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Motivation

Fluid Simulations
• Which scale can we approximate?
• Computational costs vs accuracy
• Large Eddy Simulations (LES)
• Variational Multi-Scale (VMS)
• Weak Boundary conditions and Wall-Law for
boundary layers to improve accuracy

• Turbulence

Model order reduction
• Parametric context or time prediction
• Further reduce costs
• Reduce the computational cost for a new
parameter/time

• Good approximation
• Challenges:
◦ Representability (turbulence, moving

discontinuities)
◦ Stability

In this talk
• Wall Law model
• POD-Galerkin
• Flow past cylinder

Not in this talk
• Not (really) turbulent
• No special techniques for
advection dominated
structures

In the future
• VMS-Smagorinsky model
• Hyper-reduction
• NN for wall laws
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Navier–Stokes VMS1

Navier–Stokes equations (strong)


∂u
∂t + (u · ∇)u +∇p − 2 div(ν∇su) = 0
∇ · u = 0
B.C. and I.C.

Weak formulation


(

v , ∂u
∂t

)
Ω
− (∇v , u ⊗ u)Ω + (q,∇ · u)Ω−

(∇ · v , p)Ω + (∇sv , 2ν∇su)Ω = 0
Dirichlet B.C. for u and p and I.C.

Variational Multi-Scale Resiudal based (FEM)
• u = uh + u′ (all variables)
• Residual based

u′h = −τMrM(uh, ph)
p′h = −τC rC (uh)

rM(uh, ph) = ∂uh
∂t + div(uh ⊗ uh) +∇ph

− div(2ν∇suh)

τM =
( 4

∆t2 + uh · Guh + Cinvν
2G : G

)− 1
2

rC (uh) = div(uh), τC = (τMg · g)−1

G =
(dξ

dx

)T dξ
dx , g

i
=
∑

j

(dξ
dx

)
ji

1Y. Bazilevs, T.J.R. Hughes / Computers & Fluids 36 (2007) 12–26
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Navier–Stokes VMS1

Weak VMS formulation

aVMS(uh, ph, vh, qh) :=∑
e

(vh, ∂tuh)Ωe
− (∇vh, uh ⊗ uh)Ω+ (qh,∇ · uh)Ω

−
∑

e

(∇ · vh, ph)Ωe
+ (∇svh, 2ν∇

suh)Ω

+2
∑

e

(
uh · ∇

svh, u
′
h
)

Ωe
−
∑

e

(
∇vh, u

′
h ⊗ u′h

)
Ωe

+
∑

e

(
∇ · vh, p

′
h
)

Ωe
= 0
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• u = uh + u′ (all variables)
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rM(uh, ph) = ∂uh
∂t + div(uh ⊗ uh) +∇ph

− div(2ν∇suh)

τM =
( 4

∆t2 + uh · Guh + Cinvν
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(dξ

dx

)T dξ
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i
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j
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dx

)
ji
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Navier–Stokes VMS2

Weak VMS formulation

aVMS(uh, ph, vh, qh) :=∑
e

(vh, ∂tuh)Ωe
− (∇vh, uh ⊗ uh)Ω+ (qh,∇ · uh)Ω

−
∑

e

(∇ · vh, ph)Ωe
+ (∇svh, 2ν∇

suh)Ω

+2
∑

e

(
uh · ∇

svh, u
′
h
)

Ωe
−
∑

e

(
∇vh, u

′
h ⊗ u′h

)
Ωe

+
∑

e

(
∇ · vh, p

′
h
)

Ωe
= 0

Advantages
• Coarse scale =⇒ Discretized
• Fine scale =⇒ Modeled
• Extra accuracy by modeling higher order
terms without solving them

• Stabilization effect: we can use Pp for both
velocity and pressure (no need of P1P2

formulations)
• Duality: LES modeling and stabilization

2Y. Bazilevs, T.J.R. Hughes / Computers & Fluids 36 (2007) 12–26
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Boundary conditions

No slip Boundary conditions
• Can create boundary layers
• If strongly huge impact on the solution

Weak Enforcement of no slip BC

aVMS
weakBC (uh, ph, vh, qh) := aVMS(uh, ph, vh, qh)

−
∑

b

(vh, 2ν∇
suh · n)

