Hyperbolic Problems: High Order Methods and Model Order Reduction

Davide Torlo

Supervisor: Rémi Abgrall

Universität Zürich Institut für Mathematik

2nd June 2020, Zürich

$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = S(u(x,t)), \quad x \in \Omega, \, t \in \mathbb{R}^+$

Models

- Linear Transport
- Euler's
- Shallow water
- Kinetic models

Features

- Discontinuities
- Waves

Properties

- Conservation
- Asymptoticity

Numerical Analysis

- Space discretization (\mathcal{N})
- Time discretization
- Numerical solvers

$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = S(u(x,t)), \quad x \in \Omega, \, t \in \mathbb{R}^+$

Models

- Linear Transport
- Euler's
- Shallow water
- Kinetic models

$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = S(u(x,t)), \quad x \in \Omega, \, t \in \mathbb{R}^+$

Models

- Linear Transport
- Euler's
- Shallow water
- Kinetic models

Features

- Discontinuities
- Waves

Properties

- Conservation
- Asymptoticity

Numerical Analysis

- Space discretization (\mathcal{N})
- Time discretization
- Numerical solvers

 $\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = S(u(x,t)), \quad x \in \Omega, \ t \in \mathbb{R}^+$

$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = S(u(x,t)), \quad x \in \Omega, \, t \in \mathbb{R}^+$

Models

- Linear Transport
- Euler's
- Shallow water
- Kinetic models

Features

- Discontinuities
- Waves

Properties

- Conservation
- Asymptoticity

Numerical Analysis

- Space discretization (N)
- Time discretization
- Numerical solvers

Computational costs vs accuracy

- Scale up to hours, days, months

PhD Thesis

Hyperbolic Problems

e High order time integration for ODEs

- Runge–Kutta
- Deferred Correction
- Modified Patankar Deferred Correction
- Itigh order numerical methods for PDEs
 - Finite Element
 - Finite Volume
 - Residual Distribution
 - IMEX RD DeC for kinetic models
- Model order reduction
 - POD EIM Greedy for hyperbolic PDEs
 - Application to UQ
 - Arbitrary Lagrangian Eulerian formulation

PhD Thesis

- Hyperbolic Problems
- e High order time integration for ODEs
 - Runge–Kutta
 - Deferred Correction
 - Modified Patankar Deferred Correction
- Itigh order numerical methods for PDEs
 - Finite Element
 - Finite Volume
 - Residual Distribution
 - IMEX RD DeC for kinetic models
- Model order reduction
 - POD EIM Greedy for hyperbolic PDEs
 - Application to UQ
 - Arbitrary Lagrangian Eulerian formulation

PhD Thesis

Hyperbolic Problems

- e High order time integration for ODEs
 - Runge–Kutta
 - Deferred Correction
 - Modified Patankar Deferred Correction
- High order numerical methods for PDEs
 - Finite Element
 - Finite Volume
 - Residual Distribution
 - IMEX RD DeC for kinetic models
- Model order reduction
 - POD EIM Greedy for hyperbolic PDEs
 - Application to UQ
 - Arbitrary Lagrangian Eulerian formulation

Outline

High Order Methods

- High Order in Time: Deferred Correction
- High Order in Space: Residual Distribution
- IMEX RD DeC for Kinetic Models

Model Order Reduction for Hyperbolic Problems Advection Dominated Problems in MOR ALE Formulation

- ALE Formulation
- 3 Conclusions and Perspectives

High order methods: Why?

- Given a threshold tol
- We want $\|error\| \le tol$
- Minimize number of cells N
- Computational time depends on ${\cal N}$

• Order *p*

•
$$\|\text{error}\| \approx \frac{1}{N^p}$$

• $\mathcal{N} \approx \mathrm{tol}^{1/p}$

• $p \uparrow \Rightarrow \texttt{time} \downarrow$

High order methods: Why?

