{F}(u) = 0. \tag{1}$$

Or ODE system for $\alpha: \mathbb{R}^+ o \mathbb{R}^S$

$$\partial_t \alpha + F(\alpha) = 0. (2)$$

Applications:

- Fluids/transport
- Chemical/biological processes

How?

- Arbitrarily high order accurate
- •

Motivation: high order accurate explicit method

We want to solve a hymerbolic DDE quoter for $m = m + \sqrt{\Omega}$, mD

Applications:

Discretization Scale

How?

Arbitrarily high

Fluids/transportChemical/biolog

D. Torlo (Inria) ADER vs DeC 4/29

(1)

(2)

Motivation: high order accurate explicit method

We want to solve a hyperbolic PDE system for $u: \mathbb{R}^+ \times \Omega \to \mathbb{R}^D$

$$\partial_t u + \nabla_{\mathbf{x}} \mathcal{F}(u) = 0. \tag{1}$$

Or ODE system for $\alpha: \mathbb{R}^+ \to \mathbb{R}^S$

$$\partial_t \alpha + F(\alpha) = 0. (2)$$

Applications:

- Fluids/transport
- Chemical/biological processes

How?

- Arbitrarily high order accurate
- Explicit (if nonstiff problem)

DeC

Deferred Correction + Residual distribution

- Residual distribution (FV ⇒ FE) ⇒ High order in space
- Prediction/correction/iterations ⇒ High order in time
- Subtimesteps ⇒ High order in time

$$U_{\xi}^{m,(k+1)} = U_{\xi}^{m,(k)} - |C_p|^{-1} \sum_{E|\xi \in E} \left(\int_E \Phi_{\xi} \left(U^{m,(k)} - U^{n,0} \right) d\mathbf{x} + \Delta t \sum_{r=0}^M \theta_r^m \mathcal{R}_{\xi}^E(U^{r,(k)}) \right),$$

with

$$\sum_{\xi \in \mathcal{E}} \mathcal{R}_{\xi}^{\mathcal{E}}(u) = \int_{\mathcal{E}} \nabla_{\mathbf{x}} F(u) d\mathbf{x}.$$

ADER

- Cauchy–Kovalevskaya theorem
- Modern automatic version
- Space/time DG
- Prediction/Correction
- Fixed-point iteration process

Prediction: iterative procedure

$$\int_{T^n \times V_i} \theta_{rs}(x,t) \partial_t \theta_{pq}(x,t) z^{pq} dx dt + \int_{T^n \times V_i} \theta_{rs}(x,t) \nabla_{\mathbf{x}} \cdot F(\theta_{pq}(x,t) z^{pq}) dx dt = 0.$$

Correction step: communication between cells

$$\int_{V_i} \Phi_r \left(u(t^{n+1}) - u(t^n) \right) dx + \int_{T^n \times \partial V_i} \Phi_r(x) \mathcal{G}(z^-, z^+) \cdot \mathbf{n} dS dt - \int_{T^n \times V_i} \nabla_{\mathbf{x}} \Phi_r \cdot F(z) dx dt = 0,$$

ADER¹ and DeC²: immediate similarities

- High order time-space discretization
- Start from a well known space discretization (FE/DG/FV)
- FE reconstruction in time
- System in time, with M equations
- Iterative method / K corrections
- Both high order explicit time integration methods (neglecting spatial discretization)

D. Torlo (Inria) ADER vs DeC 7/29

¹M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. Journal of Computational Physics, 227(18):8209–8253, 2008.

²R. Abgrall. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. Journal of Scientific Computing, 73(2):461–494, Dec 2017.

ADER¹ and DeC²: immediate similarities

- High order time-space discretization
- Start from a well known space discretization (FE/DG/FV)
- FE reconstruction in time
- System in time, with M equations
- Iterative method / K corrections
- Both high order explicit time integration methods (neglecting spatial discretization)

D. Torlo (Inria) ADER vs DeC 7/29

¹M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction of one-step finite volume and discontinuous galerkin schemes on unstructured meshes. Journal of Computational Physics, 227(18):8209–8253, 2008.

²R. Abgrall. High order schemes for hyperbolic problems using globally continuous approximation and avoiding mass matrices. Journal of Scientific Computing, 73(2):461–494, Dec 2017.

