Adaptive Neural Networks for Reduced Order Modeling

Davide Torlo, Federico Pichi

Dipartimento di Matematica “Guido Castelnuovo”, Universita di Roma La Sapienza, Italy
davidetorlo.it

Roma - 23rd January 2026

SAPIENZA

UNIVERSITA DI ROMA

https://www.davidetorlo.it

Table of contents

@ Adaptive NN

@® Adaptive NN for Reduced Order Modeling
Simulations

© Conclusions

1/ 20 D. Torlo

Table of contents

@ Adaptive NN

2/ 20 D. Torlo

Motivation: too deep too wide networks

Hidden Layers

A}\\q,‘ko,gé}\m{

‘VV
.A «&"&

WA VX“,'//\\(

e Is this optimal?

e Universal approximators

e Adding many layers increase expressibility

e Do we really need so many layers?
e Countless applications

e Could we save some energy?

3/ 20

Rediscovering shallow NN: RelL U 1 hidden layer

1 hidden layer NN

e 1 hidden layer —— ReLU(x) 3 f(x)
e few neurons 5
e RelLU activation function max(x, 0) = x* 1
e Hat function: 1 hidden layer, 3 neurons
h(x) = (x+ 1) =20)" + (x = 1)" -2 -1 | 1
e Every breaking point one neuron — Hat function via ReLUs
e Exploit Finite Element knowledge 1
approximation functions: Piecewise linear
functions 05 |
e Also in more dimensions, e.g.
(ax + by)* P 1 .
—0.5 1+ -

e In D dimensions breaking manifolds are
hyper-planes (lines in 2D)

4/ 20 D. Torlo

Rediscovering shallow NN: RelL U 1 hidden layer

1 hidden layer NN

e 1 hidden layer

e few neurons
e RelLU activation function max(x, 0) = x*

e Hat function: 1 hidden layer, 3 neurons
h(x) = (x +1)" = 2(x)" + (x = 1)"

e Every breaking point one neuron

e Exploit Finite Element knowledge
approximation functions: Piecewise linear
functions

e Also in more dimensions, e.g.

(ax + by)"

e In D dimensions breaking manifolds are
hyper-planes (lines in 2D)

4/ 20 D. Torlo

Rediscovering shallow NN: Rel U 2 hidden layers in 1D

2 hidden layers NN

e Speed up the process of geometrical + f(x)
subdivision

e |n 1D, for example, easy to discretize

discontinuities up to € with 2 hidden layers 1
neuron each

1 t t+ t+ t + -
N(><)=1—(1—g(x—x¢1)+)+ -15 -1 -05 05 1 15

o Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights -1
have to match exactly)

e Fully interpretable

5/ 20 D. Torlo

Rediscovering shallow NN: Rel U 2 hidden |

2 hidden layers NN

e Speed up the process of geometrical
subdivision

e In 1D, for example, easy to discretize
discontinuities up to € with 2 hidden layers 1
neuron each

NG =1- (1= 20— x)")’*

o Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

e Fully interpretable

rs in 1D

05 1 15

5/ 20 D. Torlo

Rediscovering shallow NN: Rel U 2 hidden layers in 1D

2 hidden layers NN

e Speed up the process of geometrical (1 _ lx+)+ f(x)
subdivision

e In 1D, for example, easy to discretize
discontinuities up to € with 2 hidden layers 1
neuron each

1 t t t t+ + -
N(><)=1—(1—g(x—x¢1)+)+ -15 -1 -05 05 1 15

o Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights -1
have to match exactly)

e Fully interpretable

5/ 20 D. Torlo

Rediscovering shallow NN: Rel U 2 hidden |

2 hidden layers NN

e Speed up the process of geometrical
subdivision

e In 1D, for example, easy to discretize
discontinuities up to € with 2 hidden layers 1
neuron each