- Given a threshold tol
- We want $\|error\| \le tol$
- Minimize number of cells N
- Computational time depends on ${\cal N}$

- Order p
- $\|\text{error}\| \approx \frac{1}{N^p}$
- $\bullet \ \mathcal{N} \approx \mathrm{tol}^{1/p}$
- $p \uparrow \Rightarrow \texttt{time} \downarrow$

High order methods: Why?

- Given a threshold tol
- We want $\|error\| \le tol$
- Minimize number of cells N
- Computational time depends on ${\cal N}$

- Order p
- $\| \operatorname{error} \| \approx \frac{1}{N^p}$
- $\bullet \ \mathcal{N} \approx \mathrm{tol}^{1/p}$

•
$$p \uparrow \Rightarrow \texttt{time} \downarrow$$

Classical Runge Kutta (RK)

- One step method
- Internal stages

Explicit Runge Kutta

- + Simple to code
- Not easily generalizable to arbitrarily high order
- Stages > order

Implicit Runge Kutta

- + Arbitrarily high order
- Require nonlinear solvers for nonlinear systems
- May not converge

- One step method
- Internal stages
- Can be seen as explicit RK
- + Explicit
- + Simple to code
- + Stages = order
- + Arbitrarily high order
- Large memory storage

Classical Runge Kutta (RK)

- One step method
- Internal stages

Explicit Runge Kutta

- + Simple to code
- Not easily generalizable to arbitrarily high order
- Stages > order

Implicit Runge Kutta

- + Arbitrarily high order
- Require nonlinear solvers for nonlinear systems
- May not converge

- One step method
- Internal stages
- Can be seen as explicit RK
- + Explicit
- + Simple to code
- + Stages = order
- + Arbitrarily high order
- Large memory storage

Classical Runge Kutta (RK)

- One step method
- Internal stages

Explicit Runge Kutta

- + Simple to code
- Not easily generalizable to arbitrarily high order
- Stages > order

Implicit Runge Kutta

- + Arbitrarily high order
 - Require nonlinear solvers for nonlinear systems
 - May not converge

- One step method
- Internal stages
- Can be seen as explicit RK
- + Explicit
- + Simple to code
- + Stages = order
- + Arbitrarily high order
- Large memory storage

Classical Runge Kutta (RK)

- One step method
- Internal stages

Explicit Runge Kutta

- + Simple to code
- Not easily generalizable to arbitrarily high order
- Stages > order
- Implicit Runge Kutta
- + Arbitrarily high order
 - Require nonlinear solvers for nonlinear systems
 - May not converge

- One step method
- Internal stages
- Can be seen as explicit RK
- + Explicit
- + Simple to code
- + Stages = order
- + Arbitrarily high order
- Large memory storage

$$rac{\partial {f u}(t)}{\partial t} + F({f u}(t)) = 0$$
 (forget space for the moment)

Discretization of each time step $[t^n, t^{n+1}]$.

High order approximation of the equation in the Picard–Lindelöf form

$$\mathbf{u}^m = \mathbf{u}^0 - \int_{t^0}^{t^m} F(\mathbf{u}(t)) \mathrm{d}t.$$

$$rac{\partial {f u}(t)}{\partial t} + F({f u}(t)) = 0$$
 (forget space for the moment)

Discretization of each time step $[t^n, t^{n+1}]$.

High order approximation of the equation in the Picard–Lindelöf form

$$\mathbf{u}^m = \mathbf{u}^0 - \int_{t^0}^{t^m} F(\mathbf{u}(t)) \mathrm{d}t.$$

$$\frac{\partial \mathbf{u}(t)}{\partial t} + F(\mathbf{u}(t)) = 0$$
 (forget space for the moment)

Discretization of each time step $[t^n, t^{n+1}]$.

