
Adaptive Neural Networks for Reduced Order Modeling

Davide Torlo, Federico Pichi
Dipartimento di Matematica “Guido Castelnuovo”, Università di Roma La Sapienza, Italy

davidetorlo.it

Roma - 23rd January 2026

https://www.davidetorlo.it

Table of contents

1 Adaptive NN

2 Adaptive NN for Reduced Order Modeling
Simulations

3 Conclusions

1/ 20 D. Torlo Adaptive NN ROM

Table of contents

1 Adaptive NN

2 Adaptive NN for Reduced Order Modeling
Simulations

3 Conclusions

2/ 20 D. Torlo Adaptive NN ROM

Motivation: too deep too wide networks

Input
Layer

Hidden Layers

Output
Layer

• Universal approximators
• Adding many layers increase expressibility
• Countless applications

• Is this optimal?
• Do we really need so many layers?
• Could we save some energy?

3/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 1 hidden layer

1 hidden layer NN
• 1 hidden layer
• few neurons
• ReLU activation function max(x , 0) = x+

• Hat function: 1 hidden layer, 3 neurons

h(x) = (x + 1)+ − 2(x)+ + (x − 1)+

• Every breaking point one neuron
• Exploit Finite Element knowledge

approximation functions: Piecewise linear
functions

• Also in more dimensions, e.g.

(ax + by)+

• In D dimensions breaking manifolds are
hyper-planes (lines in 2D)

−2 −1 1 2

1
2
3

x

f (x)ReLU(x)

−2 −1 1 2
−0.5

0.5

1

1.5

x

f (x)Hat function via ReLUs

4/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 1 hidden layer

1 hidden layer NN
• 1 hidden layer
• few neurons
• ReLU activation function max(x , 0) = x+

• Hat function: 1 hidden layer, 3 neurons

h(x) = (x + 1)+ − 2(x)+ + (x − 1)+

• Every breaking point one neuron
• Exploit Finite Element knowledge

approximation functions: Piecewise linear
functions

• Also in more dimensions, e.g.

(ax + by)+

• In D dimensions breaking manifolds are
hyper-planes (lines in 2D)

4/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 2 hidden layers in 1D

2 hidden layers NN
• Speed up the process of geometrical

subdivision
• In 1D, for example, easy to discretize

discontinuities up to ε with 2 hidden layers 1
neuron each

N(x) = 1 − (1 − 1
ε

(x − xd)+)+

• Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

• Fully interpretable

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

f (x)x+

5/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 2 hidden layers in 1D

2 hidden layers NN
• Speed up the process of geometrical

subdivision
• In 1D, for example, easy to discretize

discontinuities up to ε with 2 hidden layers 1
neuron each

N(x) = 1 − (1 − 1
ε

(x − xd)+)+

• Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

• Fully interpretable

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

f (x)1 − 1
ε
x+

5/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 2 hidden layers in 1D

2 hidden layers NN
• Speed up the process of geometrical

subdivision
• In 1D, for example, easy to discretize

discontinuities up to ε with 2 hidden layers 1
neuron each

N(x) = 1 − (1 − 1
ε

(x − xd)+)+

• Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

• Fully interpretable

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

f (x)(
1 − 1

ε
x+)+

5/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 2 hidden layers in 1D

2 hidden layers NN
• Speed up the process of geometrical

subdivision
• In 1D, for example, easy to discretize

discontinuities up to ε with 2 hidden layers 1
neuron each

N(x) = 1 − (1 − 1
ε

(x − xd)+)+

• Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

• Fully interpretable

−1.5 −1 −0.5 0.5 1 1.5

−1

1

x

f (x)
1-

(
1 − 1

ε
x+)+

5/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 2 hidden layers in 2D
2 hidden layers NN

• More easily gets steep gradients • Speed up the process of geometrical
subdivision

0.004
0.128
0.261
0.393
0.525
0.658
0.790
0.923
1.055
1.188

6/ 20 D. Torlo Adaptive NN ROM

Rediscovering shallow NN: ReLU 2 hidden layers in 2D
2 hidden layers NN

• More easily gets steep gradients • Speed up the process of geometrical
subdivision

