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Motivation: too deep too wide networks

Hidden Layers
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e Is this optimal?

e Universal approximators

e Adding many layers increase expressibility

e Do we really need so many layers?
e Countless applications

e Could we save some energy?
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Rediscovering shallow NN: RelL U 1 hidden layer

1 hidden layer NN

e 1 hidden layer —— ReLU(x) 3 f(x)
e few neurons 5
e RelLU activation function max(x, 0) = x* 1
e Hat function: 1 hidden layer, 3 neurons
h(x) = (x+ 1) =20)" + (x = 1)" -2 -1 | 1
e Every breaking point one neuron — Hat function via ReLUs
e Exploit Finite Element knowledge 1
approximation functions: Piecewise linear
functions 05 |
e Also in more dimensions, e.g.
(ax + by)* P 1 .
—0.5 1+ -

e In D dimensions breaking manifolds are
hyper-planes (lines in 2D)
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Rediscovering shallow NN: Rel U 2 hidden layers in 1D

2 hidden layers NN

e Speed up the process of geometrical + f(x)
subdivision

e |n 1D, for example, easy to discretize

discontinuities up to € with 2 hidden layers 1
neuron each

1 t t+ t+ t + -
N(><)=1—(1—g(x—x¢1)+)+ -15 -1 -05 05 1 15

o Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights -1
have to match exactly)

e Fully interpretable
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Rediscovering shallow NN: Rel U 2 hidden layers in 2D

2 hidden layers NN
e Speed up the process of geometrica

e More easily gets steep gradients

subdivision




Rediscovering shallow NN: Rel U 2 hidden layers in 2D

2 hidden layers NN
e Speed up the process of geometrica

e More easily gets steep gradients

subdivision

1.188
1.055
0.923
0.790
0.658
0.525
0.393
0.261
0.128
—0.004
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Towards simpler NN

Goals: Adaptive NN
e Exploit simple architectures to
?
What we have learned? save computational time in

e 1-hidden-layer NN(x) = A}(A%x + b°)* + b? training!!
- - 0 (0] _ .
breaking lines A7 x + by = 0 for all i o Carefully selecting how many
o 2-hidden-layer NN(x) = A>(A'(A°x + b°)" + b')T + b? breaking lines and where we want
possible breaking lines Az:x + b? =0Vi and to put them

e Copy ideas of hp-adaptive methods
(h is now more nodes, p is now
more layers (not really but more
capability))

AL (A% + %)+ bl =0 Vi
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Adaptive NN?

Incremental architecture

® No a priori knowledge of how many
layers/neurons are needed

o |nitialize few neurons of 1st hidden layer to
have equispaced breaking points + least
square for outer layer

o Proceed with optimization process (Adam)

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.
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Example of adaptive NN

After Training
Ref0

Before Training
Ref0

Error In Cells

Ref0

107
1075

1004/

1.00 4

0.75 4

0.50 4
0.25 4

D. Torlo
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Example of adaptive NN

Before Training

After Training
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Refl

Error In Cells
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1004/

0.75 4

| 050 1
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Example of adaptive NN

Before Training
Ref3

After Training
Ref3

Error In Cells

Ref3
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Example of adaptive NN

After Training
Refd

Before Training
Refd

Error In Cells

Refd
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Example of adaptive NN
After Training Before Training
Ref5 Ref5
1.00 q
0.75 4

0.50

Error In Cells
Ref5
107!
ozs o7
1072
0.00
% =
0.25 ‘ 0.25 4
1 —
0501 % 0.50 4
.
- -
0.75 ‘;\ 0.75 1 =2 2 0 1
b
1.00 1 S 1.00 4
. . . . . . .
3 2 -1 o0 1 2 3 -3
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Example of adaptive NN

Before Training After Training
Ref6 Ref6

1004 Error In Cells

0.75 4 Ref6

0.50 -
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Example of adaptive NN

After Training Before Training
Ref7 Ref7

Error In Cells

Ref7
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Example of adaptive NN

Before Training After Training
Ref13 Refl3

Error In Cells

Refl3
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Example of adaptive NN

After Training Before Training
Ref14 Refl4

Error In Cells

Refl4
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Results for ANN: multisin 1D [1 9 16 1]