High order approximation of the equation in the Picard–Lindelöf form

$$\mathbf{u}^m = \mathbf{u}^0 - \int_{t^0}^{t^m} F(\mathbf{u}(t)) \mathrm{d}t.$$

DeC: operators

$$\mathcal{L}^2 \begin{pmatrix} \mathbf{u}^0 \\ \dots \\ \mathbf{u}^M \end{pmatrix} := \begin{cases} \mathbf{u}^1 - \mathbf{u}^0 + \Delta t \sum_{r=0}^M \theta_r^1 F(\mathbf{u}^r) \\ \dots \\ \mathbf{u}^M - \mathbf{u}^0 + \Delta t \sum_{r=0}^M \theta_r^M F(\mathbf{u}^r) \end{cases}$$

\mathcal{L}^2

- implicit
- high order = M + 1
- not easy to solve
- as implicit RK

DeC: operators

$$\begin{split} \mathcal{L}^2 \begin{pmatrix} \mathbf{u}^0 \\ \cdots \\ \mathbf{u}^M \end{pmatrix} &:= \begin{cases} \mathbf{u}^1 - \mathbf{u}^0 + \Delta t \sum_{r=0}^M \theta_r^1 F(\mathbf{u}^r) \\ \cdots \\ \mathbf{u}^M - \mathbf{u}^0 + \Delta t \sum_{r=0}^M \theta_r^M F(\mathbf{u}^r) \end{cases} \\ \mathcal{L}^1 \begin{pmatrix} \mathbf{u}^0 \\ \cdots \\ \mathbf{u}^M \end{pmatrix} &:= \begin{cases} \mathbf{u}^1 - \mathbf{u}^0 + \Delta t \beta^1 F(\mathbf{u}^0) \\ \cdots \\ \mathbf{u}^M - \mathbf{u}^0 + \Delta t \beta^M F(\mathbf{u}^0) \end{cases} \end{split}$$

\mathcal{L}^2

- implicit
- high order = M + 1
- not easy to solve
- as implicit RK

\mathcal{L}^1

- explicit
- low order = 1
- easy to solve
- as explicit Euler

DeC: algorithm

$$\mathcal{L}^{1}(\underline{\mathbf{u}})^{m} = \mathbf{u}^{m} - \mathbf{u}^{0} + \Delta t \beta^{m} F(\mathbf{u}^{0})$$
$$\mathcal{L}^{2}(\underline{\mathbf{u}})^{m} = \mathbf{u}^{m} - \mathbf{u}^{0} + \Delta t \sum_{r=0}^{M} \theta_{r}^{m} F(\mathbf{u}^{r})$$

DeC Iterations

$$\begin{cases} \underline{\mathbf{u}}^{(0)} = \mathbf{u}^n, & \underline{\mathbf{u}}^{(k)} := \left(\mathbf{u}^{(k),0}, \dots, \mathbf{u}^{(k),M}\right), \\ \mathcal{L}^1(\underline{\mathbf{u}}^{(k)}) = \mathcal{L}^1(\underline{\mathbf{u}}^{(k-1)}) - \mathcal{L}^2(\underline{\mathbf{u}}^{(k-1)}), & k = 1, \dots, p, \\ \mathbf{u}^{n+1} = \mathbf{u}^{(p),M} \end{cases}$$

DeC Theorem

- \mathcal{L}^1 coercive
- $\mathcal{L}^2 \mathcal{L}^1$ Lipschitz

DeC is explicit method of order $\min\{p, M+1\}$

High Order Space Discretization: Residual Distribution

Classical solvers

Finite Element

- + Naturally high order
- + Compact stencil
- Inversion of mass matrix
- Tuning of stabilization terms Finite Volume
- + Naturally conservative
- + No mass matrix
- More involved techniques for high order
- Choice of numerical flux

Residual Distribution

- FE based
- + High order
- + Compact stencil
- + Naturally conservative
- + No mass matrix
- + Easy to code
- + No need of Riemann solver
- Can recast some other FV, FE schemes
 - Choice of residuals

$$\partial_t U + \nabla_x \cdot A(U) = S(U)$$
$$V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), U |_K \in \mathbb{P}^p, \, \forall K \in \Omega_h \}.$$

Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K (\nabla \cdot A(U) - S(U)) \, dx$

) Define a nodal residual $\phi_{\sigma}^{K} \; \forall \sigma \in K$:

$$\phi^{K} = \sum_{\sigma \in K} \phi^{K}_{\sigma}, \quad \forall K \in \Omega_{h}.$$
(1)

Choices in nodal residual

Basic algorithm (Galerkin), numerical fluxes (Rusanov), limiters (PSI), stabilization terms (SUPG).

The resulting scheme is

$$\int_{K} \partial_t U_{\sigma} + \sum_{K \mid \sigma \in K} \phi_{\sigma}^K = 0, \quad \forall \sigma \in D_h.$$
(2)

Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K (\nabla \cdot A(U) - S(U)) \, dx$

2 Define a nodal residual $\phi_{\sigma}^{K} \forall \sigma \in K$:

$$\phi^{K} = \sum_{\sigma \in K} \phi^{K}_{\sigma}, \quad \forall K \in \Omega_{h}.$$
(1)

Choices in nodal residual

Basic algorithm (Galerkin), numerical fluxes (Rusanov), limiters (PSI), stabilization terms (SUPG).

The resulting scheme is

$$\int_{K} \partial_t U_{\sigma} + \sum_{K \mid \sigma \in K} \phi_{\sigma}^K = 0, \quad \forall \sigma \in D_h.$$
⁽²⁾

• Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K (\nabla \cdot A(U) - S(U)) \, dx$

2 Define a nodal residual $\phi_{\sigma}^{K} \forall \sigma \in K$:

$$\phi^{K} = \sum_{\sigma \in K} \phi^{K}_{\sigma}, \quad \forall K \in \Omega_{h}.$$
 (1)

Choices in nodal residual

Basic algorithm (Galerkin), numerical fluxes (Rusanov), limiters (PSI), stabilization terms (SUPG).

The resulting scheme is

$$\int_{K} \partial_t U_{\sigma} + \sum_{K \mid \sigma \in K} \phi_{\sigma}^K = 0, \quad \forall \sigma \in D_h.$$
⁽²⁾

• Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K (\nabla \cdot A(U) - S(U)) \, dx$

2 Define a nodal residual $\phi_{\sigma}^{K} \forall \sigma \in K$:

$$\phi^{K} = \sum_{\sigma \in K} \phi^{K}_{\sigma}, \quad \forall K \in \Omega_{h}.$$
 (1)

Choices in nodal residual

Basic algorithm (Galerkin), numerical fluxes (Rusanov), limiters (PSI), stabilization terms (SUPG).

The resulting scheme is

$$\int_{K} \partial_t U_{\sigma} + \sum_{K \mid \sigma \in K} \phi_{\sigma}^K = 0, \quad \forall \sigma \in D_h.$$
⁽²⁾

Method of Line \Rightarrow Coupling with DeC

Kinetic and Relaxation Models

Kinetic and relaxation models $\iff \varepsilon \ll 1$

Applications

Boltzmann equations

Multiphase flows

BGK models

- Viscoelasticity problems
- ε mean free path, relaxation parameter, reaction time

Asymptotic preserving (AP) property

Works of Jin, Bouchut, Natalini

A Kinetic Model

Kinetic relaxation models by D. Aregba-Driollet and R. Natalini¹. Hyperbolic limit equation is

$$u_t + \sum_{d=1}^D \partial_{x_d} A_d(u) = 0, \quad u: \Omega \to \mathbb{R}^K$$

Relaxation system

$$\begin{split} f_t^{\varepsilon} + \sum_{d=1}^D \Lambda_d \partial_{x_d} f^{\varepsilon} &= \frac{1}{\varepsilon} \left(M(Pf^{\varepsilon}) - f^{\varepsilon} \right), \\ Pf^{\varepsilon} &\to u \text{ (AP property)}, \end{split}$$

$$P(M(u)) = u, \quad P\Lambda_d M(u) = A_d(u).$$

Applications

- Boltzmann equations
- BGK models
- \approx Multiphase flows

¹D. Aregba-Driollet and R. Natalini. Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal., 37(6):1973–2004, 2000.