NG =1- (1= 20— x)")’*

o Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

e Fully interpretable

rs in 1D
f
1_(1 _ %X+)+ (X)
1 N
‘ ‘ ‘ ‘ X
-15 -1 -05 0.5 1 1.5
—11

5/ 20 D. Torlo

Rediscovering shallow NN: Rel U 2 hidden layers in 2D

2 hidden layers NN
e Speed up the process of geometrica

e More easily gets steep gradients

subdivision

Rediscovering shallow NN: Rel U 2 hidden layers in 2D

2 hidden layers NN
e Speed up the process of geometrica

e More easily gets steep gradients

subdivision

1.188
1.055
0.923
0.790
0.658
0.525
0.393
0.261
0.128
—0.004

6/ 20 D. Torlo

Towards simpler NN

Goals: Adaptive NN
e Exploit simple architectures to
?
What we have learned? save computational time in

e 1-hidden-layer NN(x) = A}(A%x + b°)* + b? training!!
- - 0 (0] _ .
breaking lines A7 x + by = 0 for all i o Carefully selecting how many
o 2-hidden-layer NN(x) = A>(A'(A°x + b°)" + b')T + b? breaking lines and where we want
possible breaking lines Az:x + b? =0Vi and to put them

e Copy ideas of hp-adaptive methods
(h is now more nodes, p is now
more layers (not really but more
capability))

AL (A% + %)+ bl =0 Vi

7/ 20 D. Torlo

Adaptive NN?

Incremental architecture

® No a priori knowledge of how many
layers/neurons are needed

o |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least
square for outer layer

o Proceed with optimization process (Adam)

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo

Adaptive NN*

Incremental architecture

e No a priori knowledge of how many
layers/neurons are needed

o |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least

Input
square for outer layer

Layer
o Proceed with optimization process (Adam)

e Increment nodes until a tolerance

e Add neurons so that the new breaking line
falls in the worst represented part (error
estimator)

1Cai, Zhigiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo

Adaptive NN*

Incremental architecture

e No a priori knowledge of how many
layers/neurons are needed

e |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least
square for outer layer

o Proceed with optimization process (Adam)

e Increment nodes until a tolerance

e Add neurons so that the new breaking line
falls in the worst represented part (error
estimator)

1Cai, Zhigiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo

Adaptive NN*

Incremental architecture

e No a priori knowledge of how many
layers/neurons are needed

e |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least
square for outer layer

o Proceed with optimization process (Adam)

e Increment nodes until a tolerance

e Add neurons so that the new breaking line
falls in the worst represented part (error
estimator)

o If error doesn't decrease, add a new layer, so
that new breaking point in worst
approximated region

1Cai, Zhigiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo

Adaptive NN*

Incremental architecture

e No a priori knowledge of how many
layers/neurons are needed

e |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least
square for outer layer

o Proceed with optimization process (Adam)

e Increment nodes until a tolerance

e Add neurons so that the new breaking line
falls in the worst represented part (error
estimator)

o If error doesn't decrease, add a new layer, so
that new breaking point in worst
approximated region

e Continue adding neurons in new layer

1Cai, Zhigiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo

Adaptive NN*

Incremental architecture

e No a priori knowledge of how many
layers/neurons are needed

e |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least
square for outer layer

o Proceed with optimization process (Adam)
e Increment nodes until a tolerance

e Add neurons so that the new breaking line
falls in the worst represented part (error
estimator)

o If error doesn't decrease, add a new layer, so
that new breaking point in worst
approximated region

