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Water equilibria and perturbations

• Lake at rest perturbation
• Moving stationary wave
• Vortex type stationary solutions

1/ 38 D. Torlo Preserving Moving Equilibria with Global Flux

video/drop.avi
video/surf.avi
video/whirl.avi
video/drop.avi
video/whirl.avi
video/surf.avi


Equilibria for shallow water equations

Shallow Water Equations


∂th + ∂x (hu) + ∂y (hv) = 0
∂t(hu) + ∂x

(
hu2 + g

2 h2) + ∂y (huv) = −gh∂x b
∂t(hv) + ∂x (huv) + ∂y

(
hv 2 + g

2 h2) = −gh∂y b
x

b(x , y)

h η
u

Lake at rest equilibrium

h(x , y) + b(x , y) ≡ η0 u(x , y) = v(x , y) ≡ 0

∂x

(g
2 h2

)
+gh∂x b = gh∂x h+gh∂x b = gh∂x η0 = 0.
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Simulation example lake at rest with perturbation

X
Y

Z

Bathymetry: 0.05 0.25 0.45 0.65 0.85
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Simulation example lake at rest with perturbation
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Equilibria for shallow water equations

Shallow Water Equations 1D{
∂th + ∂x (hu) = 0
∂t(hu) + ∂x

(
hu2 + g

2 h2) = −gh∂x b

Stationary waves in 1D

hu(x) =: q(x) ≡ qx
0

and h such that

∂x

(
hu2 + g

2 h2
)

+ gh∂x b = 0

. . .

∂x

(
q2

2gh2 + h + b
)

= 0

q2

2gh2(x) + h(x) + b(x) = Q(x0) (1)
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Equilibria for shallow water equations

Shallow Water Equations 1D{
∂th + ∂x (hu) = 0
∂t(hu) + ∂x

(
hu2 + g

2 h2) = −gh∂x b

Cubic equation solutions
• Supercritical state u >

√
gh

• Subcritical state u <
√

gh
• Negative h

Stationary waves in 1D

hu(x) =: q(x) ≡ qx
0

and h such that

∂x
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hu2 + g

2 h2
)

+ gh∂x b = 0

. . .

∂x
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q2

2gh2 + h + b
)

= 0

q2
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Simulation example moving equilibria non flat bathymetry

Continuous Bathymetry Discontinuous Bathymetry

x

η

b(x)

x

η

b(x)
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Simulation example moving equilibria non flat bathymetry
Continuous Bathymetry Discontinuous Bathymetry
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Equilibria for shallow water equations

Shallow Water Equations (no bathymetry)


∂th + ∂x (hu) + ∂y (hv) = 0
∂t(hu) + ∂x

(
hu2 + g

2 h2) + ∂y (huv) = 0
∂t(hv) + ∂x (huv) + ∂y

(
hv 2 + g

2 h2) = 0

Vortices: Div-free solutions


r = (x − x0)2 + (y − y0)2 θ = arctan

( y−y0
x−x0

)
u(r) = − sin(θ)uθ(r) v(r) = cos(θ)uθ(r)
h(r) : h′(r)gr = u2

θ(r)

Other equations
• Euler equations (isentropic)
• Linear Acoustic equations
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Simulation example of a vortex (for linear acoustics)
exact ∥v∥, p
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How can we preserve the equilibria?

Exactly!
Impossible: discretization of data b, of the solutions h, u, v

Exactly with respect to discretization
• Possible
• Might involve some analytical equation to be solved
• Requires the knowledge a priori of equilibria type

Exactly Well
Balancing

Better than the underlying method
• Possible
• No need of inverting analytical equations
• No need of a priori knowledge of the equilibrium type

Well Balancing
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State of the art techniques

Global Flux
• Obtain 1 differential

operator for everything
• Put together flux and source
• Integrate the forms
• Gascón 2001a, Chertock

2022b, Ciallella 2023c,
Barsukow 2024d

aGascón, L., Corberán, J. J. Comput.
Phys. 172(1), 261–297 (2001)

bChertock, A., Kurganov, A., Liu, X.,
Liu, Y., & Wu, T. (2022). Journal of
Scientific Computing, 90, 1-21.

cCiallella, M., Torlo, D., & Ricchiuto,
M. (2023). Journal of Scientific
Computing, 96(2), 53.

dBarsukow, W., Ricchiuto, M., &
Torlo, D. (2025). Numerical Methods for
Partial Differential Equations 41.1
(2025): e23167.