Loss decay Approximation
—— adaptive —— adaptive: err = 0.0114
—— NN_equi_LSQ —— NN_equi_LSQ: err = 0.0439
10° —— NN_equi —— NN_equi: err = 0.0767
—— NN_rand_LSQ 101 —— NN_rand_LSQ: err = 0.09
—— NN_rand : —— NN_rand: err = 0.0907
107t 5 —— NN_rand_dbl_lyr —— NN_rand_dbl_lyr: err = 0.0776
—— exact
0.54
1072 4
I —— S S
—~0.5-
10-5 4
-1.01
107 ™ T ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ ™ T
[ 50000 100000 150000 200000 250000 300000 350000 -3 -2 -1 0 1 2 3
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Parametric Problems and R rder M lin

Parametrized problem

e We are looking for the solution u of P(u(u); u) = 0 for some € M
e We can afford computational costs for few u(u;) with {u;}73"
o We want to forecast u(u) for p & {p;}remn

NN to learn functions example

Hidden Layers

Output
Layer

s
NUA AR
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Adaptive NN for Reduced Order Modeling architectures

Adaptive NN and domain dimension

e Error estimator based on domain subdivision Network [2 14 22 1]
from breaking lines

e Defining the breaking hyperplanes is
increasingly complex with dimensions (and
layers)

e Bad idea considering parameter as extra
dimension (curse of dimensionality in error
estimator)

e Code: only 2D

e Consider biases that are parameter dependent
b' = by + by

e Fix a reference parameter p* where to apply
the error estimator
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Adaptive NN ROM architecture

Hidden Layers

Training Strategy

e Option ALL: train from zero with this
architecture

e Option FNP: train first a non parametric for a
w*, start from that architecture and train
again with b = bj(u — p*) + bj initializing
by = 0 and b} = bjyp

e Option 1D-as-2D: If in 1D, and 1 param, we
can pretend it is 2D and train as in 2D
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Burgers shock

Adaptive ALL Comparison at initial time

Solution at t=0 for Burgers-shock Error at t=0 for Burgers-shock
11.10,26,1] 16 o1 — nn_all =0.00523
o , 10, 26, 10 - —— nn_FNP =0.0123
1513 e — 1020 =0.0127
— nn=9.24e05
010
25 1345
12
1177 01
o 008
20 1.009
0.841 0.8 0.06
15 001
0673 06
004
10 4 0.505
04
0001
0337 002
02
0 0.169
0001 00 000
00 00 0000
20 -15 10 05 00 05 10 15 20 220 -15 -10 -05 00 05 10 15 2 o -5 -lo 05 oo 05 10 15 2o 20 -1s 1o 05 0o o5 1o 15 20

Adaptive FNP Adaptive 1D-as-2D

[1,14,39,1] Error NN param = 1.25e-02 [2,19,4,1] Error NN 1D-2D = 1.15e-02
— 10 0 T 10

1513
1345
1177 o1 01
1009
0.841

001 001
0673
0505
0337 0.001 0.001
0169
0.001

0.0001

0.0001




Burgers shock

100 Losses NN for Burgers-shock

10—1 4

1072 4

10—3 p
u —— NN NP

~—— NN all
—— NN FNP
—— NN 1D-2D

10—4 p

1075 p

1076 p

1077 p

1078 T T T T T T T T
0 100000200000 300000 400000 500000 600000 700000
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Sod shock tube

Adaptive ALL Comparison at final time

Solution at £=0.2 for Sod Error at t=0.2 for Sod
11,12, 24,1] Error NN all = 3.19e-02 010
0200 w0 10
1355
0175
1216 008
0.150 01 oz
1077
0125 0938 006
05
0100 0799 001
0.660 0ot
0075
04
0521
0050 0001 002
0382
0025 0203 02
000
0000 0104 0000
00 02 04 05 08 10 0o 02 04 06 08 To 0o 02 04 05 08 10

Adaptive FNP Adaptive 1D-as-2D

(1, 20, 10, 1] Error NN param = 1.06e-02 (2, 35, 1] Error NN 1D-2D = 1.87e-02
W
0025 0243 0243
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Sod shock tube

16/ 20

Solution at t=0 for Sod

Error at t=0 for Sod

10 — — nn_all 0.40 —— nn_all =0.0878
—— nn_FNP —— nn_FNP =0.0101
—— nn_1D-2D —— nn_1D-2D =0.0433
- 0.35 1 —
—— exact
081 0.30 1
0.25 4
0.6
0.20
0.15 1
0.4 4
0.10 4
024 0.05 4
0.00 A
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1o 0.0 0.2 0.4 0.6 0.8 10
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Sod shock tube

