Calibration-Based ALE Model Order Reduction for Hyperbolic Problems with Self-Similar Traveling Discontinuities

Davide Torlo, Monica Nonino

Dipartimento di Matematica "Guido Castelnuovo" – Università di Roma Sapienza davidetorlo.it

Torino - 30th January 2025

Context: Parametric PDE

$$\partial_t u(x,t;\mu) + \mathcal{L}(u(x,t;\mu);\mu) = 0 \qquad + \mathsf{BC} \qquad + \mathsf{IC} \qquad u \in \mathbb{R}^N$$

Linear Subspace Ansatz

- Suppose that $u({m \mu}) pprox \sum_{i=1}^{N_{RB}} \hat{u}_i({m \mu}) \psi_i$
- $N_{RB} \ll \mathcal{N}$

MOR

- Reduced Space $\mathbb{V}_{N_{RB}} := \langle \psi_i \rangle_{i=1}^{N_{RB}}$
- Galerkin projection for $j = 1, ..., N_{RB}$ $(\psi_j, \psi_i)\hat{u}_i(\boldsymbol{\mu}) + (\psi_j, \psi_i)\hat{\mathcal{L}}_i(\boldsymbol{u}; \boldsymbol{\mu}) = 0$

Summary of Classical Model Order Reduction

Context: Parametric PDE

$$\partial_t u(x,t;\mu) + \mathcal{L}(u(x,t;\mu);\mu) = 0 + \mathsf{BC} + \mathsf{IC} \quad u \in \mathbb{R}^N$$

		\mathbf{c}				Λ		
line	aar	<u>S 11</u>	her	12/	<u></u>	Δr	163	
	ai	Ju	031	Jav		$\neg 1$	130	LL

- Suppose that $u({m \mu}) pprox \sum_{i=1}^{N_{RB}} \hat{u}_i({m \mu}) \psi_i$
- $N_{RB} \ll \mathcal{N}$

MOR

- Reduced Space $\mathbb{V}_{N_{RB}} := \langle \psi_i
 angle_{i=1}^{N_{RB}}$
- Galerkin projection for $j = 1, ..., N_{RB}$ $(\psi_j, \psi_i)\hat{u}_i(\boldsymbol{\mu}) + (\psi_j, \psi_i)\hat{\mathcal{L}}_i(u; \boldsymbol{\mu}) = 0$

Summary of Classical Model Order Reduction

Context: Parametric PDE

$$\partial_t u(x,t;\mu) + \mathcal{L}(u(x,t;\mu);\mu) = 0 \qquad + \mathsf{BC} \qquad + \mathsf{IC} \qquad u \in \mathbb{R}^N$$

Linear Subspace Ansatz

- Suppose that $u({m \mu}) pprox \sum_{i=1}^{N_{RB}} \hat{u}_i({m \mu}) \psi_i$
- $N_{RB} \ll \mathcal{N}$

MOR

- Reduced Space $\mathbb{V}_{N_{RB}} := \langle \psi_i \rangle_{i=1}^{N_{RB}}$
- Galerkin projection for $j = 1, ..., N_{RB}$ $(\psi_j, \psi_i)\hat{u}_i(\boldsymbol{\mu}) + (\psi_j, \psi_i)\hat{\mathcal{L}}_i(u; \boldsymbol{\mu}) = 0$

Summary of Classical Model Order Reduction

Proper orthogonal decomposition (POD)

INPUT: Collection of functions $\{f_j\}_{j=1}^N$ OUTPUT: Reduced basis spaces

$$RB = rgmin_{U|dim(U)=N_{POD}} \sum_{j=1}^{N} ||f_j - \mathcal{P}_U(f_j)||_2$$

- Based on SVD
- Prescribed tolerance to stop the algorithm
- Global optimizer of the problem

Greedy algorithm

INPUT: Collection of functions $\{f_j\}_{j=1}^N$ OUTPUT: Reduced basis space RB

- There is an error estimator (normally cheap) $\varepsilon_{RB}(f) \sim ||f - \mathcal{P}_{RB}(f)||$
- Iteratively choose the worst represented function $f^{worst} = \arg \max_{\epsilon} \varepsilon_{RB}(f)$
- Add f^{worst} to the RB space
- Stop up to a certain tolerance

Issues with advection dominated

Issues

- As many basis functions as positions of the shock
- Slow decay of Kolmogorov N-width

$$d_N(\mathcal{S},\mathbb{V}):=\inf_{\mathbb{V}_N\subset\mathbb{V}}\sup_{f\in\mathcal{S}}\inf_{g\in\mathbb{V}_N}||f-g||pprox O(N^{-rac{1}{2}})$$

- Large RB space
- few parameters problem (highly non linear dependence on parameters in linear ROM)
- Reduced linear space ansatz is WRONG!

Issues with advection dominated

2D Example

3/41

1 MOR for hyperbolic problem

- **2** Piece-wise Cubic transformations
- **3** Optimize the control points
- 4 Forecasting

6 Results

6 Possible extensions and limitations

Goal parametric hyperbolic systems, Euler equations of gas dynamics

$$\begin{cases} \partial_t \rho + \nabla_{\mathbf{x}} \cdot \mathbf{m} = 0 & \text{in } \mathcal{P} \times \Omega, \\ \partial_t \mathbf{m} + \nabla_{\mathbf{x}} \cdot \left(\frac{\mathbf{m} \otimes \mathbf{m}}{\rho} + p \, I \right) = 0 & \text{in } \mathcal{P} \times \Omega, \\ \partial_t \mathcal{E} + \nabla_{\mathbf{x}} \cdot \left(\frac{\mathbf{m}}{\rho} (\mathcal{E} + p) \right) = 0 & \text{in } \mathcal{P} \times \Omega, \end{cases} \qquad p = (\gamma - 1)(\mathcal{E} - \frac{1}{2}|\mathbf{m}|^2/\rho),$$

Properties	MOR algorithms	
 ρ, m, E non linear dependence on μ ! μ can influence boundaries, flux, initial conditions 	Offline: • POD	
	Greedy	
Motivation and solvers	• EIM	
 Why: many physical applications to fluid equations Classical solvers: FV, FEM, FD, RD (Slow for high-resolution). Many query task (UQ, optimization, etc.) 	Online: • Galerkin projection • Neural Networks • Other Regression	

6/41

- Freezing Ohlberger, M. and Rave, S.
- Shifted POD Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V., Demo, N., Burela, S., Krah, P.
- Lagrangian basis method Mojgani, R. and Balajewicz, M.
- Advection modes by optimal mass transport Iollo, A., Lombardi, D., Mula, O., Taddei, T.
- Calibration (also 2D non-periodic boundaries) Cagniart, N., Stamm, B. and Maday, Y., Crisovan, R. and Abgrall, R.
- Online adaptive bases and samplings Peherstorfer, B.
- Gradient-preserving DEIM Pagliantini, C.
- Transport Reversal Rim, D., Moe, S. and LeVeque R. J.
- Registration method Taddei, T., Ohlberger, M., Kleikamp, H.
- Optimization based implicit feature tracking Zahr, M., Mirhoseini, M.A.
- Preprocessing reduced basis Karatzas, E., Nonino, M., Ballarin, F., Rozza, G. and Maday, Y.
- Manifold learning via Neural Network, convolutional autoencoders Carlberg, K. and Lee, K.; Lye, K., Mishra S. and Ray, D.; Fresca, S., Dedè, L. and Manzoni, A., Venkat, S., Smith, R.C., Kelley, C.T.
- Dynamic Modes Lu, H. and Tartakovsky, D. M.
- Dynamical Low Rank Kazashi, Y., Nobile, F., Trigo Trindade, T., Vidličková, E., Ceruti, G., Kusch, J., Einkemmer, L., Frank, M.
- Graph Neural Network Pichi, F., Moya, B., Hesthaven, J.
- Sinkhorn Loss and Wasserstein Kernel Khamlich, M., Pichi, Rozza, G.