0.004
0.128
0.261
0.393
0.525
0.658
0.790
0.923
1.055
1.188

6/ 20 D. Torlo Adaptive NN ROM

Towards simpler NN

What we have learned?
• 1-hidden-layer NN(x) = A1(A0x + b0)+ + b1

breaking lines A0
i,:x + b0

i = 0 for all i
• 2-hidden-layer NN(x) = A2(A1(A0x + b0)+ + b1)+ + b2

possible breaking lines A0
i,:x + b0

i = 0 ∀i and

A1
i,:(A0x + b0) + b1

i = 0 ∀i

Goals: Adaptive NN
• Exploit simple architectures to

save computational time in
training!!

• Carefully selecting how many
breaking lines and where we want
to put them

• Copy ideas of hp-adaptive methods
(h is now more nodes, p is now
more layers (not really but more
capability))

7/ 20 D. Torlo Adaptive NN ROM

Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)

• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo Adaptive NN ROM

Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)
• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo Adaptive NN ROM

Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)
• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo Adaptive NN ROM

Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)
• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo Adaptive NN ROM

Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)
• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo Adaptive NN ROM

Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)
• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.

8/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
Before Training After Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
After Training Before Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
Before Training After Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
After Training Before Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
Before Training After Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
After Training Before Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
Before Training After Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
After Training Before Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
Before Training After Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Example of adaptive NN
After Training Before Training

Error In Cells

9/ 20 D. Torlo Adaptive NN ROM

Results for ANN: multisin 1D [1 9 16 1]

Loss decay Approximation

0 50000 100000 150000 200000 250000 300000 350000
10 6

10 5

10 4

10 3

10 2

10 1

100

adaptive
NN_equi_LSQ
NN_equi
NN_rand_LSQ
NN_rand
NN_rand_dbl_lyr

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

adaptive: err = 0.0114
NN_equi_LSQ: err = 0.0439
NN_equi: err = 0.0767
NN_rand_LSQ: err = 0.09
NN_rand: err = 0.0907
NN_rand_dbl_lyr: err = 0.0776
exact

10/ 20 D. Torlo Adaptive NN ROM

Table of contents

1 Adaptive NN

2 Adaptive NN for Reduced Order Modeling
Simulations

3 Conclusions

11/ 20 D. Torlo Adaptive NN ROM

Parametric Problems and Reduced Order Modeling

Parametrized problem

• We are looking for the solution u of P(u(µ); µ) = 0 for some µ ∈ M
• We can afford computational costs for few u(µi) with {µi }ntrain

i=1

• We want to forecast u(µ) for µ ̸∈ {µi }ntrain
i=1

NN to learn functions example

x

µ

u(x , µ)

Input
Layer

Hidden Layers

Output
Layer

12/ 20 D. Torlo Adaptive NN ROM

Adaptive NN for Reduced Order Modeling architectures

Adaptive NN and domain dimension
• Error estimator based on domain subdivision

from breaking lines
• Defining the breaking hyperplanes is

increasingly complex with dimensions (and
layers)

• Bad idea considering parameter as extra
dimension (curse of dimensionality in error
estimator)

• Code: only 2D

Solution
• Consider biases that are parameter dependent

bi = bi
0µ + bi

1

• Fix a reference parameter µ∗ where to apply
the error estimator

Network [2 14 22 1]

13/ 20 D. Torlo Adaptive NN ROM

Adaptive NN ROM architecture

x

µ

u(x , µ)

Input
Layer

Hidden Layers

Output
Layer

Training Strategy
• Option ALL: train from zero with this

architecture
• Option FNP: train first a non parametric for a

µ∗, start from that architecture and train
again with bi = bi

0(µ − µ∗) + bi
1 initializing

bi
0 = 0 and bi

1 = bi
NP

• Option 1D-as-2D: If in 1D, and 1 param, we
can pretend it is 2D and train as in 2D

14/ 20 D. Torlo Adaptive NN ROM

Burgers shock
Adaptive ALL Comparison at initial time

Adaptive FNP Adaptive 1D-as-2D

15/ 20 D. Torlo Adaptive NN ROM

Burgers shock

0 100000 200000 300000 400000 500000 600000 700000
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 Losses NN for Burgers-shock