∂Ω∩Γb

−
∑

b

(2ν∇svh · n, uh − 0)
∂Ω∩Γb

+
∑

b

(
vh

C I
bν

hb
, uh − 0

)
∂Ω∩Γb

= 0

• Consistency term
• Adjoint consistency term
• Penalization of Dirichlet BC

7/ 22 D. Torlo ROM for VMS with wall law



Spalding Wall Law34

Weak penalty for no slip condition

∑
b

(
vh

C I
bν

hb
, uh − 0

)
∂Ω∩Γb

• C I
b = 4 user set coefficient

• hb = 2
(
nT Gn

)−1/2 wall-normal element mesh
size

Spalding Wall law
• More physical intuition
• Exploiting notion of fully developed turbulence
• No-slip Dirichlet BC replaced by traction
Neumann boundary∑

b

(
vh, u

∗2 uh
‖uh‖

)
∂Ω∩Γb

• u∗2 magnitude of the wall shear stress
• Consistent with the “law of the wall”

3D.B. Spalding, A single formula for the law of the wall, J. Appl. Mech. 28 (1961) 444–458
4Y. Bazilevs et al. / Comput. Methods Appl. Mech. Engrg. 196 (2007) 4853–4862
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Spalding Wall Law

Spalding Law

∑
b

(
vh, u

∗2 uh
‖uh‖

)
∂Ω∩Γb

• Empirical relation between the mean fluid speed and the normal distance to the wall
• Spalding Law

y+ != f (u+) = u+ + e−χB
(

eχu+
− 1− χu+ − (χu+)2

2 − (χu+)3

6

)
,

y+ := yu∗

ν
distance from the wall in nondimensional wall units,

u+ := ‖uh‖
u∗ mean fluid speed in nondimensional wall units,

χ = 0.4, B = 5.5.
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Spalding Wall Law

Spalding Law

∑
b

(
vh, u

∗2 uh
‖uh‖

)
∂Ω∩Γb

=
∑

b

(
vh

u∗2

‖uh‖
, uh − 0

)
∂Ω∩Γb

=
∑

b

(vhτB , uh − 0)∂Ω∩Γb
, τB := u∗2

‖uh‖

• τB makes the connection with the weak formulation where τB = C I
bν
hb

• One extra scalar nonlinear equation to be solved y+ != f (u+) for each boundary cell (not too
expensive)

• Rewrite the equation in terms of τB

• r(τB) = 0 with r ′(τ) > 0 and r ′′(τ) < 0 for τ > 0
• Newton’s method converges if τ 0 small enough (worst case bisection not too expensive)

• Initial guess τ 0 = C I
bν
hb

(from weak formulation)

10/ 22 D. Torlo ROM for VMS with wall law



Full Order Model

FOM
• P2 − P2 continuous Galerkin FEM
formulation

• Residual based Variational MultiScale discrete
model

• Boundary consistency terms
• Weak penalty for no-slip BC
• Spalding Wall Law (very fast 1% cost)

Test: Flow Past Cylinder

R = [0, 2.2]× [−0.41, 0.41], C = B([0.2, 0], 0.05),
D = R\C, Tend = 3, Nh = 3 · 122145,
uin = (µ1, 0), ν = µ2,

No slip BC on top, bottom and circle,
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Reduced Order Model5

Solution Manifold Compression
• Proper Orthogonal Decomposition (POD)
• Collection of snapshots
{[uh, ph, τB,h](t i0 , µi1

1 , µ
i2
2 )}i∈T ∈ Vh

• Generation of VRB component by component
• No need of supremizer5

Spalding coefficient reconstruction

• For τB,h POD-Galerkin and then Newton
• Problem: Newton does not converge for
reduced τB,RB equation

• Multi-layer perceptron NN uRB → τB,RB?

Reconstruction
• POD-Galerkin
◦ F (uh) = 0 =⇒ V T

RBF (VRBuRB) = 0
◦ Less equations
◦ Hyper-reduction needed to decrease costs

(not today)
◦ Physics based
◦ Less nonlinear iterations
◦ For the moment no computational advantage

• POD-NN

5Stabile, Giovanni, et al. "A reduced order variational multiscale approach for turbulent flows." Advances in Computational
Mathematics 45 (2019): 2349-2368.

13/ 22 D. Torlo ROM for VMS with wall law



Reduced Order Model5

Solution Manifold Compression
• Proper Orthogonal Decomposition (POD)
• Collection of snapshots
{[uh, ph, τB,h](t i0 , µi1

1 , µ
i2
2 )}i∈T ∈ Vh

• Generation of VRB component by component
• No need of supremizer5

Spalding coefficient reconstruction

• For τB,h POD-Galerkin and then Newton
• Problem: Newton does not converge for
reduced τB,RB equation

• Multi-layer perceptron NN uRB → τB,RB?