1D source recipe

∂tV + ∂x f (V ) = S(V , x)
∂tV + ∂x (f (V ) − K(V , x)) = 0

K(V , x) :=
∫ x

x0

S(V (s), s)ds

2D divergence recipe

∂th + ∂x f + ∂y g = 0, f = hu, g = hv ,

∂th + ∂xy (F + G) = 0

F (x , y) :=
∫ y

y0

f (x , ξ)dξ, G(x , y) :=
∫ x

x0

g(ξ, y)dξ.
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State of the art techniques

Global Flux
• Obtain 1 differential

operator for everything
• Put together flux and source
• Integrate the forms
• Gascón 2001a, Chertock

2022b, Ciallella 2023c,
Barsukow 2024d

aGascón, L., Corberán, J. J. Comput.
Phys. 172(1), 261–297 (2001)

bChertock, A., Kurganov, A., Liu, X.,
Liu, Y., & Wu, T. (2022). Journal of
Scientific Computing, 90, 1-21.

cCiallella, M., Torlo, D., & Ricchiuto,
M. (2023). Journal of Scientific
Computing, 96(2), 53.

dBarsukow, W., Ricchiuto, M., &
Torlo, D. (2025). Numerical Methods for
Partial Differential Equations 41.1
(2025): e23167.

Properties
/ Well balanced (not exactly)
, No need for any analytical equilibria
, No need for analytical relation
, No further ODE solver
, No problems with transcritical points
, Explicit methods
, Lake at rest
, Stationary waves
, 2D vortices
, Applicable to FV, FEM, DG

10/ 38 D. Torlo Preserving Moving Equilibria with Global Flux



Table of contents

1 State of the art

2 Global Flux in 1D
Results

3 Global Flux in 2D for linear acoustics
Results

4 Nonlinear 2D Global Flux

5 Results

6 Perspectives

11/ 38 D. Torlo Preserving Moving Equilibria with Global Flux



Global Flux in 1D for FV 1st order

∂tq + ∂x f (q) = S(q, x) =⇒ ∂tq + ∂x G(q, x) = 0

with G(q, x) := f (q) − K(q, x) = f (q) −
∫ x

x0

S(q(s), s)ds.

FV: qi ≈
∫ xi+1/2

xi−1/2
q(x)dx

qi−2 qi−1
qi

qi+1

qi+2

xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2

xi−2 xi−1 xi xi+1 xi+2

fi := 1
∆x

∫ xi+1/2

xi−1/2

f (q(x , t))dx ,

Ki ≈K(xi , q(xi )) =
∫ xi

x0

S(q(s), s)ds ≈ Ki−1+
∫ xi

xi−1

S(q(s), s)ds,

Ki :=Ki−1 + ∆x Si−1 + Si

2
Gi :=fi − Ki .

Numerical flux depends only on G :
upwind, Roe, NO Rusanov

∂tqi +
Ĝi+1/2 − Ĝi−1/2

∆x = 0,

Ĝi+1/2 := sign(J)+Gi + sign(J)−Gi+1,

Equilibrium: Ĝi+1/2 = Ĝi−1/2 = Ĝ0 for
all i

fi − Ki = G0
Mind: high order, other equilibria
(LAR), super convergence
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all i

fi − Ki = G0
Mind: high order, other equilibria
(LAR), super convergence

12/ 38 D. Torlo Preserving Moving Equilibria with Global Flux



Global Flux in 1D for FV 1st order

∂tq + ∂x f (q) = S(q, x) =⇒ ∂tq + ∂x G(q, x) = 0

with G(q, x) := f (q) − K(q, x) = f (q) −
∫ x

x0

S(q(s), s)ds.