Outline

- Motivation
- 2 DeC
- (3) ADER
- Similarities
- Simulations

DeC high order time discretization: \mathcal{L}^2

High order in time: we discretize our variable on $[t^n, t^{n+1}]$ in M substeps (α^m) .

$$\partial_t \boldsymbol{\alpha} + F(\boldsymbol{\alpha}(t)) = 0.$$

Thanks to Picard-Lindelöf theorem, we can rewrite

$$\boldsymbol{\alpha}^m = \boldsymbol{\alpha}^0 - \int_{t^0}^{t^m} F(\boldsymbol{\alpha}(t)) dt.$$

and if we want to reach order r+1 we need M=r.

DeC high order time discretization: \mathcal{L}^2

More precisely, for each σ we want to solve $\mathcal{L}^2(\alpha^{n,0},\dots,\alpha^{n,M})=0$, where

$$\mathcal{L}^{2}(\boldsymbol{\alpha}^{0},\ldots,\boldsymbol{\alpha}^{M}) = \begin{pmatrix} \boldsymbol{\alpha}^{M} - \boldsymbol{\alpha}^{0} - \sum_{r=0}^{M} \int_{t^{0}}^{t^{M}} F(\boldsymbol{\alpha}^{r}) \varphi_{r}(s) ds \\ \vdots \\ \boldsymbol{\alpha}^{1} - \boldsymbol{\alpha}^{0} - \sum_{r=0}^{M} \int_{t^{0}}^{t^{1}} F(\boldsymbol{\alpha}^{r}) \varphi_{r}(s) ds \end{pmatrix}$$

- $\mathcal{L}^2 = 0$ is a system of $M \times S$ coupled (non)linear equations
- ullet \mathcal{L}^2 is an implicit method
- Not easy to solve directly $\mathcal{L}^2(\underline{\pmb{lpha}}^*)=0$
- High order ($\geq M+1$), depending on points distribution

DeC high order time discretization: \mathcal{L}^2

More precisely, for each σ we want to solve $\mathcal{L}^2(\pmb{\alpha}^{n,0},\dots,\pmb{\alpha}^{n,M})=0$, where

$$\mathcal{L}^2(oldsymbol{lpha}^0,\dots,oldsymbol{lpha}^M) = egin{pmatrix} oldsymbol{lpha}^M - oldsymbol{lpha}^0 - \Delta t \sum_{r=0}^M heta_r^M F(oldsymbol{lpha}^r) \ dots \ oldsymbol{lpha}^1 - oldsymbol{lpha}^0 - \Delta t \sum_{r=0}^M heta_r^1 F(oldsymbol{lpha}^r) \end{pmatrix}$$

- $\mathcal{L}^2 = 0$ is a system of $M \times S$ coupled (non)linear equations
- ullet \mathcal{L}^2 is an implicit method
- Not easy to solve directly $\mathcal{L}^2(\underline{\alpha}^*) = 0$
- High order ($\geq M+1$), depending on points distribution

DeC low order time discretization: \mathcal{L}^1

Instead of solving the implicit system directly (difficult), we introduce a first order scheme $\mathcal{L}^1(\boldsymbol{\alpha}^{n,0},\ldots,\boldsymbol{\alpha}^{n,M})$:

$$\mathcal{L}^1(oldsymbol{lpha}^0,\ldots,oldsymbol{lpha}^M) = egin{pmatrix} oldsymbol{lpha}^M - oldsymbol{lpha}^0 - \Delta t eta^M F(oldsymbol{lpha}^0) \ dots \ oldsymbol{lpha}^1 - oldsymbol{lpha}^0 - \Delta t eta^1 F(oldsymbol{lpha}^0) \end{pmatrix}$$

- First order approximation
- Explicit Euler
- Easy to solve $\mathcal{L}^1(\underline{\alpha}) = 0$

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{\alpha}^{0,(k)} := \boldsymbol{\alpha}(t^n), \quad k = 0, \dots, K, \\ & \boldsymbol{\alpha}^{m,(0)} := \boldsymbol{\alpha}(t^n), \quad m = 1, \dots, M \\ & \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{\alpha}}^{(k-1)}) \text{ with } k = 1, \dots, K. \\ & \boldsymbol{t}^M \bullet^{\boldsymbol{\alpha}^{(0),M}} \end{split}$$

•
$$\mathcal{L}^1(\underline{\alpha}) = 0$$
, first order accuracy, easily invertible.

• $\mathcal{L}^2(\underline{\alpha}) = 0$, high order M + 1.