e Continue adding neurons in new layer

1Cai, Zhigiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo

Example of adaptive NN

After Training
Ref0

Before Training
Ref0

Error In Cells

Ref0

107
1075

1004/

1.00 4

0.75 4

0.50 4
0.25 4

D. Torlo

9/ 20

Example of adaptive NN

Before Training

After Training

Refl

Refl

Error In Cells

Refl

107

10-5

1004/

0.75 4

| 050 1

1.00 4

0.75 4

0.50 4

0.25 |

D. Torlo

9/ 20

“» 1
o
&) g .
£
= -
1] T
P
—
E ~

Ref2

After Training

1.00 4
0.75 4
0.50

Example of adaptive NN

Before Training

Ref2

1.00 4

0.75 4

0.50 4

0.25 |

D. Torlo

9/ 20

Example of adaptive NN

Before Training
Ref3

After Training
Ref3

Error In Cells

Ref3

1075
0

1.00 4

1.00 4

0.75 4
0.50 4
0.25 4

D. Torlo

9/ 20

Example of adaptive NN

After Training
Refd

Before Training
Refd

Error In Cells

Refd

1075
0

1.00 4

0.75 4

1.00 4

0.75 4

0.50 4

n
o
=1

D. Torlo

9/ 20

Example of adaptive NN
After Training Before Training
Ref5 Ref5
1.00 q
0.75 4

0.50

Error In Cells
Ref5
107!
ozs o7
1072
0.00
% =
0.25 ‘ 0.25 4
1 —
0501 % 0.50 4
.
- -
0.75 ‘;\ 0.75 1 =2 2 0 1
b
1.00 1 S 1.00 4
.
3 2 -1 o0 1 2 3 -3

9/ 20 D. Torlo

Example of adaptive NN

Before Training After Training
Ref6 Ref6

1004 Error In Cells

0.75 4 Ref6

0.50 -

9/ 20 D. Torlo

Example of adaptive NN

After Training Before Training
Ref7 Ref7

Error In Cells

Ref7

9/ 20 D. Torlo

Example of adaptive NN

Before Training After Training
Ref13 Refl3

Error In Cells

Refl3

0.75 A E o)

[
. .
. L
1.00 A e 1.00 4 “‘lﬁl
.

9/ 20 D. Torlo

Example of adaptive NN

After Training Before Training
Ref14 Refl4

Error In Cells

Refl4

9/ 20 D. Torlo

Results for ANN: multisin 1D [1 9 16 1]

Loss decay Approximation
—— adaptive —— adaptive: err = 0.0114
—— NN_equi_LSQ —— NN_equi_LSQ: err = 0.0439
10° —— NN_equi —— NN_equi: err = 0.0767
—— NN_rand_LSQ 101 —— NN_rand_LSQ: err = 0.09
—— NN_rand : —— NN_rand: err = 0.0907
107t 5 —— NN_rand_dbl_lyr —— NN_rand_dbl_lyr: err = 0.0776
—— exact
0.54
1072 4
I —— S S
—~0.5-
10-5 4
-1.01
107 ™ T ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ T
[50000 100000 150000 200000 250000 300000 350000 -3 -2 -1 0 1 2 3

10/ 20 D. Torlo

Table of contents

@® Adaptive NN for Reduced Order Modeling
Simulations

11/ 20 D. Torlo

Parametric Problems and R rder M lin

Parametrized problem

e We are looking for the solution u of P(u(u); u) = 0 for some € M
e We can afford computational costs for few u(u;) with {u;}73"
o We want to forecast u(u) for p & {p;}remn

NN to learn functions example

Hidden Layers

Output
Layer

s
NUA AR

12/ 20 D. Torlo

Adaptive NN for Reduced Order Modeling architectures

Adaptive NN and domain dimension

e Error estimator based on domain subdivision Network [2 14 22 1]
from breaking lines

e Defining the breaking hyperplanes is
increasingly complex with dimensions (and
layers)

e Bad idea considering parameter as extra
dimension (curse of dimensionality in error
estimator)

e Code: only 2D

e Consider biases that are parameter dependent
b' = by + by

e Fix a reference parameter p* where to apply
the error estimator

13/ 20 D. Torlo

Adaptive NN ROM architecture

Hidden Layers

Training Strategy

e Option ALL: train from zero with this
architecture

e Option FNP: train first a non parametric for a
w*, start from that architecture and train
again with b = bj(u — p*) + bj initializing
by = 0 and b} = bjyp

e Option 1D-as-2D: If in 1D, and 1 param, we
can pretend it is 2D and train as in 2D

14/ 20 D. Torlo

Burgers shock

Adaptive ALL Comparison at initial time

Solution at t=0 for Burgers-shock Error at t=0 for Burgers-shock
11.10,26,1] 16 o1 — nn_all =0.00523
o , 10, 26, 10 - —— nn_FNP =0.0123
1513 e — 1020 =0.0127
— nn=9.24e05
010
25 1345
12
1177 01
o 008
20 1.009
0.841 0.8 0.06
15 001
0673 06
004
10 4 0.505
04
0001
0337 002
02
0 0.169
0001 00 000
00 00 0000
20 -15 10 05 00 05 10 15 20 220 -15 -10 -05 00 05 10 15 2 o -5 -lo 05 oo 05 10 15 2o 20 -1s 1o 05 0o o5 1o 15 20