IMEX discretization - Kinetic Model

Stiff source term \Rightarrow oscillations when $\varepsilon \ll \Delta t$

 $\Delta t \approx \varepsilon$ not feasible

IMEX approach: IMplicit for source term, EXplicit for advection term

$$\frac{f^{n+1,\varepsilon} - f^{n,\varepsilon}}{\Delta t} + \sum_{d=1}^{D} \Lambda_d \partial_{x_d} f^{n,\varepsilon} = \frac{1}{\varepsilon} \left(M(Pf^{n+1,\varepsilon}) - f^{n+1,\varepsilon} \right)$$

$$f^{0,\varepsilon}(x) = f_0^{\varepsilon}(x)$$
(3)

How to treat non-linear implicit functions?

IMEX discretization - Kinetic Model

Stiff source term \Rightarrow oscillations when $\varepsilon \ll \Delta t$

 $\Delta t \approx \varepsilon$ not feasible

IMEX approach: IMplicit for source term, EXplicit for advection term

$$\frac{f^{n+1,\varepsilon} - f^{n,\varepsilon}}{\Delta t} + \sum_{d=1}^{D} \Lambda_d \partial_{x_d} f^{n,\varepsilon} = \frac{1}{\varepsilon} \left(M(Pf^{n+1,\varepsilon}) - f^{n+1,\varepsilon} \right)$$

$$f^{0,\varepsilon}(x) = f_0^{\varepsilon}(x)$$
(3)

How to treat non-linear implicit functions? Recall: PM(u) = u and $Pf^{\varepsilon} = u^{\varepsilon}$, so

$$\frac{u^{n+1,\varepsilon} - u^{n,\varepsilon}}{\Delta t} + \sum_{d=1}^{D} P \Lambda_d \partial_{x_d} f^{n,\varepsilon} = 0.$$
(4)

Find $u^{n+1,\varepsilon} = Pf^{n+1,\varepsilon}$ and substitute it in (3). IMEX formulation = \mathcal{L}^1 (first order accurate).

D. Torlo (UZH)
IMEX discretization - Kinetic Model

Stiff source term \Rightarrow oscillations when $\varepsilon \ll \Delta t$

 $\Delta t\approx \varepsilon$ not feasible

IMEX approach: IMplicit for source term, EXplicit for advection term

 $\frac{f^{n+1,\varepsilon}}{\Delta t} = \underbrace{\begin{array}{c} \text{OeC RD IMEX scheme} \\ \bullet \text{ Arbitrarily high order} \\ \bullet \text{ Coercivity of } \mathcal{L}^{1} \\ \bullet \text{ Lipschitz continuity of } \mathcal{L}^{1} - \mathcal{L}^{2} \\ \bullet \text{ Asymptotic preserving } (Pf_{h}^{\varepsilon} \to u_{h}) \\ \text{How to treat nor } \bullet \text{ Computationally explicit} \\ \text{Recall: } PM(u) = \underbrace{\begin{array}{c} \text{OeC RD IMEX scheme} \\ \bullet \text{ Arbitrarily high order} \\ \bullet \text{ Coercivity of } \mathcal{L}^{1} - \mathcal{L}^{2} \\ \bullet \text{ Asymptotic preserving } (Pf_{h}^{\varepsilon} \to u_{h}) \\ \bullet \text{ Computationally explicit} \\ \end{array}}$ (3)

$$\frac{u^{n+1,\varepsilon} - u^{n,\varepsilon}}{\Delta t} + \sum_{d=1}^{D} P\Lambda_d \partial_{x_d} f^{n,\varepsilon} = 0.$$
(4)

Find $u^{n+1,\varepsilon} = Pf^{n+1,\varepsilon}$ and substitute it in (3). IMEX formulation = \mathcal{L}^1 (first order accurate).