NN NP
NN all
NN FNP
NN 1D-2D

15/ 20 D. Torlo Adaptive NN ROM

Sod shock tube
Adaptive ALL Comparison at final time

Adaptive FNP Adaptive 1D-as-2D

16/ 20 D. Torlo Adaptive NN ROM

Sod shock tube

16/ 20 D. Torlo Adaptive NN ROM

Sod shock tube

16/ 20 D. Torlo Adaptive NN ROM

Sod shock tube

16/ 20 D. Torlo Adaptive NN ROM

Sod shock tube

0 100000200000300000400000500000600000700000800000
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 Losses NN for Sod

NN NP
NN all
NN FNP
NN 1D-2D

16/ 20 D. Torlo Adaptive NN ROM

Sod shock tube (comparison with non adaptive)

Non parametric FNP Learned from non parametric

0 50000 100000 150000 200000 250000
10 6

10 5

10 4

10 3

10 2

10 1

100

adaptive
NN_equi_LSQ
NN_equi
NN_rand_LSQ
NN_rand
NN_rand_dbl_lyr

0 25000 50000 75000 100000 125000 150000 175000
10 6

10 5

10 4

10 3

10 2

10 1

100

adaptive
NN_equi_LSQ
NN_equi
NN_rand_LSQ
NN_rand
NN_rand_dbl_lyr

16/ 20 D. Torlo Adaptive NN ROM

Sod shock tube (comparison with non adaptive)

Non parametric FNP Learned from non parametric

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

adaptive: err = 0.000939
NN_equi_LSQ: err = 0.0258
NN_equi: err = 0.0549
NN_rand_LSQ: err = 0.12
NN_rand: err = 0.116
NN_rand_dbl_lyr: err = 0.057
exact

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

adaptive: err = 0.00994
NN_equi_LSQ: err = 0.0749
NN_equi: err = 0.112
NN_rand_LSQ: err = 0.198
NN_rand: err = 0.198
NN_rand_dbl_lyr: err = 0.0954
exact

16/ 20 D. Torlo Adaptive NN ROM

2D Double Mach Reflection for Euler’s Equations

Exact Solution in time

t = 0 t = 0.2T t = 0.4T t = T

17/ 20 D. Torlo Adaptive NN ROM

2D Double Mach Reflection for Euler’s Equations

Adaptive ALL Adaptive FNP

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Exact

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN param
 [2, 13, 23, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN param = 1.54e-01

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN from non param
 [2, 23, 49, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN from non param = 5.44e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN
 [2, 23, 9, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN = 3.63e-02

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

DMR

Adaptive non parametric Exact

Final time

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Exact

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN param
 [2, 13, 23, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN param = 1.54e-01

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN from non param
 [2, 23, 49, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN from non param = 5.44e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN
 [2, 23, 9, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN = 3.63e-02

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

DMR

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Exact

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN param
 [2, 13, 23, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN param = 1.54e-01

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN from non param
 [2, 23, 49, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN from non param = 5.44e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN
 [2, 23, 9, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN = 3.63e-02

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

0.0001

0.001

0.01

0.1

1.0

10.0

DMR

17/ 20 D. Torlo Adaptive NN ROM

2D Double Mach Reflection for Euler’s Equations

Adaptive ALL Adaptive FNP

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Exact

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN param
 [2, 13, 23, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN param = 9.78e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN from non param
 [2, 23, 49, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN from non param = 7.31e-02

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

0.0001

0.001

0.01

0.1

1.0

10.0

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

0.0001

0.001

0.01

0.1

1.0

10.0

DMR

Exact

Initial time

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Exact

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN param
 [2, 13, 23, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN param = 9.78e-02

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Solution NN from non param
 [2, 23, 49, 1]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