- Freezing Ohlberger, M. and Rave, S.
- Shifted POD Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V., Demo, N., Burela, S., Krah, P.
- Lagrangian basis method Mojgani, R. and Balajewicz, M.
- Advection modes by optimal mass transport Iollo, A., Lombardi, D., Mula, O., Taddei, T.
- Calibration (also 2D non-periodic boundaries) Cagniart, N., Stamm, B. and Maday, Y., Crisovan, R. and Abgrall, R.
- Online adaptive bases and samplings Peherstorfer, B.
- Gradient-preserving DEIM Pagliantini, C.
- Transport Reversal Rim, D., Moe, S. and LeVeque R. J.
- Registration method Taddei, T., Ohlberger, M., Kleikamp, H.
- Optimization based implicit feature tracking Zahr, M., Mirhoseini, M.A.
- Preprocessing reduced basis Karatzas, E., Nonino, M., Ballarin, F., Rozza, G. and Maday, Y.
- Manifold learning via Neural Network, convolutional autoencoders Carlberg, K. and Lee, K.; Lye, K., Mishra S. and Ray, D.; Fresca, S., Dedè, L. and Manzoni, A., Venkat, S., Smith, R.C., Kelley, C.T.
- Dynamic Modes Lu, H. and Tartakovsky, D. M.
- Dynamical Low Rank Kazashi, Y., Nobile, F., Trigo Trindade, T., Vidličková, E., Ceruti, G., Kusch, J., Einkemmer, L., Frank, M.
- Graph Neural Network Pichi, F., Moya, B., Hesthaven, J.
- Sinkhorn Loss and Wasserstein Kernel Khamlich, M., Pichi, Rozza, G.

- Freezing Ohlberger, M. and Rave, S.
- Shifted POD Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V., Demo, N., Burela, S., Krah, P.
- Lagrangian basis method Mojgani, R. and Balajewicz, M.
- Advection modes by optimal mass transport Iollo, A., Lombardi, D., Mula, O., Taddei, T.
- Calibration (also 2D non-periodic boundaries) Cagniart, N., Stamm, B. and Maday, Y., Crisovan, R. and Abgrall, R.
- Online adaptive bases and samplings Peherstorfer, B.
- Gradient-preserving DEIM Pagliantini, C.
- Transport Reversal Rim, D., Moe, S. and LeVeque R. J.
- Registration method Taddei, T., Ohlberger, M., Kleikamp, H.
- Optimization based implicit feature tracking Zahr, M., Mirhoseini, M.A.
- Preprocessing reduced basis Karatzas, E., Nonino, M., Ballarin, F., Rozza, G. and Maday, Y.
- Manifold learning via Neural Network, convolutional autoencoders Carlberg, K. and Lee, K.; Lye, K., Mishra S. and Ray, D.; Fresca, S., Dedè, L. and Manzoni, A., Venkat, S., Smith, R.C., Kelley, C.T.
- Dynamic Modes Lu, H. and Tartakovsky, D. M.
- Dynamical Low Rank Kazashi, Y., Nobile, F., Trigo Trindade, T., Vidličková, E., Ceruti, G., Kusch, J., Einkemmer, L., Frank, M.
- Graph Neural Network Pichi, F., Moya, B., Hesthaven, J.
- Sinkhorn Loss and Wasserstein Kernel Khamlich, M., Pichi, Rozza, G.

- Freezing Ohlberger, M. and Rave, S.
- Shifted POD Reiss, J., Schulze, P., Sesterhenn, J., Mehrmann, V., Demo, N., Burela, S., Krah, P.
- Lagrangian basis method Mojgani, R. and Balajewicz, M.
- Advection modes by optimal mass transport Iollo, A., Lombardi, D., Mula, O., Taddei, T.
- Calibration (also 2D non-periodic boundaries) Cagniart, N., Stamm, B. and Maday, Y., Crisovan, R. and Abgrall, R.
- Online adaptive bases and samplings Peherstorfer, B.
- Gradient-preserving DEIM Pagliantini, C.
- Transport Reversal Rim, D., Moe, S. and LeVeque R. J.
- Registration method Taddei, T., Ohlberger, M., Kleikamp, H.
- Optimization based implicit feature tracking Zahr, M., Mirhoseini, M.A.
- Preprocessing reduced basis Karatzas, E., Nonino, M., Ballarin, F., Rozza, G. and Maday, Y.
- Manifold learning via Neural Network, convolutional autoencoders Carlberg, K. and Lee, K.; Lye, K., Mishra S. and Ray, D.; Fresca, S., Dedè, L. and Manzoni, A., Venkat, S., Smith, R.C., Kelley, C.T.
- Dynamic Modes Lu, H. and Tartakovsky, D. M.
- Dynamical Low Rank Kazashi, Y., Nobile, F., Trigo Trindade, T., Vidličková, E., Ceruti, G., Kusch, J., Einkemmer, L., Frank, M.
- Graph Neural Network Pichi, F., Moya, B., Hesthaven, J.
- Sinkhorn Loss and Wasserstein Kernel Khamlich, M., Pichi, Rozza, G.

Transfomation of the domain

Geometry map T

$$T:\mathcal{P}\times\mathcal{R}\to\Omega$$

- $\exists T^{-1} : \mathcal{P} \times \Omega \to \mathcal{R}$ such that
 - o $T^{-1}[\mu](T[\mu](\hat{x})) = \hat{x}$ for $\hat{x} \in \mathcal{R}$ o $T[\mu](T^{-1}[\mu](x)) = x$ for $x \in \Omega$
- $u_{\mathcal{N}}(T[\mu], \hat{x}), \mu) \approx \bar{v}(\hat{x}), \quad \forall \mu \in \mathcal{P}, \hat{x} \in \mathcal{R}$

ALE formulation

$$\partial_t u(x,\mu,t) + \nabla F(u(x,\mu,t);\mu) = 0 \Longrightarrow \frac{\partial}{\partial t} v(\hat{x},\mu,t) + \frac{d\hat{x}}{dx} \frac{d}{d\hat{x}} F(v,\mu) - \frac{d\hat{x}}{dx} \frac{dv}{d\hat{x}} \frac{\partial T}{\partial t} = 0$$
$$v(\hat{x},\mu,t) := u(T[\mu](\hat{x}),\mu,t)$$

Examples: $\boldsymbol{\theta}$ is the point of maximum height or of steepest solution, or some random points.

- Translation: $T(\theta, \hat{x}) = \hat{x} + \theta 0.5$
- Dilatation: $T(heta, \hat{x}) = rac{\hat{x} heta}{(2 heta-1)\hat{x}+1- heta}$
- Piece-wise Cubic Hermite Interpolator Polynomial
- Higher degree polynomials
- Gordon-Hall

9/41

Table of contents

1 MOR for hyperbolic problem

- **2** Piece-wise Cubic transformations
- **3** Optimize the control points

4 Forecasting

6 Results

6 Possible extensions and limitations

Control points and free coordinates

Quantities

- Control points w
- Free coordinates w

Goals

- Find map $\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})]: \mathcal{R}
 ightarrow \Omega(\boldsymbol{\mu})$
- $T[\boldsymbol{w}(\boldsymbol{\mu})](\overline{\boldsymbol{w}}_{i,j}) = \boldsymbol{w}_{i,j}$
- Regular in space $\mathcal{T}[\textbf{\textit{w}}(\mu)] \in \mathcal{C}^1(\mathcal{R}, \Omega(\mu))$
- Invertible and regular $\mathcal{T}^{-1}[m{w}(\mu)]\in\mathcal{C}^1(\Omega(\mu),\mathcal{R})$
- Regular in parameters $\mathcal{T} \in \mathcal{C}^1(\mathcal{W}, \mathcal{C}^1(\mathcal{R}, \Omega({\boldsymbol{\mu}})))$

11/41

Piece-wise Cubic Hermite Polynomials (PCHIP)

Properties in 1D

- Polynomials
- Monotone
- Easy to differentiate (for ALE formulation)

Piece-wise Cubic Hermite Polynomials (PCHIP)

 $\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}) := (\mathcal{T}^{\boldsymbol{x}}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}},\hat{\boldsymbol{y}}), \mathcal{T}^{\boldsymbol{y}}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}},\hat{\boldsymbol{y}})),$

$$egin{aligned} T^x[oldsymbol{w}(oldsymbol{\mu})](\hat{x},\hat{y}) &:= \sum_{\ell=1}^{M_2} \gamma^y_\ell(\hat{y}) P^x_\ell(\hat{x}), \ T^y[oldsymbol{w}(oldsymbol{\mu})](\hat{x},\hat{y}) &:= \sum_{k=1}^{M_1} \gamma^x_k(\hat{x}) P^y_k(\hat{y}). \end{aligned}$$

2D Extension

- P_{ℓ}^{x} is a PCHIP interpolating $\{\overline{\boldsymbol{w}}_{\alpha_{1},\ell}^{1}, \boldsymbol{w}_{\alpha_{1},\ell}^{1}(\boldsymbol{\mu})\}_{\alpha_{1}=1}^{M_{1}};$
- P_k^y is a PCHIP interpolating $\{\overline{w}_{k,\alpha_2}^2, w_{k,\alpha_2}^2(\mu)\}_{\alpha_2=1}^{M_2}$;
- $\gamma_{\ell}^{y}(\cdot)$ is a PCHIP interpolating $\{\overline{\boldsymbol{w}}_{\alpha_{1},\alpha_{2}}^{2}, \delta_{\alpha_{2},\ell}\}_{\alpha_{2}=1}^{M_{2}}$;
- $\gamma_k^x(\cdot)$ is a PCHIP interpolating $\{\overline{\boldsymbol{w}}_{\alpha_1,\alpha_2}^1, \delta_{\alpha_1,k}\}_{\alpha_1=1}^{M_1}$;
- Convex combinations;
- $T^{x}[\boldsymbol{w}^{\text{opt}}(\boldsymbol{\mu})](\hat{x},\hat{y}=\overline{\boldsymbol{w}}_{\alpha_{1},\alpha_{2}}^{2})=P_{\alpha_{2}}^{x}(\hat{x});$
- $T^{y}[\boldsymbol{w}^{\text{opt}}(\boldsymbol{\mu})](\hat{x}=\overline{\boldsymbol{w}}^{1}_{\alpha_{1},\alpha_{2}},\hat{y})=P^{y}_{\alpha_{1}}(\hat{y}).$

Piece-wise Cubic Hermite Polynomials (PCHIP)

Table of contents

1 MOR for hyperbolic problem

2 Piece-wise Cubic transformations

3 Optimize the control points

4 Forecasting

6 Results

6 Possible extensions and limitations

What do we need to apply the transformation?

