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Motivation: too deep too wide networks

Input
Layer

Hidden Layers

Output
Layer

• Universal approximators
• Adding many layers increase expressibility
• Countless applications

• Is this optimal?
• Do we really need so many layers?
• Could we save some energy?
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Rediscovering shallow NN: ReLU 1 hidden layer

1 hidden layer NN
• 1 hidden layer
• few neurons
• ReLU activation function max(x , 0) = x+

• Hat function: 1 hidden layer, 3 neurons

h(x) = (x + 1)+ − 2(x)+ + (x − 1)+

• Every breaking point one neuron
• Exploit Finite Element knowledge

approximation functions: Piecewise linear
functions

• Also in more dimensions, e.g.

(ax + by)+

• In D dimensions breaking manifolds are
hyper-planes (lines in 2D)
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Rediscovering shallow NN: ReLU 2 hidden layers in 1D

2 hidden layers NN
• Speed up the process of geometrical

subdivision
• In 1D, for example, easy to discretize

discontinuities up to ε with 2 hidden layers 1
neuron each

N(x) = 1 − (1 − 1
ε

(x − xd)+)+

• Less sensitive to hyperparameters (to do the
same with 1 hidden layer the different weights
have to match exactly)

• Fully interpretable
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Rediscovering shallow NN: ReLU 2 hidden layers in 2D
2 hidden layers NN

• More easily gets steep gradients • Speed up the process of geometrical
subdivision
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Towards simpler NN

What we have learned?
• 1-hidden-layer NN(x) = A1(A0x + b0)+ + b1

breaking lines A0
i,:x + b0

i = 0 for all i
• 2-hidden-layer NN(x) = A2(A1(A0x + b0)+ + b1)+ + b2

possible breaking lines A0
i,:x + b0

i = 0 ∀i and

A1
i,:(A0x + b0) + b1

i = 0 ∀i

Goals: Adaptive NN
• Exploit simple architectures to

save computational time in
training!!

• Carefully selecting how many
breaking lines and where we want
to put them

• Copy ideas of hp-adaptive methods
(h is now more nodes, p is now
more layers (not really but more
capability))
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Adaptive NN1

Incremental architecture
• No a priori knowledge of how many

layers/neurons are needed
• Initialize few neurons of 1st hidden layer to

have equispaced breaking points + least
square for outer layer

• Proceed with optimization process (Adam)

• Increment nodes until a tolerance
• Add neurons so that the new breaking line

falls in the worst represented part (error
estimator)

• If error doesn’t decrease, add a new layer, so
that new breaking point in worst
approximated region

• Continue adding neurons in new layer

x

y

Input
Layer

Output
Layer

1Cai, Zhiqiang, Jingshuang Chen, and Min Liu. "Self-adaptive deep neural network: Numerical approximation to functions
and PDEs." Journal of Computational Physics 455 (2022): 111021.
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Example of adaptive NN
Before Training After Training

Error In Cells
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Results for ANN: multisin 1D [1 9 16 1]

Loss decay Approximation
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adaptive: err = 0.0114
NN_equi_LSQ: err = 0.0439
NN_equi: err = 0.0767
NN_rand_LSQ: err = 0.09
NN_rand: err = 0.0907
NN_rand_dbl_lyr: err = 0.0776
exact
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Parametric Problems and Reduced Order Modeling

Parametrized problem

• We are looking for the solution u of P(u(µ); µ) = 0 for some µ ∈ M
• We can afford computational costs for few u(µi ) with {µi }ntrain

i=1

• We want to forecast u(µ) for µ ̸∈ {µi }ntrain
i=1

NN to learn functions example

x

µ

u(x , µ)

Input
Layer

Hidden Layers

Output
Layer
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Adaptive NN for Reduced Order Modeling architectures

Adaptive NN and domain dimension
• Error estimator based on domain subdivision

from breaking lines
• Defining the breaking hyperplanes is

increasingly complex with dimensions (and
layers)

• Bad idea considering parameter as extra
dimension (curse of dimensionality in error
estimator)

• Code: only 2D

Solution
• Consider biases that are parameter dependent

bi = bi
0µ + bi

1

• Fix a reference parameter µ∗ where to apply
the error estimator

Network [2 14 22 1]
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Adaptive NN ROM architecture

x

µ

u(x , µ)