Reconstruction
• POD-Galerkin
◦ F (uh) = 0 =⇒ V T

RBF (VRBuRB) = 0
◦ Less equations
◦ Hyper-reduction needed to decrease costs

(not today)
◦ Physics based
◦ Less nonlinear iterations
◦ For the moment no computational advantage

• POD-NN

5Stabile, Giovanni, et al. "A reduced order variational multiscale approach for turbulent flows." Advances in Computational
Mathematics 45 (2019): 2349-2368.

13/ 22 D. Torlo ROM for VMS with wall law



Reduced Order Model5

Solution Manifold Compression
• Proper Orthogonal Decomposition (POD)
• Collection of snapshots
{[uh, ph, τB,h](t i0 , µi1

1 , µ
i2
2 )}i∈T ∈ Vh

• Generation of VRB component by component
• No need of supremizer5

Spalding coefficient reconstruction

• For τB,h POD-Galerkin and then Newton
• Problem: Newton does not converge for
reduced τB,RB equation

• Multi-layer perceptron NN uRB → τB,RB?

Reconstruction
• POD-Galerkin
◦ F (uh) = 0 =⇒ V T

RBF (VRBuRB) = 0
◦ Less equations
◦ Hyper-reduction needed to decrease costs

(not today)
◦ Physics based
◦ Less nonlinear iterations
◦ For the moment no computational advantage

• POD-NN

5Stabile, Giovanni, et al. "A reduced order variational multiscale approach for turbulent flows." Advances in Computational
Mathematics 45 (2019): 2349-2368.

13/ 22 D. Torlo ROM for VMS with wall law



POD results: 20 parameters, 150 timesteps
u p τ
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POD projection error: (uin, ν) = (1, 2 · 10−6)

Nu
POD = Np

POD = 100, Nτ
POD = 30

Weak BC Spalding
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Time
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POD-Galerkin error: (uin, ν) = (1, 2 · 10−6)

Nu
POD = Np

POD = 100, τ exact
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Weak BC: POD-Galerkin (top) vs FOM (bottom)
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Spalding BC: POD-Galerkin (top) vs FOM (bottom)
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Comments on POD-Galerkin

Vortex shedding start
• The vortex shedding in FOM is dictated
purely by the (triangular) mesh

• No reasons why also in ROM it should start at
the same time and in the same direction

• Starting the ROM simulation after vortex
shedding (at time t = 1)
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Comments on POD-Galerkin
Weak BC ROM from t = 1
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Comments on POD-Galerkin

Vortex shedding start
• The vortex shedding in FOM is dictated
purely by the (triangular) mesh

• No reasons why also in ROM it should start at
the same time and in the same direction

• Starting the ROM simulation after vortex
shedding (at time t = 1)

Weak BC vs Spalding
• Spalding has larger error in representation
• Spalding has little worse behavior in
POD-Galerkin

• In past simulations, τB computed as FOM
(≈ 250 DOFs)
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Summary and perspectives6

Summary

• LES-VMS model for Navier-Stokes in
FEM

• Weak Boundary Conditions
• Spalding Law
• POD-Galerkin

Perspectives

• Hyper-reduction (EIM or
overcollocation)

• Extend to other models with Local
Projection Stabilization (LPS) onto
sub-filter scale6

• 3D turbulent simulations
• Improve the architecture for POD-NN
to have a comparison with
POD-Galerkin

6N. Ahmed, T. C. Rebollo, V. John and S. Rubino. Analysis of a Full Space–Time Discretization of the Navier–Stokes
Equations by a Local Projection Stabilization Method. IMA Journal of Numerical Analysis, Vol. 37, pp. 1437–1467, 2017.
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POD-NN

POD-NN
• Training set as POD: 20 params, 150
timesteps (3000 snapshots)

• Goal: learn map (t, µ0, µ1)→ uRB
• NN setting
◦ multi-layer perceptron
◦ 4 hidden nodes
◦ 100 neurons each
◦ Various activation functions

• For u and p the loss struggle at decaying
• For τ already better results, but dangerous to
be used alone (time consistency)

Prediction of τ
It might be safer to predict τB(u)
• Learn uRB → τB,RB

• NN as before
• Errors ≈ 6% on a test set
• Not really helpful in reducing the
computational costs (solving for τB already
cheap (1% of all costs)

• Still not physics based
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