What do we have?

• Simulations for different parameters/times

What do we need?

• Control points $oldsymbol{w}(\mu)$ for each parameter/time

Goal?

- Optimize the registration of the solution
- If possible $u(\mathcal{T}[\mu](\hat{\mathbf{x}}),\mu) \approx \bar{u}(\hat{\mathbf{x}})$ with $\hat{\mathbf{x}} \in \mathcal{R}$
- If not possible, new manifold should be easily reproducible
- $\hat{\mathcal{M}} := \{ u(\mathcal{T}[\mu](\cdot), \mu) \forall \mu \} : \exists N_{RB} \ll \mathcal{N} \text{ s.t.} u(\mathcal{T}[\mu](\hat{\mathbf{x}}), \mu) \approx \sum_{i=1}^{N_{RB}} \hat{u}_i(\mu) \psi_i(\hat{\mathbf{x}})$

What do we need to apply the transformation?

What do we have?

• Simulations for different parameters/times

What do we need?

• Control points $oldsymbol{w}(\mu)$ for each parameter/time

Goal?

- Optimize the registration of the solution
- If possible $u(\mathcal{T}[\mu](\hat{\mathbf{x}}),\mu) \approx \bar{u}(\hat{\mathbf{x}})$ with $\hat{\mathbf{x}} \in \mathcal{R}$
- If not possible, new manifold should be easily reproducible
- $\hat{\mathcal{M}} := \{ u(\mathcal{T}[\mu](\cdot), \mu) \forall \mu \} : \exists N_{RB} \ll \mathcal{N} \text{ s.t.} u(\mathcal{T}[\mu](\hat{\mathbf{x}}), \mu) \approx \sum_{i=1}^{N_{RB}} \hat{u}_i(\mu) \psi_i(\hat{\mathbf{x}})$

Minimization functional

$$\begin{split} \forall \boldsymbol{\mu} \in \Xi_{\text{train}} & \min_{\boldsymbol{w}(\boldsymbol{\mu}) \in \mathbb{R}^{Q}} \| \boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot); \boldsymbol{\mu}) - \bar{\boldsymbol{u}}\|_{L^{2}(\mathcal{R})} + \frac{\delta}{2} \| \partial_{\boldsymbol{\mu}} \boldsymbol{w}(\boldsymbol{\mu}) \|_{\ell^{2}(\mathcal{P})}^{2} + \\ & \frac{\alpha}{2} \max_{\boldsymbol{x} \in \Omega} \left(\max \left\{ \| \nabla \mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}}) \|, \left\| \nabla \mathcal{T}^{-1}[\boldsymbol{w}(\boldsymbol{\mu})](\boldsymbol{x}) \right\| \right\} \right), \end{split}$$
onstrained to det(\nabla \mathcal{T}[\mathbf{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}})) > 0 \quad \forall \hat{\boldsymbol{x}} \in \mathcal{R}, \quad \boldsymbol{w}(\boldsymbol{\mu}) \text{ does not switch order}, \quad \boldsymbol{w}(\boldsymbol{\mu}) \in \mathcal{R}. \end{split}

Details	Algorithm		
 Ξ_{train} is a training set of parameters Abuse of notation T[w(μ)] = T[μ] 	 Choose u For all µ ∈ Ξ_{train} solve minimization with 		
 ū? Typically one representative parameter ∂_μw(μ) ²_{ℓ²(P)} how to compute? Approximation with previous parameters 	 Sequential Least SQuares Programming (SLSQP) scipy.optimize.minimize Initial guess the closes parameter already computed control points 		

c

Desiderata minimization functional

$$\begin{split} \min_{\boldsymbol{w}(\Xi_{\text{train}})\in\mathbb{R}^{Q\times N_{\text{train}}}} & \sum_{\boldsymbol{\mu}\in\Xi_{\text{train}}} \|\boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot);\boldsymbol{\mu}) - \Pi_{V_{\text{POD}}}\boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot);\boldsymbol{\mu})\|_{L^{2}(\mathcal{R})} + \frac{\delta}{2} \|\partial_{\boldsymbol{\mu}}\boldsymbol{w}(\boldsymbol{\mu})\|_{\ell^{2}(\mathcal{P})}^{2} + \\ & \frac{\alpha}{2} \max_{\boldsymbol{x}\in\Omega} \left(\max\left\{ \|\nabla \mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}})\|, \|\nabla \mathcal{T}^{-1}[\boldsymbol{w}(\boldsymbol{\mu})](\boldsymbol{x})\|\right\} \right), \\ & \text{with } V_{\text{POD}} := \text{POD}\left(\{\boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot);\boldsymbol{\mu})\}_{\boldsymbol{\mu}\in\Xi_{\text{train}}} \right) \\ & \text{constrained to } \det(\nabla \mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}})) > 0 \quad \forall \hat{\boldsymbol{x}} \in \mathcal{R}, \quad \boldsymbol{w}(\boldsymbol{\mu}) \text{ does not switch order}, \quad \boldsymbol{w}(\boldsymbol{\mu}) \in \mathcal{R}. \end{split}$$

Changes	Too expensive		
Minimization on all parameters all together	 Dimension of minimization problem is too large 		
 No reference solution Projection onto reduced space generated by the calibrated solutions 	 The functional depends on a POD to be solved at each iterative step 		

Optimization for quasi self-similar solutions

Compromise minimization functional (few parameters)

$$\min_{\boldsymbol{w}(\Xi_{\text{few}})\in\mathbb{R}^{\mathbb{Q}\times\mathbb{N}_{\text{few}}}} \sum_{\boldsymbol{\mu}\in\Xi_{\text{few}}} \|\boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot);\boldsymbol{\mu}) - \Pi_{V_{\text{POD}}}\boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot);\boldsymbol{\mu})\|_{L^{2}(\mathcal{R})} + \frac{\delta}{2} \|\partial_{\boldsymbol{\mu}}\boldsymbol{w}(\boldsymbol{\mu})\|_{\ell^{2}(\mathcal{P})}^{2} + \frac{\alpha}{2} \max_{\boldsymbol{x}\in\Omega} \left(\max\left\{\|\nabla\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}})\|, \|\nabla\mathcal{T}^{-1}[\boldsymbol{w}(\boldsymbol{\mu})](\boldsymbol{x})\|\right\}\right),$$
with $V_{\text{POD}} := \text{POD}\left(\{\boldsymbol{u}(\mathcal{T}[\boldsymbol{w}(\boldsymbol{\mu})](\cdot);\boldsymbol{\mu})\}_{\boldsymbol{\mu}\in\Xi_{\text{few}}}\right)$

Compromise minimization functional (all parameters)

$$\forall \boldsymbol{\mu} \in \Xi_{\text{train}} \min_{\boldsymbol{w}(\boldsymbol{\mu}) \in \mathbb{R}^{Q}} \| \boldsymbol{u}(T[\boldsymbol{w}(\boldsymbol{\mu})](\cdot); \boldsymbol{\mu}) - \Pi_{V_{\text{POD}}} \boldsymbol{u}(T[\boldsymbol{w}(\boldsymbol{\mu})](\cdot); \boldsymbol{\mu}) \|_{L^{2}(\mathcal{R})} + \frac{\delta}{2} \| \partial_{\boldsymbol{\mu}} \boldsymbol{w}(\boldsymbol{\mu}) \|_{\ell^{2}(\mathcal{P})}^{2} + \frac{\alpha}{2} \max_{\boldsymbol{x} \in \Omega} \left(\max \left\{ \| \nabla T[\boldsymbol{w}(\boldsymbol{\mu})](\hat{\boldsymbol{x}}) \|, \| \nabla T^{-1}[\boldsymbol{w}(\boldsymbol{\mu})](\boldsymbol{x}) \| \right\} \right),$$
with $V_{\text{POD}} := \text{POD}\left(\{ \boldsymbol{u}(T[\boldsymbol{w}(\boldsymbol{\mu})](\cdot); \boldsymbol{\mu}) \}_{\boldsymbol{\mu} \in \Xi_{\text{few}}} \right)$

Table of contents

1 MOR for hyperbolic problem

- **2** Piece-wise Cubic transformations
- **3** Optimize the control points

4 Forecasting

6 Results

6 Possible extensions and limitations

Summary

What we did?