16/ 20

Solution at t=0.1 for Sod

Error at t=0.1 for Sod

1.0 q — nn_all — nn_all =0.0265
— —— nn_FNP =0.0113
— mp2p | %987 — np1p-2D =0.0175
0.8 4
0.06
0.6 4
0.04
0.4
0.02
0.2
0.00
. . . . . . . . : . . .
0.0 02 0.4 06 08 10 0.0 02 0.4 0.6 08 1.0
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Sod shock tube

16/ 20

Solution at t=0.2 for Sod

Error at t=0.2 for Sod

10 — nn_all 0104 — nn_all =0.0357
. —— nn_FNP —— nn_FNP =0.0118
— nn_1D-2D —— nn_1D-2D =0.0213
—— exact 0.08 | —— nn =0.000922
- nn
0.8
0.06
0.6 |
0.04 4
0.4 4
N\ 0.02 4
0.2
0.00 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1o 0.0 0.2 0.4 0.6 0.8 10
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Sod shock tube

Losses NN for Sod

—— NN NP
~—— NN all
—— NN FNP
—— NN 1D-2D

1078 T T T T T T T T T
0 100000200000300000400000500000600000700000800000
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hock mparison with non iv

Non parametric FNP Learned from non parametric
—— adaptive —— adaptive
~—— NN_equi_LSQ —— NN_equi_LSQ
10° —— NN_equi 10° —— NN_equi

—— NN_rand_LSQ —— NN_rand_LSQ
—— NN_rand ~—— NN_rand

107" 4 —— NN_rand_dbl_lyr 1071 —— NN_rand_dbl_lyr

1072 4 1072 4

e

1073 4 1073 4 k K

104 4 1074 4 \

1075 4 1075 4

1076 L — . . - . 1076 L — : : : . . . .

0 50000 100000 150000 200000 250000 0 25000 50000 75000 100000 125000 150000 175000
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hock mparison with non iv

Non parametric FNP Learned from non parametric

adaptive: err = 0.000939 —— adaptive: err = 0.00994
NN_equi_LSQ: err = 0.0258 NN_equi_LSQ: err = 0.0749

~—— NN_equi: err = 0.0549 ~—— NN_equi: err = 0.112
—— NN_rand_LSQ: err = 0.12 1.0 —— NN_rand_LSQ: err = 0.198
101 —— NN_rand: err = 0.116, —— NN_rand: err = 0.198
—— NN_rand_dbl_lyr: err = 0.057 —— NN_rand_dbl_lyr: err = 0.0954
—— exact 0.8 1 exact
0.8
0.6 4
0.6 1
0.4
0.44
0.2
0.21
0.0
0.0 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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2D Double Mach Reflection for Euler’'s Equations

17/ 20

Exact Solution in time

t=02T

t=04T

Exact

t=T

Exact

Exact
2453 2453 2453 2453
2182 2182 2182 2182
08
19.10 1910 1910 19.10
1638 1638 1638 1638
06
13.66 1366 1366 13.66
1094 1094 1094 1094
04
822 822 822 822
551 551 551 551
02
279 279 279 279
007 007 007 007
05 10 15 20 25 30 35
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2D Double Mach Reflection for Euler's E ion

Adaptive ALL Adaptive FNP

Solution NN from non param
(2, 23,49, 1)

Solution NN param

Error NN from non param = 5.44e-02

[2,13,23,1] Error NN param = 1.51201 100 100
0ss e ooom
Adaptive non parametric
Solution NN
[2,23,9,1] Error NN = 3.63e-02 Exact
5 10.0
22.84 22.84
17.98 17.98
15.54 0.1 15.54
. . 1311 13.11
Flnal tlme 10.68 0.01 10.68
025
5.82 0.001 5.82
338 3.38
0.95 - 0.0001 0.95
05 10 15 20 25 30 35 o5 10 15 20 25 30 35 05 10 15 20 25 30 35
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2D Double Mach Reflection for Euler's E ion

Adaptive ALL Adaptive FNP

Solution NN param Solutlon NN from nen param
12,13, 2 Error NN from non param = 7.31e-02