D. Torlo (UZH)

Numerical tests: Linear advection for convergence

 $u_t + u_x = 0, \quad x \in [0, 1], \quad t \in [0, T], \ T = 0.12, \quad u_0(x) = e^{-80(x - 0.4)^2},$ outflow BC, $\varepsilon = 10^{-10}$.

(a) Scalar 1D convergence

D. Torlo (UZH)

PhD Defense

Next simulations will be over Euler's equation

$$\begin{pmatrix} \rho \\ \rho v \\ E \end{pmatrix}_t + \begin{pmatrix} \rho v \\ \rho v^2 + p \\ (E+p)v \end{pmatrix}_x = 0, \qquad x \in [0,1], t \in [0,T]$$
(5)

 ρ is the density, v the speed, p the pressure and E the total energy. The system is closed by the equation of state

$$E = \frac{p}{\gamma - 1} + \frac{1}{2}\rho v^2.$$
 (6)

$$\gamma = 1.4, T = 0.16$$
, outflow BC, $\varepsilon = 10^{-9}$, CFL = 0.2.

 $\rho_0 = \chi_{[0,0.5]}(x) + 0.1\chi_{[0.5,1]}(x), \quad v_0 = 0, \quad p_0 = \chi_{[0,0.5]}(x) + 0.125\chi_{[0.5,1]}(x).$

Initial conditions are

$$\begin{pmatrix} \rho_0 \\ u_0 \\ v_0 \\ p_0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ if } r < \frac{1}{2}, \qquad \begin{pmatrix} \rho_0 \\ u_0 \\ v_0 \\ p_0 \end{pmatrix} = \begin{pmatrix} 0.125 \\ 0 \\ 0 \\ 0.1 \end{pmatrix} \text{ if } r \ge \frac{1}{2}.$$

Here $r^2 = x^2 + y^2$, $\gamma = 1.4$, $\varepsilon = 10^{-9}$, $\lambda = 1.4$, CFL = 0.1, T = 0.25 and outflow boundary conditions.

(d) $\mathbb{B}^1, N = 13548$

D. Torlo (UZH)

PhD Defense

(e) $\mathbb{B}^2, N = 13548$

D. Torlo (UZH)

PhD Defense

(f) $\mathbb{B}^3, N = 13548$

Outline

High Order Methods

- High Order in Time: Deferred Correction
- High Order in Space: Residual Distribution
- IMEX RD DeC for Kinetic Models

Model Order Reduction for Hyperbolic Problems

- Advection Dominated Problems in MOR
- ALE Formulation

Motivation: parametric hyperbolic problems

$$\begin{cases} \partial_t u(x,t,\boldsymbol{\mu}) + \nabla \cdot F(u,x,t,\boldsymbol{\mu}) = 0, \\ \mathbf{B}(u,\boldsymbol{\mu}) = g(t,\boldsymbol{\mu}) \\ u(x,t=0,\boldsymbol{\mu}) = u_0(x,\boldsymbol{\mu}) \end{cases}$$

- $\mu \in \mathcal{P}$ influences boundaries, flux, initial conditions
- F nonlinear dependence on μ !
- Classical solvers FOM: FV, FEM, FD, RD. (Huge dimension N)
- Many query task (UQ, optimization, etc.)