- If \mathcal{L}^1 coercive with constant C_1
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\alpha}^{(K)} - \underline{\alpha}^*\| \le C(\Delta t)^K$$

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{\alpha}^{0,(k)} := \boldsymbol{\alpha}(t^n), \quad k = 0, \dots, K, \\ & \boldsymbol{\alpha}^{m,(0)} := \boldsymbol{\alpha}(t^n), \quad m = 1, \dots, M \\ & \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{\alpha}}^{(k-1)}) \text{ with } k = 1, \dots, K._{t^M} \end{split}$$

- $\mathcal{L}^1(\underline{\alpha}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\alpha}) = 0$, high order M + 1.

- $\mathcal{L}^2(\underline{\alpha}^*) = 0$
- If \mathcal{L}^1 coercive with constant C_1
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\alpha}^{(K)} - \underline{\alpha}^*\| \le C(\Delta t)^K$$

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{\alpha}^{0,(k)} := \boldsymbol{\alpha}(t^n), \quad k = 0, \dots, K, \\ & \boldsymbol{\alpha}^{m,(0)} := \boldsymbol{\alpha}(t^n), \quad m = 1, \dots, M \\ & \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{\alpha}}^{(k-1)}) \text{ with } k = 1, \dots, K._{t^M} \end{split}$$

- $\mathcal{L}^1(\underline{\alpha}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\alpha}) = 0$, high order M + 1.

- $\mathcal{L}^2(\underline{\alpha}^*) = 0$
- If \mathcal{L}^1 coercive with constant C_1
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\alpha}^{(K)} - \underline{\alpha}^*\| \le C(\Delta t)^K$$

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{\alpha}^{0,(k)} := \boldsymbol{\alpha}(t^n), \quad k = 0, \dots, K, \\ & \boldsymbol{\alpha}^{m,(0)} := \boldsymbol{\alpha}(t^n), \quad m = 1, \dots, M \\ & \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{\alpha}}^{(k-1)}) \text{ with } k = 1, \dots, K._{t^M} \end{split}$$

- $\mathcal{L}^1(\underline{\alpha}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\alpha}) = 0$, high order M + 1.

- $\mathcal{L}^2(\underline{\alpha}^*) = 0$
- If \mathcal{L}^1 coercive with constant C_1
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\alpha}^{(K)} - \underline{\alpha}^*\| \le C(\Delta t)^K$$

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$\begin{split} & \boldsymbol{\alpha}^{0,(k)} := \boldsymbol{\alpha}(t^n), \quad k = 0, \dots, K, \\ & \boldsymbol{\alpha}^{m,(0)} := \boldsymbol{\alpha}(t^n), \quad m = 1, \dots, M \\ & \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k)}) = \mathcal{L}^1(\underline{\boldsymbol{\alpha}}^{(k-1)}) - \mathcal{L}^2(\underline{\boldsymbol{\alpha}}^{(k-1)}) \text{ with } k = 1, \dots, K._{t^M} \end{split}$$

- $\mathcal{L}^1(\underline{\alpha}) = 0$, first order accuracy, easily invertible.
- $\mathcal{L}^2(\underline{\alpha}) = 0$, high order M + 1.

- If \mathcal{L}^1 coercive with constant C_1
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then
$$\|\underline{\alpha}^{(K)} - \underline{\alpha}^*\| \le C(\Delta t)^K$$

³A. Dutt, L. Greengard, and V. Rokhlin. BIT Numerical Mathematics, 40(2):241–266, 2000.

In practice

$$\mathcal{L}^1(\underline{\alpha}^{(k)}) = \mathcal{L}^1(\underline{\alpha}^{(k-1)}) - \mathcal{L}^2(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\alpha^{(k),m} = \alpha^0 - \beta^m \Delta t F(\alpha^0) - \alpha^{(k-1),m} + \alpha^0 + \beta^m \Delta t F(\alpha^0)$$

$$+ \boldsymbol{lpha}^{(k-1),m} \boldsymbol{\alpha}^0 - \Delta t \sum_{r=0}^{M} \theta_r^m F(\boldsymbol{lpha}^{(k-1),r}) = 0$$