- Compute FOM for various $oldsymbol{\mu}\in \Xi_{ ext{train}}$
- Find $oldsymbol{w}(\mu)$ for each μ with optimization

What we have?

- For all $\mu\in \Xi_{\mathsf{train}}$ we know how to calibrate
- Now, $\{u(\mathcal{T}[\boldsymbol{w}(\mu)](\cdot),\mu)\}_{\mu\in \Xi_{train}}$ is decently reducible!!

What is missing for the online phase?

- Knowing $oldsymbol{w}(\mu)$ for a new parameter μ
- Reduction of calibrated solutions

Learning w

Artificial Neural Network

- Use calibrated \boldsymbol{w} to get an estimator $\widehat{\boldsymbol{w}}(\mu)$
- ANN with 4 hidden layers, 16 neurons each, tanh activation

Properties

- Minimization constraints cannot be fulfilled
- Enforcing $w_{i,j} < w_{i+1,j}$, learning positive quantities $w_{i+1,j} w_{i,j}$ with (positive) Softplus final activation function

20/41

POD-NN

Offline phase

- POD ({ $u(T[\mu](\cdot);\mu)$ }_{\mu\in\Xi_{train}}) =: \mathbb{V}_{N_{RB}}
- Projection onto $\mathbb{V}_{N_{RB}}$

 $(\psi_j,\psi_i)\hat{u}_i(\mu)=(\psi_j,u(\mathcal{T}[\mu](\cdot);\mu)) \qquad i=1,\ldots,N_{RB},\qquad \mu\in \Xi_{ ext{train}}$

• Learn the map
$$oldsymbol{\mu} o \hat{u}_i(oldsymbol{\mu})$$
 for all $i=1,\ldots,N_{ extsf{RB}}.$

(POD)-Neural Network

- Same architecture as for learning *w*
- 4 hidden layers
- 16 neurons each

21/41

tanh as activation function

Table of contents

1 MOR for hyperbolic problem

- **2** Piece-wise Cubic transformations
- **3** Optimize the control points

4 Forecasting

5 Results

6 Possible extensions and limitations

Sod shock tube test case: no parameters only time dependence

Euler Equations

$$\begin{cases} \partial_t \rho + \partial_x (\rho u) = 0\\ \partial_t (\rho u) + \partial_x (\rho u^2 + p) = 0\\ \partial_t (\rho E) + \partial_x (u(\rho E + p)) = 0\\ + \text{EOS: } E = \frac{p}{\rho(\gamma - 1)} + \frac{u^2}{2} \end{cases}$$

Riemann Problem: Sod Shock tube

$$\begin{pmatrix} \rho \\ u \\ p \end{pmatrix} = \begin{cases} \left(1 & 0 & 1 \right)^T & \text{if } x < 0.5 \\ \left(0.1 & 0 & 0.125 \right)^T & \text{if } x > 0.5 \end{cases}$$

Sod shock tube test case: no parameters only time dependence

Sod shock tube test case: no parameters only time dependence

Sod shock tube test case: no parameters only time dependence

Sod shock tube test case: no parameters only time dependence

Sod shock tube test case: no parameters only time dependence

Transformations and calibration

Singular values decay for original problem (blue) and transformed problem (orange)

Singular values decay for original problem (blue) and transformed problem (orange)

Multilayer Perceptron Regression for θ

Singular values decay for original problem (blue) and transformed problem (orange)

Multilayer Perceptron Regression for θ

Singular values decay for original problem (blue) and transformed problem (orange)

Multilayer Perceptron Regression for θ

Singular values decay for original problem (blue) and transformed problem (orange)

Multilayer Perceptron Regression for $\boldsymbol{\theta}$

Singular values decay for original problem (blue) and transformed problem (orange)

Multilayer Perceptron Regression for θ

Singular values decay for original problem (blue) and transformed problem (orange)

Singular values decay for original problem (blue) and transformed problem (orange)

Singular values decay for original problem (blue) and transformed problem (orange)

Singular values decay for original problem (blue) and transformed problem (orange)

Multilayer Perceptron Regression for θ

Singular values decay for original problem (blue) and transformed problem (orange)

Sod: Validation of calibration strategy

Figure: Calibration error for Sod 1D at different times (parameter μ) using different initial guess times (parameter $\bar{\mu}$), for the FV solutions. Left: $\bar{\rho} = \rho(\bar{\mu})$, $\mathbf{w}^{(0)}(\mu) = \mathbf{w}^{ex}(\bar{\mu})$, error measure $||\theta^{opt}(\mu) - \theta^{ex}(\mu)||_1$. Right: $\bar{\rho} = \rho(\bar{\mu})$ and $\bar{\mathbf{w}} = \mathbf{w}^{(0)}(\mu) = \{0.2, 0.4, 0.6, 0.8\}$ for all μ , error measure $||\hat{\rho}(\mu, \mathbf{w}(\theta^{opt}(\mu))) - \Pi_{\bar{\rho}}\hat{\rho}(\mu, \mathbf{w}(\theta^{opt}(\mu)))||_2^2$

Sod: Validation of calibration strategy

Figure: Calibration error for Sod 1D at different times (parameters) using different calibration strategies, for the FV solutions. Left: exact waves calibration as initial guess and right for equispaced initial guess calibration points. Error measure: $||\theta^{opt}(\mu) - \theta^{ex}(\mu)||_1$ (left) and $||\hat{\rho}(\mu, w(\theta^{opt}(\mu))) - \Pi_{\overline{\rho}}\hat{\rho}(\mu, w(\theta^{opt}(\mu)))||_2^2$ (right)

D. Torlo MOR for advection dominated problems

Figure: Sod 1D: Eigenvalue decay of the PODs (normalized to have $\lambda_1 = 1$) non parametric (left) and parametric (right)

Non parametric DMR

- Oblique shock hitting the bottom wall
- $\rho_L = 8, \ |\underline{u}_L| = 8.25, \ \arctan \underline{u} = \frac{\pi}{6}, \ p_L = 116.5$

•
$$\rho_R = 1.4, \ u_R = 0, \ v_R = 0, \ p_R = 1$$

Parametric DMR

- Oblique shock hitting the bottom wall
- $\rho_L = 8, |\underline{u}_L| = 8.25, \arctan \underline{u} \in [0.1, 0.675], \rho_L = 116.5$

•
$$\rho_R = 1.4, \ u_R = 0, \ v_R = 0, \ p_R = 1$$

Double Mach reflection 2D

parametric on the right

Double Mach reflection 2D (not parametric): calibration

Figure: FOM solution for ρ for DMR non parametric at times 0.05 (top), 0.15 (center) and 0.25 (bottom) in the physical domain Ω (left) and, after calibration, in the reference configuration \mathcal{R} (right). We mark on the plots the control points and the Cartesian grid that links them in the reference domain and its image through \mathcal{T} on the physical one.

Double Mach reflection 2D (not parametric): error

Figure: DMR non parametric: Error in time of reduced methods with different number N of modes

Double Mach reflection 2D (non parametric): simulations

Figure: DMR non parametric: ROM solutions for ρ in Ω at times 0.05 (top), 0.15 (center) and 0.25 (bottom). Left column: ALE ROM solution with N = 2. Right column: Eulerian ROM solution with N = 30.

Double Mach reflection 2D (parametric): simulations

Figure: DMR parametric FOM solution for ρ at times t = 0.096, t = 0.148 and t = 0.2 (top to bottom) in the physical domain Ω (left) and, after calibration, in the reference configuration \mathcal{R} (right).
Double Mach reflection 2D (parametric): simulations

Figure: DMR parametric FOM solution for ρ at times t = 0.096, t = 0.148 and t = 0.2 (top to bottom) in the physical domain Ω (left) and, after calibration, in the reference configuration \mathcal{R} (right).