Adaptive FNP Adaptive 1D-as-2D

[1,14,39,1] Error NN param = 1.25e-02 [2,19,4,1] Error NN 1D-2D = 1.15e-02
— 10 0 T 10

1513
1345
1177 o1 01
1009
0.841

001 001
0673
0505
0337 0.001 0.001
0169
0.001

0.0001

0.0001

Burgers shock

100 Losses NN for Burgers-shock

10—1 4

1072 4

10—3 p
u —— NN NP

~—— NN all
—— NN FNP
—— NN 1D-2D

10—4 p

1075 p

1076 p

1077 p

1078 T T T T T T T T
0 100000200000 300000 400000 500000 600000 700000

15/ 20 D. Torlo

Sod shock tube

Adaptive ALL Comparison at final time

Solution at £=0.2 for Sod Error at t=0.2 for Sod
11,12, 24,1] Error NN all = 3.19e-02 010
0200 w0 10
1355
0175
1216 008
0.150 01 oz
1077
0125 0938 006
05
0100 0799 001
0.660 0ot
0075
04
0521
0050 0001 002
0382
0025 0203 02
000
0000 0104 0000
00 02 04 05 08 10 0o 02 04 06 08 To 0o 02 04 05 08 10

Adaptive FNP Adaptive 1D-as-2D

(1, 20, 10, 1] Error NN param = 1.06e-02 (2, 35, 1] Error NN 1D-2D = 1.87e-02
W
0025 0243 0243

16/ 20 D. Torlo

Sod shock tube

16/ 20

Solution at t=0 for Sod

Error at t=0 for Sod

10 — — nn_all 0.40 —— nn_all =0.0878
—— nn_FNP —— nn_FNP =0.0101
—— nn_1D-2D —— nn_1D-2D =0.0433
- 0.35 1 —
—— exact
081 0.30 1
0.25 4
0.6
0.20
0.15 1
0.4 4
0.10 4
024 0.05 4
0.00 A
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1o 0.0 0.2 0.4 0.6 0.8 10
D. Torlo

Sod shock tube

16/ 20

Solution at t=0.1 for Sod

Error at t=0.1 for Sod

1.0 q — nn_all — nn_all =0.0265
— —— nn_FNP =0.0113
— mp2p | %987 — np1p-2D =0.0175
0.8 4
0.06
0.6 4
0.04
0.4
0.02
0.2
0.00
. : . . .
0.0 02 0.4 06 08 10 0.0 02 0.4 0.6 08 1.0
D. Torlo

Sod shock tube

16/ 20

Solution at t=0.2 for Sod

Error at t=0.2 for Sod

10 — nn_all 0104 — nn_all =0.0357
. —— nn_FNP —— nn_FNP =0.0118
— nn_1D-2D —— nn_1D-2D =0.0213
—— exact 0.08 | —— nn =0.000922
- nn
0.8
0.06
0.6 |
0.04 4
0.4 4
N\ 0.02 4
0.2
0.00 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1o 0.0 0.2 0.4 0.6 0.8 10
D. Torlo

Sod shock tube

Losses NN for Sod

—— NN NP
~—— NN all
—— NN FNP
—— NN 1D-2D

1078 T T T T T T T T T
0 100000200000300000400000500000600000700000800000

16/ 20 D. Torlo

hock mparison with non iv

Non parametric FNP Learned from non parametric
—— adaptive —— adaptive
~—— NN_equi_LSQ —— NN_equi_LSQ
10° —— NN_equi 10° —— NN_equi

—— NN_rand_LSQ —— NN_rand_LSQ
—— NN_rand ~—— NN_rand

107" 4 —— NN_rand_dbl_lyr 1071 —— NN_rand_dbl_lyr

1072 4 1072 4

e

1073 4 1073 4 k K

104 4 1074 4 \

1075 4 1075 4

1076 L — . . - . 1076 L — : : :

0 50000 100000 150000 200000 250000 0 25000 50000 75000 100000 125000 150000 175000