FV: qi ≈
∫ xi+1/2

xi−1/2
q(x)dx

qi−2 qi−1
qi

qi+1

qi+2

xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2

xi−2 xi−1 xi xi+1 xi+2

fi := 1
∆x

∫ xi+1/2

xi−1/2

f (q(x , t))dx ,

Ki ≈K(xi , q(xi )) =
∫ xi

x0

S(q(s), s)ds ≈ Ki−1+
∫ xi

xi−1

S(q(s), s)ds,

Ki :=Ki−1 + ∆x Si−1 + Si

2
Gi :=fi − Ki .

Numerical flux depends only on G :
upwind, Roe, NO Rusanov

∂tqi +
Ĝi+1/2 − Ĝi−1/2
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Developing GF 1D FV 1st order

I want you to hate me, let’s do the computations in a simple case (upwind)!

Formulae
• ∂tqi = − Ĝi+1/2−Ĝi−1/2

∆x
• Gi = fi − Ki

• Ki = Ki−1 + ∆x Si−1+Si
2

• sign(J) = +1
• Ĝi+1/2 = Gi

Classical Upwind FV

∂tqi = − fi − fi−1

∆x + Si

Expand!

∂tqi = −
Ĝi+1/2 − Ĝi−1/2

∆x

= −Gi − Gi−1

∆x

= − fi − fi−1

∆x + Ki − Ki−1

∆x

= − fi − fi−1

∆x + Si−1 + Si

2 .
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High order WENO GF 1

ūi−2 ūi−1
ūi

ūi+1

ūi+2

p0

p1

p2

pHO

xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2

xxi − 1/2 xi + 1/2

K L
i−1/2

KR
i−1/2 K L

i+1/2

Ki,1

Ki,2 KR
i+1/2

Global Flux Reconstruction
• Compute recursively K in quadrature points and interfaces (maybe

also jump of K)
• Reconstruct in all quadrature points

◦ Flux fi,θ
◦ Integral of the source Ki,θ
◦ Global fluxes Gi,θ := fi,θ + Ki,θ

• Compute the cell average of the global flux G
• Well balancing for lake at rest

1Ciallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
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ūi+2

p0

p1

p2

pHO

xi−5/2 xi−3/2 xi−1/2 xi+1/2 xi+3/2 xi+5/2

xxi − 1/2 xi + 1/2

K L
i−1/2

KR
i−1/2 K L

i+1/2

Ki,1

Ki,2 KR
i+1/2

Global Flux Reconstruction
• Compute recursively K in quadrature points and interfaces (maybe

also jump of K)
• Reconstruct in all quadrature points

◦ Flux fi,θ
◦ Integral of the source Ki,θ
◦ Global fluxes Gi,θ := fi,θ + Ki,θ

• Compute the cell average of the global flux G
• Well balancing for lake at rest

1Ciallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.

14/ 38 D. Torlo Preserving Moving Equilibria with Global Flux



High order WENO GF 1

ūi−2 ūi−1
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• Compute the cell average of the global flux G
• Well balancing for lake at rest

1Ciallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
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Validation: Subcritical flow and perturbation

Domain and Bathymetry

Ω = [0, 25],
b(x) = 0.05 sin (x − 12.5) exp

(
1 − (x − 12.5)2) ,

g = 9.812.

b(x) is chosen C∞ and such that it has values smaller than
machine precision at the boundaries.