Error NN from non param = 7.31e-02

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

0.0001

0.001

0.01

0.1

1.0

10.0

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

0.0001

0.001

0.01

0.1

1.0

10.0

DMR

17/ 20 D. Torlo Adaptive NN ROM

2D Double Mach Reflection for Euler’s Equations
t = 0 t = 0.5T t = T

Al
l

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

0.49

2.85

5.22

7.58

9.94

12.31

14.67

17.03

19.40

21.76

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

FN
P

2.88

0.06

2.76

5.57

8.39

11.21

14.03

16.84

19.66

22.48

0.49

2.85

5.22

7.58

9.94

12.31

14.67

17.03

19.40

21.76

0.95

3.38

5.82

8.25

10.68

13.11

15.54

17.98

20.41

22.84

18/ 20 D. Torlo Adaptive NN ROM

Table of contents

1 Adaptive NN

2 Adaptive NN for Reduced Order Modeling
Simulations

3 Conclusions

19/ 20 D. Torlo Adaptive NN ROM

Conclusions, limitations, perspectives

Summary Adaptive NN
• Add nodes and layer iteratively
• Use ReLUs to define breaking lines to get

mesh
• Error estimator for refining in the right

position
• MOR with a given reference parameter

Perspectives
• Try different configurations for parameter

dependent weights and biases
• Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
• 3D

THANKS!!

20/ 20 D. Torlo Adaptive NN ROM

Conclusions, limitations, perspectives

Summary Adaptive NN
• Add nodes and layer iteratively
• Use ReLUs to define breaking lines to get

mesh
• Error estimator for refining in the right

position
• MOR with a given reference parameter

Perspectives
• Try different configurations for parameter

dependent weights and biases
• Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
• 3D

THANKS!!

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details

Questions
• How do we initialize all weights and biases at the beginning?

Answers: initialization at ref 0
NN(x) = A1(A0x + b0)+ + b1

• A0, b0 such that A0
i xi + b0

i = 0 with xi equispaced
• |A0

i | = 1 for all i random sign
• Outer layer: Least Square

min
A1,b1

∑
j

|NN(xj) − yj |2

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details

Questions
• How do we initialize all weights and biases at the beginning?

Answers: initialization at ref 0
NN(x) = A1(A0x + b0)+ + b1

• A0, b0 such that A0
i xi + b0

i = 0 with xi equispaced
• |A0

i | = 1 for all i random sign
• Outer layer: Least Square

min
A1,b1

∑
j

|NN(xj) − yj |2

3 2 1 0 1 2 3

8

6

4

2

0

2

init net
LSQ net
exact

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: first hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional node in first layer
• If Loss is not decreasing more than 4% in the

last 5000 epochs: add new node
• Cell-wise error: divide the domain with

breaking lines and search for the highest error
• Add new node so that the breaking

hyperplane cuts the barycenter of this cell

A0
ℓ1+1xbary + b0

ℓ1+1 = 0

• Outer layer: A1
ℓ1+1 = 0

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: first hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional node in first layer
• If Loss is not decreasing more than 4% in the

last 5000 epochs: add new node
• Cell-wise error: divide the domain with

breaking lines and search for the highest error
• Add new node so that the breaking

hyperplane cuts the barycenter of this cell

A0
ℓ1+1xbary + b0

ℓ1+1 = 0

• Outer layer: A1
ℓ1+1 = 0

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: first hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional node in first layer
• If Loss is not decreasing more than 4% in the

last 5000 epochs: add new node
• Cell-wise error: divide the domain with

breaking lines and search for the highest error
• Add new node so that the breaking

hyperplane cuts the barycenter of this cell

A0
ℓ1+1xbary + b0

ℓ1+1 = 0

• Outer layer: A1
ℓ1+1 = 0

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects

20/ 20 D. Torlo Adaptive NN ROM

Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects

20/ 20 D. Torlo Adaptive NN ROM

2D moving Gaussian

Adaptive ALL Adaptive FNP

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 13, 23, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 3.49e-02

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 13, 39, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 7.48e-02

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN
 [2, 14, 22, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN = 3.65e-02

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0001

0.001

0.01

0.1

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0001

0.001

0.01

0.1

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0001

0.001

0.01

0.1

gaussian

Adaptive non parametric

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 13, 23, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 3.49e-02

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 13, 39, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 7.48e-02

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN
 [2, 14, 22, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN = 3.65e-02

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0001

0.001

0.01

0.1

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0001

0.001

0.01

0.1

0.0037

0.1115

0.2193

0.3271

0.4349

0.5427

0.6504

0.7582

0.8660

0.9738

0.0001

0.001

0.01

0.1

gaussian

Initial time

20/ 20 D. Torlo Adaptive NN ROM

2D moving Gaussian

Adaptive ALL Adaptive FNP

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 13, 23, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 3.47e-02