In practice

$$\mathcal{L}^{1}(\underline{\alpha}^{(k)}) = \mathcal{L}^{1}(\underline{\alpha}^{(k-1)}) - \mathcal{L}^{2}(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\boldsymbol{\alpha}^{(k),m} \underline{\boldsymbol{\alpha}^{0}} = \beta^{m} \Delta t F(\boldsymbol{\alpha}^{0}) - \boldsymbol{\alpha}^{(k-1),m} + \underline{\boldsymbol{\alpha}^{0}} + \beta^{m} \Delta t F(\boldsymbol{\alpha}^{0})$$
$$+ \boldsymbol{\alpha}^{(k-1),m} \underline{\boldsymbol{\alpha}^{0}} - \Delta t \sum_{r=0}^{M} \theta_{r}^{m} F(\boldsymbol{\alpha}^{(k-1),r}) = 0$$

In practice

$$\mathcal{L}^1(\underline{\alpha}^{(k)}) = \mathcal{L}^1(\underline{\alpha}^{(k-1)}) - \mathcal{L}^2(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\alpha^{(k),m} \underline{\alpha^0} - \beta^m \Delta t F(\alpha^0) - \underline{\alpha^{(k-1),m}} + \underline{\alpha^0} + \beta^m \Delta t F(\alpha^0)$$
$$+ \underline{\alpha^{(k-1),m}} \alpha^0 - \Delta t \sum_{r=0}^M \theta_r^m F(\alpha^{(k-1),r}) = 0$$

In practice

$$\mathcal{L}^{1}(\underline{\alpha}^{(k)}) = \mathcal{L}^{1}(\underline{\alpha}^{(k-1)}) - \mathcal{L}^{2}(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\alpha^{(k),m} \underline{\alpha^0 - \beta^m \Delta t F(\alpha^0)} - \underline{\alpha^{(k-1),m}} + \underline{\alpha^0 + \beta^m \Delta t F(\alpha^0)}$$

$$+ \underline{\alpha^{(k-1),m}} \alpha^0 - \Delta t \sum_{r=0}^M \theta_r^m F(\alpha^{(k-1),r}) = 0$$

$$\alpha^{(k),m} - \alpha^0 - \Delta t \sum_{r=0}^M \theta_r^m F(\alpha^{(k-1),r}) = 0.$$

In practice

$$\mathcal{L}^{1}(\underline{\alpha}^{(k)}) = \mathcal{L}^{1}(\underline{\alpha}^{(k-1)}) - \mathcal{L}^{2}(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

For $m = 1, \ldots, M$

$$\begin{split} & \boldsymbol{\alpha}^{(k),m} \underline{\boldsymbol{\alpha}^0 - \beta^m \Delta t F(\boldsymbol{\alpha}^0)} - \boldsymbol{\alpha}^{(k-1),m} + \underline{\boldsymbol{\alpha}^0 + \beta^m \Delta t F(\boldsymbol{\alpha}^0)} \\ & + \boldsymbol{\alpha}^{(k-1),m} \underline{\boldsymbol{\alpha}^0 - \Delta t} \sum_{r=0}^{M} \theta_r^m F(\boldsymbol{\alpha}^{(k-1),r}) = 0 \\ & \boldsymbol{\alpha}^{(k),m} - \boldsymbol{\alpha}^0 - \Delta t \sum_{r=0}^{M} \theta_r^m F(\boldsymbol{\alpha}^{(k-1),r}) = 0. \end{split}$$

- Operators can be extended for space time discretization.
- ullet The \mathcal{L}^2 operator contains also the complications of the spatial discretization (e.g. mass matrix)
- \mathcal{L}^1 operator further simplified up to a first order approximation (e.g. **mass lumping**)

D. Torlo (Inria) ADER vs DeC 13/29

Outline

- Motivation
- 2 DeC
- 3 ADER
- Similarities
- Simulations

ADER: space-time discretization

Originally exploitation of Cauchy–Kovalevskaya theorem (many computations)

Modern approach is DG in space time for hyperbolic problem

$$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = 0, \qquad x \in \Omega \subset \mathbb{R}^d, \ t > 0.$$
 (3)

Defining $\theta_{rs}(x,t) = \Phi_r(x)\phi_s(t)$ basis functions in space and time

$$\int_{T^n \times V_i} \theta_{rs}(x,t) \partial_t \theta_{pq}(x,t) u^{pq} dx dt + \int_{T^n \times V_i} \theta_{rs}(x,t) \nabla \cdot F(\theta_{pq}(x,t) u^{pq}) dx dt = 0.$$
 (4)

This leads to

$$\underline{\underline{\underline{M}}}_{rspa} u^{pq} = \underline{\underline{r}}(\underline{\underline{\underline{u}}})_{rs}, \tag{5}$$

solved with fixed point iteration method

+ Correction step where cells communication is allowed (derived from (4)).