Subcritical flow test

IC: h(x , 0) = 2 − b(x), q(x , 0) ≡ 0,

BC: h(25, t) = 2, q(0, t) = 4.42,

x

η

b(x)
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Validation: Subcritical flow and perturbation
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Figure: Subcritical flow: characteristic variables compute by means of the GF-WENO5 (red continuous line) and
WENO5 (black dashed line) schemes with Ne = 100.
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Validation: Subcritical flow and perturbation
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Figure: Subcritical flow: convergence tests with WENO3 and WENO5.
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Validation: Subcritical flow and perturbation

0 10 20

−1

0

1

·10−3

x
(a) t = 0

0 10 20

−1

0

1

·10−3

x
(b) t = 0.66

0 10 20

−1

0

1

·10−3

x
(c) t = 2

Figure: Perturbation on a subcritical flow: η − ηeq
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FEM+SUPG GF 2D high order

SUPG FEM for acoustics∫
φ(∂tu + ∂x p) + α∆ ∂x φ(∂tp + ∂x u + ∂y v) = 0∫
φ(∂tv + ∂y p) + α∆ ∂y φ(∂tp + ∂x u + ∂y v) = 0∫
φ(∂tp + ∂x u + ∂y v) + α∆ ∂x φ(∂tu + ∂x p) + α∆ ∂y φ(∂tv + ∂y p) = 0

Acoustics

∂tu + ∂x p = 0
∂tv + ∂y p = 0
∂tp + ∂x u + ∂y v = 0

Details on discretization
• Cartesian grid!!
• Gauss-Lobatto points for quadrature and Lagrange basis function
• Explicit arbitrary high order time discretization with Deferred Correction
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Global flux in 2D
Main idea
Define

σx (x , y) :=
∫ y

y0

u(x , s)ds σy (x , y) :=
∫ x

x0

v(s, y)ds

So that
∂tp + ∂x u + ∂y v = ∂tp + ∂xy (σx + σy ) = 0

Global Flux SUPG for acoustics
Define σx (x , y) :=

∫ y
y0

u(x , s)ds and σy (x , y) :=
∫ x

x0
v(s, y)ds, with σx , σy ∈ V K

h (Ωh), Φ := σx + σy .

∫
φ(∂tu + ∂x p) + α∆x ∂x φ(∂tp + ∂x ∂y Φ) = 0∫
φ(∂tv + ∂y p) + α∆y ∂y φ(∂tp + ∂x ∂y Φ) = 0∫
φ(∂tp + ∂x ∂y Φ) + α∆x ∂x φ(∂tu + ∂x p) + α∆y ∂y φ(∂tv + ∂y p) = 0
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Global Flux SUPG: changes

Global Flux SUPG for acoustics
σx (x , y) :=

∫ y
y0

u(x , s)ds and σy (x , y) :=
∫ x

x0
v(s, y)ds, with σx , σy ∈ V K

h (Ωh).

Changes in equilibrium

∇ · v = 0
=⇒∂x ∂y (σx + σy ) = 0
⇐⇒σx + σy = f (x) + g(y)

Discrete equilibrium

∂x ∂y Φ(xi , yj) = 0

=⇒
∫ xi

x0

∫ yj

y0

∂y ∂x Φ(x , y)dxdy = 0 ∀i , j

=⇒
∫ xi

x0

∂x Φ(x , yj)dx −
∫ xi

x0

∂x Φ(x , y0)dx = 0 ∀i , j

=⇒Φ(xi , yj) − Φ(x0, yj) − Φ(xi , y0) + Φ(x0, y0) = 0 ∀i , j
=⇒Φ(xi , yj) = fi + gj
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Myth buster

Global Flux is not global!

• In principle σx (x , y) =
∫ y

yB
u(x , s)ds should be integrated from the beginning (bottom) of the

domain yB!
• In practice we always use ∂x ∂y σx (x , y) integrated in one cell!!!!
• So,

σx (x , y) =
∫ y

yB

u(x , s)ds =
∫ y0

yB

u(x , s)ds︸ ︷︷ ︸
constant in one cell!