16/ 20 D. Torlo

hock mparison with non iv

Non parametric FNP Learned from non parametric

adaptive: err = 0.000939 —— adaptive: err = 0.00994
NN_equi_LSQ: err = 0.0258 NN_equi_LSQ: err = 0.0749

~—— NN_equi: err = 0.0549 ~—— NN_equi: err = 0.112
—— NN_rand_LSQ: err = 0.12 1.0 —— NN_rand_LSQ: err = 0.198
101 —— NN_rand: err = 0.116, —— NN_rand: err = 0.198
—— NN_rand_dbl_lyr: err = 0.057 —— NN_rand_dbl_lyr: err = 0.0954
—— exact 0.8 1 exact
0.8
0.6 4
0.6 1
0.4
0.44
0.2
0.21
0.0
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

16/ 20 D. Torlo

2D Double Mach Reflection for Euler’'s Equations

17/ 20

Exact Solution in time

t=02T

t=04T

Exact

t=T

Exact

Exact
2453 2453 2453 2453
2182 2182 2182 2182
08
19.10 1910 1910 19.10
1638 1638 1638 1638
06
13.66 1366 1366 13.66
1094 1094 1094 1094
04
822 822 822 822
551 551 551 551
02
279 279 279 279
007 007 007 007
05 10 15 20 25 30 35
D. Torlo

2D Double Mach Reflection for Euler's E ion

Adaptive ALL Adaptive FNP

Solution NN from non param
(2, 23,49, 1)

Solution NN param

Error NN from non param = 5.44e-02

[2,13,23,1] Error NN param = 1.51201 100 100
0ss e ooom
Adaptive non parametric
Solution NN
[2,23,9,1] Error NN = 3.63e-02 Exact
5 10.0
22.84 22.84
17.98 17.98
15.54 0.1 15.54
. . 1311 13.11
Flnal tlme 10.68 0.01 10.68
025
5.82 0.001 5.82
338 3.38
0.95 - 0.0001 0.95
05 10 15 20 25 30 35 o5 10 15 20 25 30 35 05 10 15 20 25 30 35

17/ 20 D. Torlo

2D Double Mach Reflection for Euler's E ion

Adaptive ALL Adaptive FNP

Solution NN param Solutlon NN from nen param
12,13, 2 Error NN from non param = 7.31e-02

3,1] Error NN param =
Exact
2248
19.66
0.8
14.03
0.6
11.21
Initial time 639
276
-0.06
0.5 15 20 25 30

17/ 20 D. Torlo

Mach Reflection for Euler's E
t=0

Table of contents

© Conclusions

19/ 20 D. Torlo

Conclusions, limitations, perspectives

Summary Adaptive NN .

e Add nodes and layer iteratively
e Try different configurations for parameter

e Use RelLUs to define breaking lines to get dmpErd it s mndl s

mesh
e Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
e 3D

e Error estimator for refining in the right
position

e MOR with a given reference parameter

20/ 20 D. Torlo

Conclusions, limitations, perspectives

Summary Adaptive NN .

e Add nodes and layer iteratively
e Try different configurations for parameter

e Use RelLUs to define breaking lines to get dmpErd it s mndl s

mesh
e Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
e 3D

e Error estimator for refining in the right
position

e MOR with a given reference parameter

THANKS!!

20/ 20 D. Torlo

Adaptive NN details

e How do we initialize all weights and biases at the beginning?

1.00

0.75

Answers: initialization at ref 0
NN(x) = AY(A% + b°)* + b!
o A% b such that A%x; + b? = 0 with x; equispaced

0.50 1

0.25 1

0.00

o |A?| =1 for all i random sign

e Quter layer: Least Square 0251

min Y "|NN(x) — y;[*
J

-0.50 4

Al ,bl -0.75 4

-1.00 1

20/ 20 D. Torlo

Adaptive NN details

e How do we initialize all weights and biases at the beginning?