Double Mach reflection 2D (parametric): error

Figure: DMR parametric: Error in time of reduced methods with different number N of modes. Parameter in test set $\beta = 0.675$

Triple point (non parametric)

Triple Point Non-parametric: Simulations $N_{RB} = 7$

39/41

Triple Point Non-parametric: Simulations $N_{RB} = 7$

Table of contents

1 MOR for hyperbolic problem

- **2** Piece-wise Cubic transformations
- **3** Optimize the control points
- 4 Forecasting

6 Results

6 Possible extensions and limitations

Extensions and limitations

Limitations

- Beginning of the simulation still tricky (singularity not handled)
- Chaotic simulations
- Extrapolatory regime
- Delicate optimization

Extensions

- ALE online solver
- Local ROM for different regimes
- · Comparison with completely nonlinear ROMs

Extensions and limitations

Limitations

- Beginning of the simulation still tricky (singularity not handled)
- Chaotic simulations
- Extrapolatory regime
- Delicate optimization

Extensions

- ALE online solver
- Local ROM for different regimes
- Comparison with completely nonlinear ROMs

Thanks for the attention!

Graph Neural Network on vanishing viscosity solutions arxiv:2308.03378

Figure: VV. Scalar concentration advected by incompressible flow for i = 99. Comparison of ROM approach at different viscosity levels $\kappa \in \{0.05, 0.01, 0.0005\}$ and GNN for $\kappa = 0.0005$.

41/41

D. Torlo MOR for advection dominated problems

Residual Distribution

- High order
- FE based
- Compact stencil
- Explicit
- Can recast some other FV, FE, FD, DG schemes 1

¹R. Abgrall. Computational Methods in Applied Mathematics, 2018

Residual Distribution

- High order
- FE based
- Compact stencil
- Explicit
- Can recast some other FV, FE, FD, DG schemes 1

$$\partial_t U + \nabla \cdot F(U) = 0 \tag{1}$$

$$V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), \ U|_{\mathcal{K}} \in \mathbb{P}^k, \ \forall \mathcal{K} \in \Omega_h \}.$$
(2)

$$U_{h} = \sum_{\sigma \in D_{\mathcal{N}}} U_{\sigma} \varphi_{\sigma} = \sum_{K \in \Omega_{h}} \sum_{\sigma \in K} U_{\sigma} \varphi_{\sigma}|_{K}$$
(3)

¹R. Abgrall. Computational Methods in Applied Mathematics, 2018

Residual Distribution - Spatial Discretization

- 1. Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot F(U) dx$
- 2. Define a nodal residual $\phi_{\sigma}^{\kappa} \ \forall \sigma \in K$:

$$\phi^{\mathsf{K}} = \sum_{\sigma \in \mathsf{K}} \phi^{\mathsf{K}}_{\sigma}, \quad \forall \mathsf{K} \in \Omega_{h}.$$
(4)

3. The resulting scheme is

$$U_{\sigma}^{n+1} - U_{\sigma}^{n} + \Delta t \sum_{K \mid \sigma \in K} \phi_{\sigma}^{K} = 0, \quad \forall \sigma \in D_{\mathcal{N}}.$$
(5)

Residual Distribution

- High order
- Easy to code
- FE based
- Compact stencil
- No need of Riemann solver
- No need of conservative variables
- Can recast some other FV, FE schemes

Residual Distribution

- High order
- Easy to code
- FE based
- Compact stencil
- No need of Riemann solver
- No need of conservative variables
- Can recast some other FV, FE schemes

$$\partial_t U + \nabla \cdot A(U) = S(U)$$
 (6)

$$V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), \ U|_{\mathcal{K}} \in \mathbb{P}^k, \ \forall \mathcal{K} \in \Omega_h \}.$$
(7)

$$U_{h} = \sum_{\sigma \in D_{\mathcal{N}}} U_{\sigma} \varphi_{\sigma} = \sum_{K \in \Omega_{h}} \sum_{\sigma \in K} U_{\sigma} \varphi_{\sigma}|_{K}$$
(8)

41/41

Residual Distribution - Spatial Discretization

Focus on steady case.

- 1. Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot A(U) S(U) dx$
- 2. Define a nodal residual $\phi_{\sigma}^{\kappa} \forall \sigma \in K$:

$$\phi^{\kappa} = \sum_{\sigma \in \kappa} \phi^{\kappa}_{\sigma}, \quad \forall \kappa \in \Omega_{h}.$$
(9)

Often done assigning $\phi_{\sigma}^{\rm K}=\beta_{\sigma}^{\rm K}\phi^{\rm K}$, where must hold that

$$\sum_{\sigma \in \mathcal{K}} \beta_{\sigma}^{\mathcal{K}} = \mathrm{Id.}$$
 (10)

3. The resulting scheme is

$$\sum_{K|\sigma\in K} \phi_{\sigma}^{K} = 0, \quad \forall \sigma \in D_{\mathcal{N}}.$$
(11)

This will be called residual distribution scheme.

Residual distribution - Choice of the scheme

How to split total residuals into nodal residuals \Rightarrow choice of the scheme.

$$\begin{split} \phi_{\sigma}^{K,LxF}(U_{h}) &= \int_{K} \varphi_{\sigma} \left(\nabla \cdot A(U_{h}) - S(U_{h}) \right) dx + \alpha_{K} \left(U_{\sigma} - \overline{U}_{h}^{K} \right), \\ \overline{U}_{h}^{K} &= \int_{K} U_{h}, \quad \alpha_{K} = \max_{e \text{ edge } \in K} \left(\rho_{S} \left(\nabla A(U_{h}) \cdot \mathbf{n}_{e} \right) \right), \\ \beta_{\sigma}^{K}(U_{h}) &= \max \left(\frac{\Phi_{\sigma}^{K,LxF}}{\Phi^{K}}, 0 \right) \left(\sum_{j \in K} \max \left(\frac{\Phi_{j}^{K,LxF}}{\Phi^{K}}, 0 \right) \right)^{-1}, \\ \phi_{\sigma}^{*,K} &= (1 - \Theta) \beta_{\sigma}^{K} \phi_{\sigma}^{K} + \Theta \Phi_{\sigma}^{K,LxF}, \quad \Theta = \frac{|\Phi^{K}|}{\sum_{j \in K} |\Phi_{j}^{K,LxF}|}, \\ \phi_{\sigma}^{K} &= \beta_{\sigma}^{K} \phi_{\sigma}^{*,K} + \sum_{e \text{ ledge } of K} \theta h_{e}^{2} \int_{e} [\nabla U_{h}] \cdot [\nabla \varphi_{\sigma}] d\Gamma. \end{split}$$

41/41

Error estimator

Additional hypothesis:

- $Id + \Delta t \mathcal{L}$ is Liptschitz continuous with constant C > 0,
- There are N'_{EIM} extra functions and functionals that capture the evolution of the solutions. (experimentally not so strict),
- Initial conditions are exactly represented in the reduced basis RB.

Total error estimator:

- EIM error, estimated by other N'_{EIM} basis functions f and functional τ iterating the EIM procedure after the stop, cost $\mathcal{O}(N'_{EIM})$,
- RB error given by the Lipschitz constant times residual of the small system,
- additionally one can add the projection error of the initial condition when not in RB.

Empirical interpolation method (EIM)

INPUT: $\mathcal{L}^n(U^n, \mu, t^n)$, for $\mu \in \mathcal{P}_h$, $n \leq N_t$

OUTPUT: $EIM = (\tau_k, f_k)_{k=1}^{N_{EIM}}$ where functions $f_k \in \mathbb{R}^N$ and $\tau_k \in (\mathbb{R}^N)'$ (Examples of τ_k are point evaluations)

- Greedy iterative procedure
- At each step chooses the worst approximated function via an error estimator $\mathcal{L}^{\textit{worst}} = \arg \max_{\mathcal{L}} ||\mathcal{L} \sum_{k=1}^{N_{EIM}} \tau_k(\mathcal{L})f_k||$
- Maximise the functional au on the function $\mathcal{L}^{\textit{worst}}$ $au^{\textit{chosen}} = \arg\max_{\tau} | au(\mathcal{L}^{\textit{worst}})|$
- $\textit{EIM} = \textit{EIM} \cup (\tau^{\textit{chosen}}, \mathcal{L}^{\textit{worst}})$
- Stop when error is smaller than a tolerance

Proper orthogonal decomposition (POD)

INPUT: Collection of functions $\{f_j\}_{j=1}^N$

OUTPUT: Reduced basis spaces $RB = \underset{U|\text{dim}(U)=N_{POD}}{\arg\min} \sum_{j=1}^{N} ||f_j - \mathcal{P}_U(f_j)||_2$