+
∫ y

y0

u(x , s)ds

whatever constant we bring from outside the cell, is canceled out

∂y σx (x , y) = ∂y

∫ y

yB

u(x , s)ds = ∂y

∫ y0

yB

u(x , s)ds + ∂y

∫ y

y0

u(x , s)ds = ∂y

∫ y

y0

u(x , s)ds

• At the discrete level we have an integral operator Iy and a differential operator Dy that together
give a weird averaging operator Dy Iy
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Coriolis and sources

Extension to source terms

∂tu + ∂x p = Su

∂tv + ∂y p = Sv

∂tp + ∂x u + ∂y v = Sp

Source terms
• Coriolis
• Mass sources
• Friction

Global flux for sources

Gu := p −
∫ x

Su

Gv := p −
∫ y

Sv

Gp :=
∫ y

u +
∫ x

v −
∫ x ∫ y

Su
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Simulation of vortex (linear acoustics) FEM+SUPG: Q1, Nx = Ny = 20
exact ∥v∥, p
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Simulation of vortex (linear acoustics) FEM+SUPG: Q2, Nx = Ny = 10
exact ∥v∥, p
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Simulation of vortex: errors
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Figure: Smooth vortex: convergence of L2 error of u with respect to the number of elements in x
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Vortex simulation: divergence error
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Figure: Norm of discrete divergence of u for SUPG (∂x u + ∂y v) and SUPG–GF (∂x ∂y (σx + σy )) simulations
with respect to time for different orders
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Vortex perturbation

Pressure perturbation

• Gaussian centered in xp = (0.4, 0.43)
• scaling coefficient r0 = 0.1
• radius ρ(x) =

√
||x − xp||/r0

δp(x) = εe
− 1

2(1−ρ(x))2
+ 1

2 ,

• final time T = 0.35
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Vortex perturbation
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Figure: Perturbation(ε = 10−3) test. Plot of ∥ueq − up∥, with ueq the equilibrium obtained with a cheap
optimization process. P1 with 80 × 80 cells and 6561 dofs.
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Vortex perturbation
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Figure: Perturbation(ε = 10−3) test. Plot of ∥ueq − up∥, with ueq the equilibrium obtained with a cheap
optimization process. P3 with 13 × 13 cells and 1600 dofs.
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Vortex perturbation
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Figure: Perturbation(ε = 10−3) test. Plot of ∥ueq − up∥, with ueq the equilibrium obtained with a cheap
optimization process. P3 with 26 cells and 6241 dofs.
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FEM+SUPG for GF

Discretizations
• GF+SUPG+FEM works easily also for nonlinear problems on paper
• GF+FV less trivial, because . . .

GF+FEM+SUPG

∂tu + ∂x F (u) + ∂y G(u) = S(u) =⇒ ∂tu + ∂x ∂y G(u) = 0

G(u) :=
∫ y

F (u) +
∫ x

G(u) −
∫ x ∫ y

S(u);∫
Ω

(φ + α∆∂x φJx + α∆∂y φJy )(∂tu + ∂xy G(u)) = 0 ∀φ.
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FV for GF 2D

GF+FV
∂tu + ∂x ∂y G(u) = 0∫ xi+ 1

2

xi− 1
2

∫ yj+ 1
2

yj− 1
2

(∂tu + ∂xy G(u))dxdy = 0

∂tuij + Ĝi+ 1
2 ,j+ 1

2
− Ĝi− 1

2 ,j+ 1
2

− Ĝi+ 1
2 ,j− 1

2
+ Ĝi− 1

2 ,j− 1
2

= 0

Corner numerical flux!!
• Upwind didn’t work for nonlinear

2D problems (it worked in 1D, it
works for 2D linear acoustics, but
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FV for GF 2D
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2 ,j+ 1

2
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Euler equations: isentropic vortex (steady state)

IC

(ρ, u, v , p) = (1 + δρ, δu, δv , 1 + δp) .