Answers: initialization at ref 0 ’
NN(x) = AY (A’ + b°)" + b! °
o A% B° such that A%x; + b? = 0 with x; equispaced s

e |A% =1 for all i random sign

e Quter layer: Least Square

min Y |NN(x) — y;[* .
i

Al bl

20/ 20 D. Torlo

Adaptive NN details: first hidden layer

Questions
ow do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

Answers: Additional node in first layer Ref3

e |f Loss is not decreasing more than 4% in the 0]
last 5000 epochs: add new node —

e Cell-wise error: divide the domain with
breaking lines and search for the highest error

e Add new node so that the breaking
hyperplane cuts the barycenter of this cell

107 4

0 0o _
Ap 1 Xbary + by =0

1 1076

e Outer layer: A, ,, =0 - 2 a1 0 T ; 3

20/ 20 D. Torlo

Adaptive NN details: first hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?
1.00

0.75 4
Answers: Additional node in first layer

.
=
»/
\
]
=
-

0.50 -
e |f Loss is not decreasing more than 4% in the
last 5000 epochs: add new node

o Cell-wise error: divide the domain with 0.00
breaking lines and search for the highest error ’

e Add new node so that the breaking

025/

.

-

"

L]
| W,
L %
p
S
-

* L3 *

~0.25
hyperplane cuts the barycenter of this cell 050
0 0
Ap 1 Xbary + by =0 .
e Outer layer: A%1+1 =0 100

-3 -2 -1 0 1 2 3
TR O oo e

Adaptive NN details: first hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?
1.00
: 0.75 1
Answers: Additional node in first layer
0.50 -
e If Loss is not decreasing more than 4% in the
last 5000 epochs: add new node 0254 /
e Cell-wise error: divide the domain with 0.00

breaking lines and search for the highest error

e Add new node so that the breaking —0.25 +
hyperplane cuts the barycenter of this cell

-0.50 -
0 o _

Ap 1 Xbary + by =0 .

e Outer layer: A%1+1 =0 100

-3 -2 -1 0 1 2 3

20/ 20 D. Torlo

Adaptive NN details: second hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

1004}

Answers: Additional layer or node in second 0.75
layer
0.50 4

e If Loss is not decreasing more than 20% in the

last 7 new nodes: add second layer 025/
e Cell-wise error: divide the domain with 0.00
breaking lines and search for the highest error
e Add new layer: A? =1 and —0-251
b? = — ming((A'(A°x + b°)" + b*)") (no —0.50 1
influence)

e Add new node in second layer: more ~0.757

complicated, add one breaking line in one —1.00 1
place, but more unpredictable effects ‘ . T ‘ T . .

-3 -2 -1 0 1 2 3
e

Adaptive NN details: second hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

1004}

Answers: Additional layer or node in second 0.75 4}
layer
0.50 4

e If Loss is not decreasing more than 20% in the

last 7 new nodes: add second layer 0251,
e Cell-wise error: divide the domain with 0.00
breaking lines and search for the highest error
e Add new layer: A? =1 and —0-251
2 _ : 120 0 1)+
b* = — ming((A*(A’x + b°)F +) ™) (no —0.50 |
influence)
e Add new node in second layer: more ~0.757
complicated, add one breaking line in one —1.00 1

place, but more unpredictable effects ‘ . T ‘ T . .

20/ 20 D. Torlo

Adaptive NN details: second hidden layer

Questions
ow do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

Answers: Additional layer or node in second
layer £

e |f Loss is not decreasing more than 20% in the 107! 4
last 7 new nodes: add second layer

e Cell-wise error: divide the domain with
breaking lines and search for the highest error 10 4
e Add new layer: A? =1 and
b? = — ming((A*(A°x + b°)* + b*)*) (no
influence) 1o |

107 4

e Add new node in second layer: more
complicated, add one breaking line in one N o 1 2 3
place, but more unpredictable effects

20/ 20 D. Torlo

Adaptive NN details: second hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

1004

Answers: Additional layer or node in second 0754
layer
0.50 4

e If Loss is not decreasing more than 20% in the

last 7 new nodes: add second layer 0.25 1

o Cell-wise error: divide the domain with 0.00 b
breaking lines and search for the highest error *ﬁ

e Add new layer: A? =1 and —0-251
b? = — ming((A'(A°x + b°)" + b*)") (no —0.50 1
influence)

e Add new node in second layer: more ~0.757
complicated, add one breaking line in one —1.00 1

place, but more unpredictable effects ‘ . T ‘ T . .