ADER: space-time discretization

Originally exploitation of Cauchy–Kovalevskaya theorem (many computations)

Modern approach is DG in space time for hyperbolic problem

$$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = 0, \qquad x \in \Omega \subset \mathbb{R}^d, \ t > 0.$$
 (3)

Defining $\theta_{rs}(x,t) = \Phi_r(x)\phi_s(t)$ basis functions in space and time

$$\int_{T^n \times V_i} \theta_{rs}(x,t) \partial_t \theta_{pq}(x,t) u^{pq} dx dt + \int_{T^n \times V_i} \theta_{rs}(x,t) \nabla \cdot F(\theta_{pq}(x,t) u^{pq}) dx dt = 0.$$
 (4)

This leads to

$$\underline{\underline{\underline{M}}}_{rspq} u^{pq} = \underline{\underline{r}}(\underline{\underline{\underline{u}}})_{rs}, \tag{5}$$

solved with fixed point iteration method

+ Correction step where cells communication is allowed (derived from (4)).

ADER: space-time discretization

Originally exploitation of Cauchy–Kovalevskaya theorem (many computations)

Modern approach is DG in space time for hyperbolic problem

$$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = 0, \qquad x \in \Omega \subset \mathbb{R}^d, \ t > 0.$$
 (3)

Defining $\theta_{rs}(x,t) = \Phi_r(x)\phi_s(t)$ basis functions in space and time

$$\int_{T^n \times V_i} \theta_{rs}(x,t) \partial_t \theta_{pq}(x,t) u^{pq} dx dt + \int_{T^n \times V_i} \theta_{rs}(x,t) \nabla \cdot F(\theta_{pq}(x,t) u^{pq}) dx dt = 0.$$
 (4)

This leads to

$$\underline{\underline{\underline{M}}}_{rspq} u^{pq} = \underline{\underline{\underline{r}}}(\underline{\underline{\mathbf{u}}})_{rs}, \tag{5}$$

solved with fixed point iteration method.

+ Correction step where cells communication is allowed (derived from (4)).

D. Torlo (Inria) ADER vs DeC 15/29

ADER: time integration method

Simplify!

$$\int_{T^n} \psi(t) \partial_t \boldsymbol{\alpha}(t) dt + \int_{T^n} \psi(t) F(\boldsymbol{\alpha}(t)) dt = 0, \quad \forall \psi : T^n = [t^n, t^{n+1}] \to \mathbb{R}.$$

$$\mathcal{L}^2(\underline{\boldsymbol{\alpha}}) := \int_{T^n} \underline{\phi}(t) \partial_t \underline{\phi}(t)^T \underline{\boldsymbol{\alpha}} dt + \int_{T^n} \underline{\phi}(t) F(\underline{\phi}(t)^T \underline{\boldsymbol{\alpha}}) dt = 0$$

$$\underline{\phi}(t) = (\phi_0(t), \dots, \phi_M(t))^T$$

Quadrature...

$$\mathcal{L}^{2}(\underline{\alpha}) := \underline{\underline{\mathbf{M}}}\underline{\alpha} - \underline{r}(\underline{\alpha}) = 0 \iff \underline{\underline{\mathbf{M}}}\underline{\alpha} = \underline{r}(\underline{\alpha}).$$
 (6)

Nonlinear system of $M \times S$ equations

ADER: Fixed point iteration

Iterative procedure to solve the problem for each time step

$$\underline{\underline{\alpha}}^{(k)} = \underline{\underline{\underline{M}}}^{-1} \underline{\underline{r}}(\underline{\underline{\alpha}}^{(k-1)}), \quad k = 1, \dots, \text{convergence}$$
 (7)

with $\underline{\alpha}^{(0)} = \alpha(t^n)$. Reconstruction step

$$\boldsymbol{\alpha}(t^{n+1}) = \boldsymbol{\alpha}(t^n) - \int_{T^n} F(\boldsymbol{\alpha}^{(K)}(t)) dt.$$

- Convergence?
- How many steps K?