The test case is set up in a [0, 10] × [0, 10] domain with periodic boundary conditions and vortex radius
r =

√
(x − 5)2 + (y − 5)2. The vortex strength is ϵ = 5, and the entropy perturbation is assumed to

be zero. Given these hypothesis, the perturbations on velocity and temperature can be written as[
δu
δv

]
= ϵ

2π
exp

(
1 − r 2

2

) [
−(y − 5)
(x − 5)

]
, δT = − (γ − 1)ϵ2

8γπ2 exp(1 − r 2).

It follows that the perturbations on density and pressure reads

δρ = (1 + δT )
1

γ−1 − 1, δp = (1 + δT )
γ

γ−1 − 1.
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Euler equations: isentropic vortex (steady state)

Euler equations: isentropic vortex (tf = 1). L2 error and order of accuracy ñ for FV-1, FV-2 and GF
methods.

ρ ρu ρv ρE
Nx , Ny L2 ñ L2 ñ L2 ñ L2 ñ

FV-1
20 3.58E-01 – 6.77E-01 – 6.77E-01 – 1.16E+00 –
40 2.47E-01 0.53 4.40E-01 0.62 4.40E-01 0.62 8.29E-01 0.48
80 1.49E-01 0.72 2.59E-01 0.76 2.59E-01 0.76 5.15E-01 0.68
160 8.33E-02 0.84 1.43E-01 0.85 1.43E-01 0.85 2.91E-01 0.82
320 4.42E-02 0.91 7.56E-02 0.91 7.56E-02 0.91 1.56E-01 0.90

FV-2
20 1.06E-01 – 2.05E-01 – 2.00E-01 – 4.32E-01 –
40 3.62E-02 1.55 6.74E-02 1.60 6.71E-02 1.57 1.20E-01 1.85
80 1.07E-02 1.76 1.93E-02 1.80 1.95E-02 1.78 2.91E-02 2.04
160 2.39E-03 2.16 5.58E-03 1.78 5.61E-03 1.79 7.04E-03 2.04
320 5.12E-04 2.22 1.39E-03 2.00 1.39E-03 2.01 1.56E-03 2.17

GF
20 1.52E-02 – 3.67E-02 – 3.67E-02 – 4.59E-02 –
40 5.95E-03 1.35 1.15E-02 1.67 1.15E-02 1.67 1.54E-02 1.57
80 1.76E-03 1.76 3.06E-03 1.90 3.06E-03 1.90 4.35E-03 1.82
160 4.69E-04 1.90 7.87E-04 1.96 7.87E-04 1.96 1.16E-03 1.90
320 1.21E-04 1.95 2.00E-04 1.97 2.00E-04 1.97 3.02E-04 1.94
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Euler equations: isentropic vortex (steady state)

Euler equations: isentropic vortex. Isocontours of the velocity norm obtained with FV-1, FV-2 and GF
after a long time integration (tf = 200)
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Euler equations: isentropic vortex (steady state)

Euler equations: perturbation of the isentropic vortex. Isocontours of the ρ − ρeq norm obtained with
FV-1, FV-2 and GF at final time tf = 2 with a 80 × 80 mesh. Take as IC the final simulation of

longtime + perturbation
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Euler equations: Kevin-Helmoltz instability

• Domain [0, 2] × [−1/2, 1/2]
• Final time tf = 80
• initial condition

ρ = γ + H(y) r , u = M H(y), v = δ M sin(2πx), p = 1,

• Mach number parameter M = 10−2, r = 10−3, δ = 0.1
• H(y)

H(y) =


− sin

(
π
ω

(
y + 1

4

))
, if − 1

4 − ω
2 ≤ y < − 1

4 + ω
2 ,

−1, if − 1
4 + ω

2 ≤ y < 1
4 − ω

2 ,

sin
(

π
ω

(
y − 1

4

))
, if 1

4 − ω
2 ≤ y < 1

4 + ω
2 ,

1 else,

where ω = 1/16.
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Euler equations: Kevin-Helmoltz instability

Nx = 64, Ny = 32
FV-1 FV-2 GF .
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Euler equations: Kevin-Helmoltz instability