20/ 20 D. Torlo

Adaptive NN details: second hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

1004

Answers: Additional layer or node in second 0754
layer
0.50 4

e If Loss is not decreasing more than 20% in the

last 7 new nodes: add second layer 0.25 1

o Cell-wise error: divide the domain with 0.00 b
breaking lines and search for the highest error *ﬁ

e Add new layer: A? =1 and —0-251
b? = — ming((A'(A°x + b°)" + b*)") (no —0.50 1
influence)

e Add new node in second layer: more ~0.757
complicated, add one breaking line in one —1.00 1

place, but more unpredictable effects ‘ . T ‘ T . .

20/ 20 D. Torlo

Adaptive NN details: second hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

100!

Answers: Additional layer or node in second 075 |
layer
0.50 4

e If Loss is not decreasing more than 20% in the

last 7 new nodes: add second layer 0.25 1
e Cell-wise error: divide the domain with 0.00 &
breaking lines and search for the highest error
e Add new layer: A? =1 and —0-251
b? = — ming((A'(A°x + b°)" + b*)") (no —0.50 1
influence)

e Add new node in second layer: more ~0.757

complicated, add one breaking line in one —1.00 1
place, but more unpredictable effects ‘ . T ‘ T . .

-3 -2 -1 0 1 2 3
e

2D moving Gaussian

20,

20

Adaptive ALL

-2 -1 [1 2

D. Torlo

,13, 23,
09738
0.8660
0.7582
0.6504
05427
0.4349
-05
03271
-10
02193
15 01115
20 0.0037

Adaptive

Error NN param =

non parametric

09738

0.8660

07582

0.6504

05427

0.4349

03271

02103

01115

0.0037

Error NN = 3.65e-02

0.01

0.001

0.0001

0.01

0.001

0.0001

Adaptive FNP

Error NN from non param

So\uuon NN from non param

-

09738
08660
07582
06504
05427
04349
03211
02193
o115

0.0037

Initial time

01

0.01

0.001

0.0001

2D moving Gaussian

Adaptive ALL

snluuon ny parem

|

D. Torlo

0.9939

0.8829

07718

0.6608

0.5498

0.4388

03278

02167

0.1057

-0.0053

Error NN param = 3.47e-02

0.001

0.0001

Final

Adaptive FNP

So\utmn W from s o param

|

09939

08829

07718

0.6608

0.5498

0.4388

03278

02167

01057

~0.0053

o LETor NN from non param = 6.96e-02

001

0.001

0.0001

2D moving Gaussian
t=20 t=20.5 t=1

D. Torlo

2D moving Gaussian

Losses NN for gaussian

10—3 -

10—4 -
— NN
——— NN from non param
—— NN param

10—5 -

10—6 -

0O 10000®@00000300000400000B00000600000700000

20/ 20 D. Torlo

Moving discontinuity

20/ 20

Solution NN all
[1, 10, 26, 1]

Solution NN FNP
[1, 15, 26, 1]

0982
0818
0654
0430
0326
0162
-0.001
-0165
0329
-0.93
0982
os1s
o654
0490
0326
o162
0001
-0.165
0329
093

D. Torlo

Error NN al

2.92e-02

001

0.001

0.000

001

0.001

00001

Solution at t=0 for disc

Error at t=0 for disc

o — mn_all — mal=oo
— mFne | 025 0258
— m_1D20
08 — eact
—m 020
06
04 o1s
02
010
00{ — 4
02 005
04
D a— T - =
06

-20 -15 -10 -05 00 05 10

so\unon NN 1D-2D
12,13,1,1]

0982
0818
o654
0.9
0326
0162
~0.001
-0.165
0329
0493

Error NN 1D-2D = 1.13e-03

0.01

0.001

00001

Moving discontinuity

Solution at t=0 for disc

Error at t=0 for disc

10 — nn_all — nn_all =0.0342
al —— nn_FNP 0.25q —— nn_FNP =0.0258
—— nn_1D-2D —— nn_1D-2D =0.00116
0.8+ — exact —— nn =3.37e-06
m 0.204
0.6
0.4 0154
0.2
0.10
00 — 4
—0.21 0.05 -
h LA\
A 0.00
—0.6 T T T T T T T T T T T T T T T T T
-20 -15 -10 -05 00 05 1.0 1.5 2.0 -20 -15 -1.0 -0.5 00 05 1.0 15 20