- Based on SVD
- Prescribed tolerance to stop the algorithm
- Global optimizer of the problem

Greedy algorithm

41/41

INPUT: Collection of functions $\{f_j\}_{j=1}^N$

OUTPUT: Reduced basis space RB

- There is an error estimator (normally cheap) $arepsilon_{RB}(f) \sim ||f \mathcal{P}_{RB}(f)||$
- Iteratively choose the worst represented function $f^{worst} = \arg \max_{\epsilon} \varepsilon_{RB}(f)$
- Add *f*^{worst} to the *RB* space
- Stop up to a certain tolerance

MOR: Ingredients

- Discretized solution $u_\mathcal{N}(\cdot,t,\mu)\in\mathbb{V}_\mathcal{N}$ for $t\in\mathbb{R}^+,\ \mu\in\mathcal{P}$
- Solution manifold: $\mathcal{S} := \{u_{\mathcal{N}}(\cdot, t, \mu) \in \mathbb{V}_{\mathcal{N}} : t \in \mathbb{R}^+, \mu \in \mathcal{P}\}$
- Ansatz:

$$S \approx \mathbb{V}_{N_{RB}} \subset \mathbb{V}_{\mathcal{N}}, \qquad N_{RB} \ll \mathcal{N}$$
 (13)

• Example: diffusion equation $u_t + \mu u_{xx} = 0$ with $u_0 = \sin(x\pi)$

Figure: POD on a diffusion problem

MOR: Ingredients

Problem:

$$U^{n+1}(\mu) - U^{n}(\mu) + \mathcal{L}^{n}(U^{n},\mu) = 0, \quad U^{n}, U^{n+1} \in \mathbb{V}_{\mathcal{N}}$$
(14)

Objective:

$$\sum_{i=1}^{N_{RB}} \mathbf{u}_{i}^{n+1}(\boldsymbol{\mu})\psi_{RB}^{i} - \mathbf{u}_{i}^{n}(\boldsymbol{\mu})\psi_{RB}^{i} + \sum_{i=1}^{N_{RB}} \mathbf{L}^{i}(\mathbf{u}^{n},\boldsymbol{\mu})\psi_{RB}^{i} = \mathbf{0},$$

$$\psi_{RB}^{i} \in \mathbb{V}_{\mathcal{N}}, \mathbf{u}^{n}, \mathbf{u}^{n+1} \in \mathbb{V}_{N_{RB}}$$
(15)

- EIM \Rightarrow non–linear fluxes and scheme $L^{i}(u^{n}, \mu)$
- $\mathsf{POD} \Rightarrow \mathsf{create}$ the RB space and span the time evolution
- Greedy \Rightarrow span the parameter space

Proper orthogonal decomposition (POD)

POD

INPUT:

• Collection of functions $\{f_j\}_{j=1}^N$

OUTPUT:

• Reduced basis spaces $\mathbb{V}_{N_{RB}} = \operatorname*{arg\,min}_{U|dim(U)=N_{POD}} \sum_{j=1}^{N} ||f_j - \mathcal{P}_U(f_j)||_2$

ALGORITHM:

- Based on SVD of matrix $\{f_j\}_{j=1}^N$
- We obtain (ordered) singular values and vectors
- Retain most energetic (largest singular value)
- Prescribed tolerance to stop the algorithm or maximum number of basis
- Related singular vectors gives $\mathbb{V}_{\textit{N_{RB}}}$
- Global optimizer of the problem

Greedy algorithm

Greedy algorithm

INPUT:

- Collection of functions $\{f_j\}_{j=1}^N$
- Cheap error estimator $arepsilon_{RB}(f) \sim ||f \mathcal{P}_{RB}(f)||$

OUTPUT:

• Reduced basis space $\mathbb{V}_{N_{RB}}$

ALGORITHM:

- Iteratively choose the worst represented function $f^{worst} = \arg \max_{f} \varepsilon_{RB}(f)$
- Add f^{worst} to the $\mathbb{V}_{N_{RB}}$ space
- Stop up to a certain tolerance
- Not globally optimal, but locally optimal at each iteration (Greedy)

Empirical interpolation method (EIM)

INPUT:

• $\mathcal{L}^n(U^n, \mu, t^n),$ for $\mu \in \mathcal{P}_h, \ n \leq N_t$

OUTPUT:

• $EIM = (\tau_k, f_k)_{k=1}^{N_{EIM}}$ where functions $f_k \in \mathbb{R}^N$ and $\tau_k \in (\mathbb{R}^N)'$

 (au_k, f_k) are often called magic points and functions, where au_k are function evaluations

ALGORITHM:

- Greedy iterative procedure
- At each step chooses the worst approximated function via an error (estimator) $\mathcal{L}^{\textit{worst}} = \arg \max_{\mathcal{L}} ||\mathcal{L} \sum_{k=1}^{N_{EIM}} \tau_k(\mathcal{L}) f_k||$
- Maximise the functional au on the function $\mathcal{L}^{\textit{worst}}$ $au^{\textit{chosen}} = \arg\max| au(\mathcal{L}^{\textit{worst}})|$
- $\textit{EIM} = \textit{EIM} \cup (\tau^{\textit{chosen}}, \mathcal{L}^{\textit{worst}})$
- Stop when error is smaller than a tolerance

Offline Algorithm: PODEIM-Greedy²

PODEIM–Greedy

INITIALIZATION:

- EIM on $\mathcal{L}(U^n, \mu_0, t^n)$ for $n \leq N_t$
- $\mathbb{V}_{N_{RB}} = POD(\{U^n(\mu_0)\}_{n=0}^{N_t})$

ITERATION:

- Greedy algorithm spanning over the parameter space \mathcal{P}_h , with an error indicator $\varepsilon(\mathbf{U}(\mu))$ where $\mathbf{U}(\mu) \in \mathbb{R}^N \times \mathbb{R}^+$
- Choose worst parameter as $\mu^* = rg\max_{\mu\in\mathcal{P}_h} arepsilon(\mathbf{U}(\mu))$
- Apply POD on time evolution of selected solution $POD_{add} = POD\left(\{U^n(\mu^*)\}_{n=1}^{N_t}\right)$
- Update the $\mathbb{V}_{N_{RB}}$ with $\mathbb{V}_{N_{RB}} = POD\left(\mathbb{V}_{N_{RB}} \cup POD_{add}\right)$
- Update EIM basis function with $EIM_{space} = EIM_{space} \cup EIM(\{\mathcal{L}(U^n, \mu^*, t^n)\}_{n=0}^{N_t})$

 $^{^2\}mathsf{B}.$ Haasdonk and M. Ohlberger, in Hyperbolic problems: theory, numerics and applications, vol. 67, Amer. Math. Soc., 2009.

Online algorithm: PODEIM-Greedy

Reduced Order Model system

Solve the smaller system:

$$\sum_{i=1}^{N_{RB}}(\mathrm{u}_i^{n+1}(oldsymbol{\mu})-\mathrm{u}_i^n(oldsymbol{\mu}))\psi_{RB}^i+\sum_{i=1}^{N_{RB}}\sum_{j=1}^{N_{EIM}} au_j(\mathcal{L}(U^n,oldsymbol{\mu})){\sf \Pi}_{RB,i}(f_j)\psi_{RB}^i=0$$

- $\Pi_{RB,i}(f_j)$ are the projection on $\mathbb{V}_{N_{RB}}$ of the EIM functions: offline
- $au_j(\mathcal{L}(U^n,\mu))$ are inexpensive to compute, but depend on the method (for RD $pprox \mathcal{O}(d)$)
- MOR cost $\mathcal{O}(N_t N_{RB} N_{EIM})$ vs FOM cost $\mathcal{O}(N_t \mathcal{N})$
- Gain if $N_{RB}, N_{EIM} \ll \mathcal{N}$
- Error estimator

Learning of θ

Calibration map

- $\theta(\mu)$ tells us where a feature is (maximum point, steepest gradient)
- How to choose it? (second part)
- How to learn the map? (Offline we want to know the map in advance)
- Offline: optimization of θ s on a training sample
- Generation of a regression map $\widehat{\theta}$

Piecewise linear regression for every timestep t^n

- If parameter domain is a grid \Rightarrow Easy, fast
- Non-structured parameter domain \Rightarrow Different algorithms, may be costly
- Precise if $|\mathcal{P}_h| \sim s^P$ with s big enough
- May not catch the nonlinear behavior and produce unreasonable results

Learning of θ

Calibration map

- $\theta(\mu)$ tells us where a feature is (maximum point, steepest gradient)
- How to choose it? (second part)
- How to learn the map? (Offline we want to know the map in advance)
- Offline: optimization of θ s on a training sample
- Generation of a regression map $\widehat{\theta}$