3,1] Error NN param =
Exact
2248
19.66
0.8
14.03
0.6
11.21
Initial time 639
276
-0.06
0.5 15 20 25 30

17/ 20 D. Torlo



Mach Reflection for Euler's E
t=0
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Conclusions, limitations, perspectives

Summary Adaptive NN .

e Add nodes and layer iteratively
e Try different configurations for parameter

e Use RelLUs to define breaking lines to get dmpErd it s mndl s

mesh
e Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
e 3D

e Error estimator for refining in the right
position

e MOR with a given reference parameter
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Conclusions, limitations, perspectives

Summary Adaptive NN .

e Add nodes and layer iteratively
e Try different configurations for parameter

e Use RelLUs to define breaking lines to get dmpErd it s mndl s

mesh
e Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
e 3D

e Error estimator for refining in the right
position

e MOR with a given reference parameter

THANKS!!
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Adaptive NN details

e How do we initialize all weights and biases at the beginning?

1.00

0.75

Answers: initialization at ref 0
NN(x) = AY(A% + b°)* + b!
o A% b such that A%x; + b? = 0 with x; equispaced

0.50 1

0.25 1

0.00

o |A?| =1 for all i random sign

e Quter layer: Least Square 0251

min Y "|NN(x) — y;[*
J

-0.50 4

Al ,bl -0.75 4

-1.00 1
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Adaptive NN details

e How do we initialize all weights and biases at the beginning?

Answers: initialization at ref 0 ’
NN(x) = AY (A’ + b°)" + b! °
o A% B° such that A%x; + b? = 0 with x; equispaced s

e |A% =1 for all i random sign

e Quter layer: Least Square

min Y |NN(x) — y;[* .
i

Al bl
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Adaptive NN details: first hidden layer

Questions
ow do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

Answers: Additional node in first layer Ref3

e |f Loss is not decreasing more than 4% in the 0]
last 5000 epochs: add new node —

e Cell-wise error: divide the domain with
breaking lines and search for the highest error

e Add new node so that the breaking
hyperplane cuts the barycenter of this cell

107 4

0 0o _
Ap 1 Xbary + by =0

1 1076

e Outer layer: A, ,, =0 - 2 a1 0 T ; 3
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Adaptive NN details: first hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?
1.00

0.75 4
Answers: Additional node in first layer

.
=
»/
\
]
=
-

0.50 -
e |f Loss is not decreasing more than 4% in the
last 5000 epochs: add new node

o Cell-wise error: divide the domain with 0.00
breaking lines and search for the highest error ’

e Add new node so that the breaking

025/

.

-

"

L]
| W,
L %
p
S
-

* L3 *

~0.25
hyperplane cuts the barycenter of this cell 050
0 0
Ap 1 Xbary + by =0 .
e Outer layer: A%1+1 =0 100

-3 -2 -1 0 1 2 3
TR O oo e



Adaptive NN details: first hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?
1.00
: 0.75 1
Answers: Additional node in first layer
0.50 -
e If Loss is not decreasing more than 4% in the
last 5000 epochs: add new node 0254 /
e Cell-wise error: divide the domain with 0.00

breaking lines and search for the highest error

e Add new node so that the breaking —0.25 +
hyperplane cuts the barycenter of this cell

-0.50 -
0 o _

Ap 1 Xbary + by =0 .

e Outer layer: A%1+1 =0 100

-3 -2 -1 0 1 2 3
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Adaptive NN details: second hidden layer

Questions
e How do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

1004}

Answers: Additional layer or node in second 0.75
layer
0.50 4

e If Loss is not decreasing more than 20% in the

last 7 new nodes: add second layer 025/
e Cell-wise error: divide the domain with 0.00
breaking lines and search for the highest error
e Add new layer: A? =1 and —0-251
b? = — ming((A'(A°x + b°)" + b*)") (no —0.50 1
influence)

e Add new node in second layer: more ~0.757

complicated, add one breaking line in one —1.00 1
place, but more unpredictable effects ‘ . T ‘ T . .

-3 -2 -1 0 1 2 3
e
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Adaptive NN details: second hidden layer

Questions
ow do we initialize the new weights and e When do we decide to add a layer or a node
biases? and how?

Answers: Additional layer or node in second
layer £

e |f Loss is not decreasing more than 20% in the 107! 4
last 7 new nodes: add second layer

e Cell-wise error: divide the domain with
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