20/ 20 D. Torlo

Moving discontinuity

Solution at t=1 for disc Error at t=1 for disc
— nn_all —— nn_all =0.00314
—— nn_FNP 0067 . nn FNP =0.00981
— nn_1D2D —— nn_1D-2D =0.000979
089 exact
0.05
061
0.04
0.4
021 0.03
0w{ — 0.02 1
0.2 1
0.01
~0.4 n
“——— | 0004
T T T T T T T T . T : T T T T T T T
-20 -15 -10 -05 00 05 1.0 15 20 -20 -15 -10 -05 00 05 1.0 15 20

20/ 20 D. Torlo

Moving discontinuity

Solution at t=2 for disc Error at t=2 for disc
104 — nn_all 0.359 — nn_all =0.00426
—— nn_FNP —— nn_FNP =0.0476
—— nn_1D-2D —— nn_1D-2D =0.00011
0871 — exact 0.309
0.25 1
04 0.201
0.2+
0.15 4
0.04
0.104
0.2 1
0.05 4
| -
0.00 4 -
T r T r T T T T T T T T T T T T T T
-20 -15 -10 -05 00 05 1.0 15 2.0 -20 -15 -10 -05 00 05 1.0 15 20

20/ 20 D. Torlo

Moving discontinuity

Losses NN for disc
10°

10—1 4

1072 4

10—3 p
—— NN NP
~—— NN all
—— NN FNP
—— NN 1D-2D

10—4 p

1075 p

1076 p

1077 p

1078 T T T T T T T
0 100000 200000 300000 400000 500000 600000

20/ 20 D. Torlo

2D moving circle

Adaptive ALL

Error NN param = 1.42e-01

So\uuon NN param

1188
1055
0923
079
ose
0525
0393
0261
0128
~0.004

Adaptive non

Solution NN
[2,20,2,1]

1188
1.055
0923
0.790
0658
0525
0393
0261
0128
~0.004

20/ 20 D Torlo

parametric

Error NN = 2.10e-01

100

0.01

0.001

0.0001

100

0.01

0.001

0.0001

Adaptive FNP

Error NN from non param

Solutlon NN from o param
1188 20
1055
0.923 .
0.790
0.658 '
0525
0393 05
0261 10
0128 ¢

-15
~0.004
-20

Initial time

1.81e-01

100

001

0.001

0.0001

2D moving circle

20/ 20

So\unon NN param

Adaptive ALL

Error NN param =

|

D. Torlo

1168

0975

0781

0.588

0394

0201

0.008

-0.186

-0.379

~0.573

Adaptive FNP

Error NN from non param = 1.88e-01

So\uuon w rrom o param

]

Final time

0.001

0.0001

1168

0975

0781

0.588

0.394

0.201

0.008

-0.186

-0379

~0573

100

0.01

0.001

0.0001

2D moving circle
t=0

Liee 1168
0.924
1.055 0-975
0739
0.923 0.781
0553
0.790 0-588
0367
0.658 0-394
0181
0.525 0-201
0005
0.393 0-008
o101
2o —oase
o377
- 0379
—0.562
— o008 o573
= o748
1.188 1168
0.924
Loss 0975
0739
0.923 0.781
0553
0.790 0.588
0367
0.658 0-394
0.181
0.525 0.201
0005
0.393 0-008
o101
0.261 —o-186
o377
0.128 —0.379
o —ose2
= o008 073
= o748

20/ 20 D. Torlo

2D moving circle

Losses NN for circle

10—1 -

10—2 -

1073 5 —— NN
~—— NN from non param
——— NN param

1074 -

10—5 -

o 50000 100000150000200000250000300000

20/ 20 D. Torlo

2D Double Mach Reflection for Euler's E ion
Losses NN for DMR
10* .
— NN
~—— NN from non param
——— NN param
o
Y N
\
101t T T
0.0 0.2 0.4 0.6 0.8 1.0
le6
20/ 20 D. Torlo

	Adaptive NN
	Adaptive NN for Reduced Order Modeling
	Simulations

	Conclusions