Nx = 256, Ny = 128
FV-1 FV-2 GF .
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Shallow water: subcritical flow with bathymetry
h, FV-1
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Shallow water: subcritical flow with bathymetry
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Euler equations, FEM: Thermal rising bubble

Top: GF
150x150

Bottom
left: GF
60x60

Bottom
right:
SUPG
60x60
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Euler equations, FV: Low-Mach Shu Vortex
FV FV-2 GF
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Extensions and Perspectives
Summary

• Global Flux to preserve moving equilibria
• 1D integrate the source and unique flux
• 2D integrate F in y and G in x
• Some superconvergence in steady states
• Extra accuracy in vorticity like problems
• Extra accuracy in low Mach problems
• Small stability issues with very very long time

simulations in nonlinear 2D
• No problem with shocks (we were surprised)

Perspectives
• Fix the long time behavior for vortices
• Other methods: DG seems less trivial
• Other geometries: Immersed Boundaries
• Riemann solver for corner problems?
• Non Cartesian meshes

THANKS!!
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State of the art techniques (part 1)

Subtract equilibrium
• Know analytical equilibrium
• Dedner 2004a and Berberich

2021b

aDedner, A., Rohde, C., Schupp, B.,
& Wesenberg, M. (2004). Computing
and Visualization in Science, 7(2), 79-96.

bJ. P. Berberich, P. Chandrashekar,
and C. Klingenberg. Computers &
Fluids, 219:104858, 2021.

Procedure
• Base Scheme: V n+1 = V n + S(V n)
• Equilibrium: V eq := (heq, ueq, v eq)
• Discrete exact equilibrium residual: Seq(tn) := S(V eq(tn))
• Well balanced scheme : V n+1 = V n + S(V n) − Seq(tn)

Properties

, Ridiculously well balanced: V n = V eq =⇒ V n+1 = V eq

/ Know equlibrium a priori
, Lake at rest
/ Stationary waves
/ 2D vortices
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Example: subtract equilibrium2
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2Ciallella, M., Micalizzi, L., Öffner, P., & Torlo, D. (2022). Computers & Fluids, 247, 105630.
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State of the art techniques (part 2)3

Equilibrium reconstruction
• In every cell solve an ODE

at reconstruction/quadrature
points, constrained with the
state V n (BVP)

• ODE solver either exact or
very accurate

• Malaga school

Procedure
• Base Scheme: V n+1 = V n + S(V n)
• Equilibrium: V eq,ODE :=ODE_Solver(1) subject to V n

• Discrete equilibrium residual: Seq,ODE (tn) := S(V eq,ODE (tn))
• Well balanced scheme : V n+1 = V n + S(V n) − Seq,ODE (tn)

Properties

, Exactly well-balanced V n = V eq,ODE =⇒ V n+1 = V eq,ODE

, For all equilibria of one type
/ Expensive (ODE solver for each cell)
, Lake at rest
, Stationary waves
/ Problem for transcritical flows u =

√
gh

/ 2D vortices

3Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.
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State of the art techniques (part 3)4

Riemann problem modification
• For FV schemes
• Change the Riemann

problem approximation
• Exploit (1) such that at

equilibrium it is satisfied by
the Riemann problem

• Michel-Dansac 2016

Properties
• Exactly well-balanced (if (1) analytically invertible else accurate

solver) V n = V eq,ODE =⇒ V n+1 = V eq,ODE

, For all equilibria of one type
/ Computations by hand for Riemann Solver
/ Only 1st order, blending with high order
, Lake at rest
, Stationary waves
/ Problem for transcritical flows u =

√
gh

/ 2D vortices

4Michel-Dansac, V., Berthon, C., Clain, S., & Foucher, F. (2016). Computers & Mathematics with Applications, 72(3),
568-593.
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Example: Riemann Problem Change5

SUBCRITICAL

SUPERCRITICAL

5Ciallella, M., Micalizzi, L., Michel-Dansac, V., Öffner, P., & Torlo, D. (2025)
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