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 13, 39, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 6.96e-02

0.0053

0.1057

0.2167

0.3278

0.4388

0.5498

0.6608

0.7718

0.8829

0.9939

0.0053

0.1057

0.2167

0.3278

0.4388

0.5498

0.6608

0.7718

0.8829

0.9939

0.0001

0.001

0.01

0.1

0.0053

0.1057

0.2167

0.3278

0.4388

0.5498

0.6608

0.7718

0.8829

0.9939

0.0001

0.001

0.01

0.1

gaussian

Final time

20/ 20 D. Torlo Adaptive NN ROM

2D moving Gaussian
t = 0 t = 0.5 t = 1

Al
l 0.0053

0.1057
0.2167
0.3278
0.4388
0.5498
0.6608
0.7718
0.8829
0.9939

FN
P

0.0053
0.1057
0.2167
0.3278
0.4388
0.5498
0.6608
0.7718
0.8829
0.9939

20/ 20 D. Torlo Adaptive NN ROM

2D moving Gaussian

0 100000200000300000400000500000600000700000

10 6

10 5

10 4

10 3

Losses NN for gaussian

NN
NN from non param
NN param

20/ 20 D. Torlo Adaptive NN ROM

Moving discontinuity

20/ 20 D. Torlo Adaptive NN ROM

Moving discontinuity

20/ 20 D. Torlo Adaptive NN ROM

Moving discontinuity

20/ 20 D. Torlo Adaptive NN ROM

Moving discontinuity

20/ 20 D. Torlo Adaptive NN ROM

Moving discontinuity

0 100000 200000 300000 400000 500000 600000
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 Losses NN for disc

NN NP
NN all
NN FNP
NN 1D-2D

20/ 20 D. Torlo Adaptive NN ROM

2D moving circle

Adaptive ALL Adaptive FNP

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 19, 17, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 1.42e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 20, 32, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 1.81e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN
 [2, 20, 2, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN = 2.10e-01

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

circle

Adaptive non parametric

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 19, 17, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 1.42e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 20, 32, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 1.81e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN
 [2, 20, 2, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN = 2.10e-01

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

circle

Initial time

20/ 20 D. Torlo Adaptive NN ROM

2D moving circle

Adaptive ALL Adaptive FNP

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 19, 17, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 1.30e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 20, 32, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 1.88e-01

0.573

0.379

0.186

0.008

0.201

0.394

0.588

0.781

0.975

1.168

0.573

0.379

0.186

0.008

0.201

0.394

0.588

0.781

0.975

1.168

0.0001

0.001

0.01

0.1

1.0

10.0

0.573

0.379

0.186

0.008

0.201

0.394

0.588

0.781

0.975

1.168

0.0001

0.001

0.01

0.1

1.0

10.0

circle

Final time

20/ 20 D. Torlo Adaptive NN ROM

2D moving circle
t = 0 t = 0.5 t = 1

Al
l 0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.748

0.562

0.377

0.191

0.005

0.181

0.367

0.553

0.739

0.924

0.573

0.379

0.186

0.008

0.201

0.394

0.588

0.781

0.975

1.168

FN
P

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.748

0.562

0.377

0.191

0.005

0.181

0.367

0.553

0.739

0.924

0.573

0.379

0.186

0.008

0.201

0.394

0.588

0.781

0.975

1.168

20/ 20 D. Torlo Adaptive NN ROM

2D moving circle

0 50000 100000150000200000250000300000

10 5

10 4

10 3

10 2

10 1
Losses NN for circle

NN
NN from non param
NN param

20/ 20 D. Torlo Adaptive NN ROM

2D Double Mach Reflection for Euler’s Equations

0.0 0.2 0.4 0.6 0.8 1.0
1e6

10 1

100

101

Losses NN for DMR

NN
NN from non param
NN param

20/ 20 D. Torlo Adaptive NN ROM

	Adaptive NN
	Adaptive NN for Reduced Order Modeling
	Simulations

	Conclusions