Outline

- Motivation
- 2 DeC
- ADER
- Similarities
- Simulations

$$\mathcal{L}^{2}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\underline{\alpha}),$$

$$\mathcal{L}^{1}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\underline{\alpha}(t^{n})).$$

$$\mathcal{L}^1(\underline{\alpha}^{(k)}) = \mathcal{L}^1(\underline{\alpha}^{(k-1)}) - \mathcal{L}^2(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k)} - r(\boldsymbol{\alpha}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k-1)} + r(\boldsymbol{\alpha}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k-1)} - r(\underline{\boldsymbol{\alpha}}^{(k-1)}) = 0$$

$$\mathcal{L}^{2}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\underline{\alpha}),$$

$$\mathcal{L}^{1}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\alpha(t^{n})).$$

$$\mathcal{L}^1(\underline{\alpha}^{(k)}) = \mathcal{L}^1(\underline{\alpha}^{(k-1)}) - \mathcal{L}^2(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k)} - \underline{r}(\underline{\boldsymbol{\alpha}}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k-1)} + \underline{r}(\underline{\boldsymbol{\alpha}}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k-1)} - r(\underline{\boldsymbol{\alpha}}^{(k-1)}) = 0$$

$$\mathcal{L}^{2}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\underline{\alpha}),$$

$$\mathcal{L}^{1}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\alpha(t^{n})).$$

$$\mathcal{L}^1(\underline{\alpha}^{(k)}) = \mathcal{L}^1(\underline{\alpha}^{(k-1)}) - \mathcal{L}^2(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k)} - \underline{r}(\underline{\boldsymbol{\alpha}}^{(k),0}) - \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k-1)} + \underline{r}(\underline{\boldsymbol{\alpha}}^{(k-1),0}) + \underline{\underline{\mathbf{M}}}\underline{\boldsymbol{\alpha}}^{(k-1)} - r(\underline{\boldsymbol{\alpha}}^{(k-1)}) = 0$$

$$\mathcal{L}^{2}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\underline{\alpha}),$$

$$\mathcal{L}^{1}(\underline{\alpha}) := \underline{\underline{\underline{M}}}\underline{\alpha} - r(\alpha(t^{n})).$$

$$\mathcal{L}^{1}(\underline{\alpha}^{(k)}) = \mathcal{L}^{1}(\underline{\alpha}^{(k-1)}) - \mathcal{L}^{2}(\underline{\alpha}^{(k-1)}), \qquad k = 1, \dots, K,$$

$$\underline{\underline{\underline{M}}}\underline{\alpha}^{(k)} - \underline{r}(\underline{\alpha}^{(k),0}) - \underline{\underline{M}}\underline{\alpha}^{(k-1)} + \underline{r}(\underline{\alpha}^{(k-1),0}) + \underline{\underline{M}}\underline{\alpha}^{(k-1)} - r(\underline{\alpha}^{(k-1)}) = 0$$

$$\underline{\underline{\underline{M}}}\underline{\alpha}^{(k)} - r(\underline{\alpha}^{(k-1)}) = 0.$$

$$\mathcal{L}^{2}(\underline{\alpha}) := \underline{\underline{\mathbf{M}}}\underline{\alpha} - r(\underline{\alpha}),$$

$$\mathcal{L}^{1}(\underline{\alpha}) := \underline{\underline{\mathbf{M}}}\underline{\alpha} - r(\underline{\alpha}(t^{n})).$$

Apply the DeC Convergence theorem!

- \bullet \mathcal{L}^1 is coercive because \underline{M} is always invertible
- ullet $\mathcal{L}^1-\mathcal{L}^2$ is Lipschitz with constant $C\Delta t$ because they are consistent approx of the same problem
- ullet Hence, after K iterations we obtain a Kth order accurate approximation of $\underline{\alpha}^*$

$$\mathcal{L}^{2}(\boldsymbol{\alpha}^{0},\ldots,\boldsymbol{\alpha}^{M}) := \begin{cases} \boldsymbol{\alpha}^{M} - \boldsymbol{\alpha}^{0} - \sum_{r=0}^{M} \int_{t^{0}}^{t^{M}} F(\boldsymbol{\alpha}^{r}) \varphi_{r}(s) \mathrm{d}s \\ \ldots \\ \boldsymbol{\alpha}^{1} - \boldsymbol{\alpha}^{0} - \sum_{r=0}^{M} \int_{t^{0}}^{t^{1}} F(\boldsymbol{\alpha}^{r}) \varphi_{r}(s) \mathrm{d}s \end{cases}.$$