Polynomial regression

- Hyperparameter *p*
- Risk of overfitting
- Can easily catch the nonlinear (polynomial) behavior
- Number of coefficients grows exponentially with *p*

$$heta(oldsymbol{\mu},t)pprox \sum_{|lpha|\leq p}eta_lpha t^{\gamma_0}\prod_{i=1}^p\mu_i^{\gamma_i}$$

Learning of θ

Neural networks

- Why? Naturally nonlinear, we may not have a structured dictionary
- Which one? Multi-layer-perceptron, N layers ([4, 10]), M_n nodes ([6, 20])

Multilayer perceptron

Travelling wave, time evolution solution

Figure: Solution of advection equation $\partial_t u + \partial_x u = 0$ with gaussian IC

Travelling shock, time evolution solution, little diffusion

Travelling shock, POD, little diffusion

Figure: POD of time evolution of advection equation with shock IC

Travelling shock, time evolution solution, no diffusion

Travelling shock, POD, no diffusion

Figure: POD of time evolution of advection equation with shock IC
Common problems and properties

- As many basis functions as positions of the shock
- Slow decay of Kolmogorov *N*-width

$$d_N(\mathcal{S},\mathbb{V}) := \inf_{\mathbb{V}_N \subset \mathbb{V}} \sup_{f \in \mathcal{S}} \inf_{g \in \mathbb{V}_N} ||f - g||$$

- Non linear dependency leads to big EIM and RB space
- 1/2 parameters problem (highly non linear dependence on parameters)

D. Torlo

D. Torlo

$$\begin{cases} u_t + \mu_0 u_x = 0, D = [0, 1], T_{max} = 0.6, \text{ periodic BC} \\ u_0(x, \mu) = e^{-\mu_1(x - \mu_2)^2} \\ \mu_0 \sim \mathcal{U}([0, 2]), \mu_1 \sim \mathcal{U}([500, 1500]), \mu_2 \sim \mathcal{U}([0.1, 0.3]) \end{cases}$$

Without calibration		With calibration:	Poly2
RB dim	RB dim 52		4
EIM dim	54	EIM dim	7
FOM time	191 s	FOM time	516 s
RB time	24 s	RB time	18 s
RB/FOM time	12%	RB/FOM time	3%

$$\begin{cases} u_t + \mu_0 u_x = 0, D = [0, 1], T_{max} = 0.6, \text{ periodic BC} \\ u_0(x, \mu) = e^{-\mu_1(x - \mu_2)^2} \\ \mu_0 \sim \mathcal{U}([0, 2]), \mu_1 \sim \mathcal{U}([500, 1500]), \mu_2 \sim \mathcal{U}([0.1, 0.3]) \end{cases}$$

Without calibration		With calibration: ANN		
RB dim	RB dim 52		12	
EIM dim	54	EIM dim	20	
FOM time	191 s	FOM time	516 s	
RB time	24 s	RB time	38 s	
RB/FOM time	12%	RB/FOM time	7%	

Advection: traveling shock

Advection: traveling shock

$$\begin{cases} u_t + \mu_0 u_x = 0, \ D = [0,1], \ T_{max} = 1.5, \ \text{Dirichlet BC} \\ u_0(x,\mu) = \begin{cases} \mu_1 & \text{if } x < 0.35 + 0.05\mu_2 \\ 0 & \text{else} \end{cases} \\ \mu_0 \sim \mathcal{U}([0,2]), \ \mu_1,\mu_2 \sim \mathcal{U}([-1,1]) \end{cases}$$

Without calibration		With calibration: Poly2		
RB dim	64	RB dim	17	
EIM dim	124	EIM dim	22	
FOM time	49 s	FOM time	125 s	
RB time	9 s	RB time	6 s	
RB/FOM time	18%	RB/FOM time	5%	

Advection: traveling shock

Burgers sine

41/41

$$\begin{cases} u_t + \mu_0(u^2/2)_x = 0, \ D = [0, \pi], \ T_{max} = 0.15, \text{ periodic BC} \\ u_0(x, \mu) = |\sin(x + \mu_1)| + 0.1 \\ \mu_0 \sim \mathcal{U}([0, 2]), \ \mu_1 \sim \mathcal{U}([0, \pi]) \end{cases}$$

Without calibra	ation	With calibration:	Poly3
DD dim	failed	DP dim	10
RB dim	Tailed	RB dim	19
EIM dim	$>\!600$	EIM dim	41
FOM time	167 s	FOM time	444 s
RB time	∞	RB time	53 s
RB/FOM time	∞	RB/FOM time	11%

D. Torlo MOR for advection dominated problems

Buckley-Leverett equation

41/41

D. Torlo MOR for advection dominated problem

$$\begin{cases} \partial_t u + \partial_x \frac{u^2}{u^2 + \mu_0(1 - u^2)} = 0, \ D = [0, 1], \ T_{max} = 0.25, \ \text{periodic BC} \\ u_0(x, \mu) = 0.5 + 0.2\mu_1 + 0.3\mu_1 \sin(2\pi(x - \mu_1 - 0.5)) \\ \mu_0 \sim \mathcal{U}([0.001, 2]), \ \mu_1 \sim \mathcal{U}([0.1, 1]) \end{cases}$$

Without calibration ³		With calibration: pwL		
RB dim	16	RB dim	25	
EIM dim	270	EIM dim	45	
FOM time	190 s	FOM time	462 s	
RB time	69 s	RB time	79 s	
RB/FOM time	36%	RB/FOM time	17%	

41/ 41

³It does not reach the requested tolerance 10^{-3}

Buckley-Leverett equation

Augmenting diffusion and ROMs

Figure: VV. Scalar concentration advected by incompressible flow for i = 99 at different viscosity levels $\kappa \in \{0.05, 0.01, 0.0005\}$

Figure: Relative errors of ROMs for different viscosities. Training correspond to the abscissae $0, 5, 10, \ldots, 95$, the rest are test parameters. The dashed red background highlights the extrapolation range. The reduced dimensions of the ROMs are $\{N_{RB\Omega_i}\}_{i=1}^{K} = [5, 5, 5, 5]$ with K = 4 partitions.

Viscosity

- Vanishing viscosity guarantees the convergence towards physically relevant solution
- Viscosity can be artificial or physically modeled
- Higher viscosity can come from **coarser** grids
- High viscosity solutions do not suffer from slow decay of Kolomogorov n-width

Main idea

- Use classical ROM for high viscosity
- Learn with NN the vanishing viscosity limit

Architecture

Inputs

- Local data of reduced solutions from higher viscosity levels (cheap to compute) (solution, its gradient)
- Mesh connectivity (all)

Output

• "Vanishing" viscosity solution

Supervised learning

• Training data: ROMs for high viscosities, FOM for vanishing viscosity

Layers: arxiv:2308.03378 Training time: 1h

Results GNN

Figure: Relative errors for the scalar conservation advected by incompressible flow problem. **Top:** errors with different GNN approaches given by the three augmentation \mathcal{O}_1 , \mathcal{O}_2 and \mathcal{O}_3 and by using either 1 viscosity level (1 fidelity) or 2 (all fidelities) and errors for DD-ROM with the same viscosity level $\nu = 0.0005$. **Bottom:** errors for ROM approaches at different viscosity levels. The reduced dimensions of the ROMs are $\{N_{RB\Omega_i}\}_{i=1}^{K} = [5, 5, 5]$ with K = 4 partitions.

Results GNN

	F	МС	ROM			
κ	N _h	time	N _{RB i}	time	speedup	mean L^2 error
0.05	43776	3.243 [s]	[5, 5, 5, 5]	59.912 [µs]	54129	0.00595
0.01	43776	3.236 [s]	[5, 5, 5, 5]	79.798 [µs]	40552	0.0235
0.0005	175104	9.668 [s]	[5, 5, 5, 5]	95.844 [μs]	100872	0.0796

κ	GNN training time	Single forward GNN online time	Average online time	GNN speedup	mean L ² error
0.0005	≤ 60 [min]	2.661 [s]	0.172 [s]	~ 56	0.0217

FOM $u, \kappa = 0.0005$

ROM u, $\kappa = 0.0005$

GNN *u*, $\kappa = 0.0005$

GNN architecture

	Net		Weights [finp,	f_{out}]	Aggre	gation	Activation	
	Input NNConv		[3 <i>n</i> _{aug} , 18]		A	/g ₁	ReLU	
	SAGEconv		[18, 21]		Avg ₂		ReLU	
	SAGEconv		[21, 24]		Av	/g ₂	ReLU	
	SAGEconv		[24, 27]		Av	/g ₂	ReLU	
	SAGEconv		[27, 30]		Avg_2		ReLU	
	Output NNConv		[30, 1]		Av	/g ₁	-	
NNConvFilters Fi		Fir	st Layer [2, /]	Acti	vation	Secon	d Layer [<i>I</i> , f _{inp} f	f_{out}]
Inp	out NNConv		[2, 12]	Re	eLU	[1	2, 3 <i>n</i> _{aug} · 18]	
Οι	itput NNConv		[2, 8]	Re	eLU		[8, 30]	

Table: Mesh supported augmented GNN

ALE formulation

$$\frac{\partial}{\partial t}v(y,\mu,t) + \frac{dy}{dx}\frac{d}{dy}F(v,\mu) - \frac{dy}{dx}\frac{dv}{dy}\frac{\partial T}{\partial t} = 0$$

With ALE formulation we can apply the EIM procedure with points on the reference domain $\mathcal{R}.$

What does it imply?