Input
Layer

Hidden Layers

Output
Layer

Training Strategy
• Option ALL: train from zero with this

architecture
• Option FNP: train first a non parametric for a

µ∗, start from that architecture and train
again with bi = bi

0(µ − µ∗) + bi
1 initializing

bi
0 = 0 and bi

1 = bi
NP

• Option 1D-as-2D: If in 1D, and 1 param, we
can pretend it is 2D and train as in 2D
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Burgers shock
Adaptive ALL Comparison at initial time

Adaptive FNP Adaptive 1D-as-2D
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Burgers shock
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Sod shock tube
Adaptive ALL Comparison at final time

Adaptive FNP Adaptive 1D-as-2D
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Sod shock tube
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Sod shock tube
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Sod shock tube (comparison with non adaptive)

Non parametric FNP Learned from non parametric

0 50000 100000 150000 200000 250000
10 6

10 5

10 4

10 3

10 2

10 1

100

adaptive
NN_equi_LSQ
NN_equi
NN_rand_LSQ
NN_rand
NN_rand_dbl_lyr

0 25000 50000 75000 100000 125000 150000 175000
10 6

10 5

10 4

10 3

10 2

10 1

100

adaptive
NN_equi_LSQ
NN_equi
NN_rand_LSQ
NN_rand
NN_rand_dbl_lyr

16/ 20 D. Torlo Adaptive NN ROM



Sod shock tube (comparison with non adaptive)

Non parametric FNP Learned from non parametric
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2D Double Mach Reflection for Euler’s Equations

Exact Solution in time

t = 0 t = 0.2T t = 0.4T t = T
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2D Double Mach Reflection for Euler’s Equations
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2D Double Mach Reflection for Euler’s Equations
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Conclusions, limitations, perspectives

Summary Adaptive NN
• Add nodes and layer iteratively
• Use ReLUs to define breaking lines to get

mesh
• Error estimator for refining in the right

position
• MOR with a given reference parameter

Perspectives
• Try different configurations for parameter

dependent weights and biases
• Hyperparameter tuning (how many new nodes

all together, maximum number of nodes etc)
• 3D

THANKS!!
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Adaptive NN details

Questions
• How do we initialize all weights and biases at the beginning?

Answers: initialization at ref 0
NN(x) = A1(A0x + b0)+ + b1

• A0, b0 such that A0
i xi + b0

i = 0 with xi equispaced
• |A0

i | = 1 for all i random sign
• Outer layer: Least Square

min
A1,b1

∑
j

|NN(xj) − yj |2
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Adaptive NN details: first hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional node in first layer
• If Loss is not decreasing more than 4% in the

last 5000 epochs: add new node
• Cell-wise error: divide the domain with

breaking lines and search for the highest error
• Add new node so that the breaking

hyperplane cuts the barycenter of this cell

A0
ℓ1+1xbary + b0

ℓ1+1 = 0

• Outer layer: A1
ℓ1+1 = 0
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Adaptive NN details: second hidden layer

Questions
• How do we initialize the new weights and

biases?
• When do we decide to add a layer or a node

and how?

Answers: Additional layer or node in second
layer

• If Loss is not decreasing more than 20% in the
last 7 new nodes: add second layer

• Cell-wise error: divide the domain with
breaking lines and search for the highest error

• Add new layer: A2
1 = 1 and

b2 = − minx ((A1(A0x + b0)+ + b1)+) (no
influence)

• Add new node in second layer: more
complicated, add one breaking line in one
place, but more unpredictable effects
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2D moving Gaussian
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2D moving Gaussian
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2D moving Gaussian

0 100000200000300000400000500000600000700000

10 6

10 5

10 4

10 3

Losses NN for gaussian

NN
NN from non param
NN param

20/ 20 D. Torlo Adaptive NN ROM



Moving discontinuity
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Moving discontinuity
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2D moving circle

Adaptive ALL Adaptive FNP

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 19, 17, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 1.42e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 20, 32, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 1.81e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN
 [2, 20, 2, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN = 2.10e-01

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

circle

Adaptive non parametric

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Exact

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN param
 [2, 19, 17, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN param = 1.42e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN from non param
 [2, 20, 32, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN from non param = 1.81e-01

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Solution NN
 [2, 20, 2, 1]

2 1 0 1 2
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Error NN = 2.10e-01

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

0.004

0.128

0.261

0.393

0.525

0.658

0.790

0.923

1.055

1.188

0.0001

0.001

0.01

0.1

1.0

10.0

circle

Initial time

20/ 20 D. Torlo Adaptive NN ROM



2D moving circle
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2D moving circle
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2D Double Mach Reflection for Euler’s Equations
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