$$\chi_{[t^0,t^m]}(t^m)\boldsymbol{\alpha}^m - \chi_{[t^0,t^m]}(t_0)\boldsymbol{\alpha}^0 - \int_{t^0}^{t^m} \chi_{[t^0,t^m]}(t) \sum_{r=0}^M F(\boldsymbol{\alpha}^r)\varphi_r(t) dt = 0$$

$$\int_{t^0}^{t^M} \chi_{[t^0,t^m]}(t)\partial_t (\boldsymbol{\alpha}(t)) dt - \int_{t^0}^{t^M} \chi_{[t^0,t^m]}(t) \sum_{r=0}^M F(\boldsymbol{\alpha}^r)\varphi_r(t) dt = 0,$$

$$\int_{T^n} \psi_m(t)\partial_t \boldsymbol{\alpha}(t) dt - \int_{T^n} \psi_m(t)F(\boldsymbol{\alpha}(t)) dt = 0.$$

$$\mathcal{L}^{2}(\boldsymbol{\alpha}^{0},\ldots,\boldsymbol{\alpha}^{M}) := \begin{cases} \boldsymbol{\alpha}^{M} - \boldsymbol{\alpha}^{0} - \sum_{r=0}^{M} \int_{t^{0}}^{t^{M}} F(\boldsymbol{\alpha}^{r}) \varphi_{r}(s) \mathrm{d}s \\ \ldots \\ \boldsymbol{\alpha}^{1} - \boldsymbol{\alpha}^{0} - \sum_{r=0}^{M} \int_{t^{0}}^{t^{1}} F(\boldsymbol{\alpha}^{r}) \varphi_{r}(s) \mathrm{d}s \end{cases}.$$

$$\chi_{[t^0,t^m]}(t^m)\boldsymbol{\alpha}^m - \chi_{[t^0,t^m]}(t_0)\boldsymbol{\alpha}^0 - \int_{t^0}^{t^m} \chi_{[t^0,t^m]}(t) \sum_{r=0}^M F(\boldsymbol{\alpha}^r)\varphi_r(t) dt = 0$$

$$\int_{t^0}^{t^M} \chi_{[t^0,t^m]}(t)\partial_t \left(\boldsymbol{\alpha}(t)\right) dt - \int_{t^0}^{t^M} \chi_{[t^0,t^m]}(t) \sum_{r=0}^M F(\boldsymbol{\alpha}^r)\varphi_r(t) dt = 0,$$

$$\int_{T^n} \psi_m(t)\partial_t \boldsymbol{\alpha}(t) dt - \int_{T^n} \psi_m(t)F(\boldsymbol{\alpha}(t)) dt = 0.$$

Runge Kutta vs DeC-ADER

Classical Runge Kutta (RK)

- One step method
- Internal stages

Explicit Runge Kutta

- + Simple to code
- Not easily generalizable to arbitrary order
- Stages > order

Implicit Runge Kutta

- + Arbitrarily high order
- Require nonlinear solvers for nonlinear systems
- May not converge

DeC - ADER

- One step method
- Internal subtimesteps
- Can be rewritten as explicit RK (for ODE)
- + Explicit
- + Simple to code
- + Iterations = order
- + Arbitrarily high order
- Large memory storage

Outline

- Motivation
- 2 DeC
- 3 ADER
- Similarities
- Simulations

A-Stability

Figure: Stability region

D. Torlo (Inria) ADER vs DeC 24/29

Convergence

$$y'(t) = -|y(t)|y(t),$$

 $y(0) = 1,$ (8)
 $t \in [0, 0.1].$

Convergence curves for ADER and DeC, varying the approximation order and collocation of nodes for the subtimesteps for a scalar nonlinear ODE

Lotka-Volterra

Figure: Numerical solution of the Lotka-Volterra system using ADER (top) and DeC (bottom) with Gauss-Lobatto nodes with timestep $\Delta T=1$.

PDE: Burgers with spectral difference

Figure: Convergence error for Burgers equations: Left ADER right DeC. Space discretization with spectral difference

Extensions

Other versions

- Other spatial discretizations (FV/DG ADER, FEM/DG DeC)
- Implicit or implicit—explicit time discretizations (implicit DeC and implicit ADER by making implicit L¹)
- Positivity preserving versions (modified Patankar DeC)
- **.**.

On going projects

- Stability study of implicit versions
- Entropy stable high order ADER DeC

Thanks for the attention! Questions?