- We must know $T(\theta(t, \mu), y)$
 - Offline phase: detect some interesting points (maxima, steepest gradient) (second part)
 - Offline phase: optimize the transformation in some sense (T. Taddei, Ohlberger et al.) (second part)
 - Online phase: predict the value of the transformation. Regression (polynomials, ANN), projections (first part)
- Compute the Jacobian of the transformation $\frac{dy}{dx}$ and the new flux $\frac{dv}{dy} \Rightarrow$ increasing computational costs also in online phase

ALE formulation

$$\frac{\partial}{\partial t}v(y,\mu,t) + \frac{dy}{dx}\frac{d}{dy}F(v,\mu) - \frac{dy}{dx}\frac{dv}{dy}\frac{\partial T}{\partial t} = 0$$

With ALE formulation we can apply the EIM procedure with points on the reference domain $\mathcal{R}.$

What does it imply?

- We must know $T(\theta(t, \mu), y)$
 - Offline phase: detect some interesting points (maxima, steepest gradient) (second part)
 - Offline phase: optimize the transformation in some sense (T. Taddei, Ohlberger et al.) (second part)
 - Online phase: predict the value of the transformation. Regression (polynomials, ANN), projections (first part)
- Compute the Jacobian of the transformation $\frac{dy}{dx}$ and the new flux $\frac{dv}{dy} \Rightarrow$ increasing computational costs also in online phase

Review of the algorithm: PODEI-Greedy in ALE framework

INITIALIZATION of ALE-PODEI-Greedy:

- Compute some Eulerian FOMs
- Compute or optimize $heta(\mu_k, t^n)$ for some $\mu_k \in \mathcal{P}$ and $n \leq N_t$
- Build the regression map $\hat{\theta}: \mathcal{P} \times \mathbb{R}^+ \to \mathbb{R}^q$

INITIALIZATION of PODEI-Greedy:

- EIM on ALE-RHS/fluxes of all times for a given parameter μ_0
- $RB = POD(\{v^n(\mu_0)\}_{n=0}^{N_t})$

ITERATION:

- Greedy algorithm spanning over the parameter space \mathcal{P}_h , with an error indicator $\varepsilon(v(\mu, t^n, \hat{\theta}(\mu, t^n)))$
- Choose worst parameter as $\mu^* = rg\max_{\mu\in\mathcal{P}_h} arepsilon(\mathbf{v}(\mu))$
- Apply POD on ALE time evolution of selected solution $POD_{add} = POD\left(\{v^n(\mu^*)\}_{n=1}^{N_t}\right)$
- Update the *RB* with $RB = POD(RB \cup POD_{add})$
- Update EIM basis function with $EIM_{space} = EIM_{space} \cup EIM(\{RHS(\mu^*, t^n, \hat{\theta}(\mu^*, t^n))\}_{n=0}^{N_t})$

Burgers' equation

Burgers' equation

$$\begin{cases} u_t + \mu_0 (u^2/2)_x = 0, \ D = [0, 1], \ T_{max} = 0.6, \ \text{Dirichlet BC} \\ u_0(x, \mu) = \sin(2\pi(x + 0.1\mu_1))e^{-(60+20\mu_2)(x-0.5)^2}(1 + 0.5\mu_3 x) \\ \mu_0 \sim \mathcal{U}([0, 2]), \ \mu_1 \sim \mathcal{U}([0, 1]), \ \mu_2, \mu_3 \sim \mathcal{U}([-1, 1]) \end{cases}$$

Without calibration ³		With calibration: Poly3		
RB dim	153	RB dim	50	
EIM dim	335	EIM dim	60	
FOM time	119 s	FOM time	314 s	
RB time	50 s	RB time	35 s	
RB/FOM time	42%	RB/FOM time	11%	

41/ 41

³It does not reach the requested tolerance 10^{-3}

Burgers' equation

Multiple points to align

Piecewise Cubic Hermite Interpolating Polynomial PCHIP

- Interpolates some points (not optimizing on the whole mesh)
- Maintains monotonicity of the points (always invertible)
- Polynomials (easy to deal with)
- Easy generalization to Cartesian grids
- More complicated meshes ?

Optimization

• Find θ that minimizes

$$||u(T(heta,\cdot),t,oldsymbol{\mu})-ar{u}(\cdot)||_{\mathcal{R}}$$

- Penalization $|\partial_t \theta|$
- Penalization $\max_{y \in \mathcal{R}} \partial_y T(\theta, y)$ and $\max_{x \in \Omega} \partial_x T^{-1}(\theta, x)$
- Constraint on order $\theta_i < \theta_{i+1}$
- Initial guess, order of optimization
- Algorithm: Sequential Least Squares Programming

Optimization

• Find θ that minimizes

$$|u(T(heta, \cdot), t, \mu) - \overline{u}(\cdot)||_{\mathcal{R}}$$

- Penalization $|\partial_t \theta|$
- Penalization $\max_{y \in \mathcal{R}} \partial_y T(\theta, y)$ and $\max_{x \in \Omega} \partial_x T^{-1}(\theta, x)$
- Constraint on order $\theta_i < \theta_{i+1}$
- Initial guess, order of optimization
- Algorithm: Sequential Least Squares Programming

What is \bar{u} ?

- In some tests $u(t^{end}, \mu)$ is a good choice
- What if more parameters with different *u* values?

Optimal θ s

Optimization

• Find θ that minimizes

$$|u(T(\theta,\cdot),t,\mu)-\overline{u}(\cdot)||_{\mathcal{R}}$$

- Penalization $|\partial_t \theta|$
- Penalization $\max_{y \in \mathcal{R}} \partial_y T(\theta, y)$ and $\max_{x \in \Omega} \partial_x T^{-1}(\theta, x)$
- Constraint on order $\theta_i < \theta_{i+1}$
- Initial guess, order of optimization
- Algorithm: Sequential Least Squares Programming

What is \bar{u} ?

- In some tests $u(t^{end}, \mu)$ is a good choice
- What if more parameters with different *u* values?

Generalization for more u values

• Find $\boldsymbol{\theta}$ that minimizes

 $||u(T(\theta, \cdot), t, \mu) - \mathcal{P}_{\mathbb{V}_{N_{RB}}}(u(T(\theta, \cdot), t, \mu))||_{\mathcal{R}}$

- What is $\mathbb{V}_{N_{RB}}$ at this point? Using few snapshots $\{u(\mu_j, t^{end})\}_{j=1}^M$ for different parameters optimized
 - Manually (if possible multiple features detecting)
 - Iteratively optimizing $\theta(\mu_j)$ using

 $\mathbb{V}_{N_{RB}} = POD(\{u(\mu_j, t^{end}) \circ T(\theta(\mu_j))\}_{j=1}^{M})$

41/41

Learning

Learning θ

- Use calibrated heta to get an estimator $\widehat{ heta}(t, \mu)$
- ANN with 4 hidden layers, 16 neurons each, tanh activation
- Enforcing $\theta_i < \theta_{i+1}$ with Softplus final activation function

Learning

Learning θ

- Use calibrated θ to get an estimator $\widehat{\theta}(t, \mu)$
- ANN with 4 hidden layers, 16 neurons each, tanh activation
- Enforcing $\theta_i < \theta_{i+1}$ with Softplus final activation function

Learning u_{RB} (POD-NN)

- Compute POD on $\{u \circ T(\widehat{\theta}, t^n, \mu_j)\}_{j,n}$ extract $\mathbb{V}_{N_{RB}}$
- Project {u ∘ T(θ, tⁿ, µ_j)}_{j,n} onto V_{N_{RB}} obtaining the reduced coefficients u_{RB}(tⁿ, µ_j)
- Learn the map $\widehat{u}_{RB}(t,\mu)$ with an ANN with 4 hidden layers, 16 neurons and tanh activation