Offline phase

- Some snapshots of FOM (expensive)
- Find a RB space (dim N_{RB})
- Construct a ROM

Online phase

Many fast evaluation of ROM (cheap)

MOR: Ingredients

- Solution manifold: $S := \{u_{\mathcal{N}}(\cdot, t, \mu) \in \mathbb{V}_{\mathcal{N}} : t \in \mathbb{R}^+, \mu \in \mathcal{P}\}$
- Ansatz: $\mathcal{S} \approx \mathbb{V}_{N_{RB}} \subset \mathbb{V}_{\mathcal{N}}, \qquad N_{RB} \ll \mathcal{N}$
- Example: diffusion equation $u_t + \mu u_{xx} = 0$ with $u_0 = \sin(x\pi)$

Figure: POD on a diffusion problem

MOR: Ingredients

Problem:

$$U^{n+1}(\boldsymbol{\mu}) = U^n(\boldsymbol{\mu}) - \mathcal{E}^n(U^n, \boldsymbol{\mu}), \quad U^n, U^{n+1} \in \mathbb{V}_{\mathcal{N}}$$
(7)

Objective:

$$\sum_{i=1}^{N_{RB}} \mathbf{u}_{i}^{n+1}(\boldsymbol{\mu})\psi_{RB}^{i} = \sum_{i=1}^{N_{RB}} \mathbf{u}_{i}^{n}(\boldsymbol{\mu})\psi_{RB}^{i} - \sum_{i=1}^{N_{RB}} \mathbf{E}^{i}(\mathbf{u}^{n}, \boldsymbol{\mu})\psi_{RB}^{i}, \qquad (8)$$
$$\psi_{RB}^{i} \in \mathbb{V}_{\mathcal{N}}, \mathbf{u}^{n}, \mathbf{u}^{n+1} \in \mathbb{V}_{N_{RB}}$$

- POD \Rightarrow RB space from the time evolution $U(\mu^*, t)$, $t \in [0, T]$
- Greedy ⇒ span the parameter space
- EIM \Rightarrow Interpolates non–linear fluxes \mathcal{E} in points τ_j function f_j
- Works of Haasdonk, Ohlberger, Maday, Farhat, Rozza, Patera, Willcox, etc.

MOR: Ingredients

Problem:

$$U^{n+1}(\boldsymbol{\mu}) = U^n(\boldsymbol{\mu}) - \mathcal{E}^n(U^n, \boldsymbol{\mu}), \quad U^n, U^{n+1} \in \mathbb{V}_{\mathcal{N}}$$
(7)

Objective:

$$\sum_{i=1}^{N_{RB}} \mathbf{u}_{i}^{n+1}(\boldsymbol{\mu})\psi_{RB}^{i} = \sum_{i=1}^{N_{RB}} \mathbf{u}_{i}^{n}(\boldsymbol{\mu})\psi_{RB}^{i} - \sum_{i=1}^{N_{RB}} \mathbf{E}^{i}(\mathbf{u}^{n}, \boldsymbol{\mu})\psi_{RB}^{i}, \qquad (8)$$
$$\psi_{RB}^{i} \in \mathbb{V}_{\mathcal{N}}, \mathbf{u}^{n}, \mathbf{u}^{n+1} \in \mathbb{V}_{N_{RB}}$$

- POD \Rightarrow RB space from the time evolution $U(\mu^*, t)$, $t \in [0, T]$
- Greedy ⇒ span the parameter space
- **EIM** \Rightarrow Interpolates non–linear fluxes \mathcal{E} in points τ_j function f_j
- Works of Haasdonk, Ohlberger, Maday, Farhat, Rozza, Patera, Willcox, etc.

Online algorithm: PODEIM-Greedy

Solve the smaller system:

$$\sum_{i=1}^{N_{RB}} (\mathbf{u}_{i}^{n+1}(\boldsymbol{\mu}) - \mathbf{u}_{i}^{n}(\boldsymbol{\mu}))\psi_{RB}^{i} + \sum_{i=1}^{N_{RB}} \mathbf{E}^{i}(\mathbf{u}^{n}, \boldsymbol{\mu})\psi_{RB}^{i} = 0,$$

$$\sum_{i=1}^{N_{RB}} (\mathbf{u}_{i}^{n+1}(\boldsymbol{\mu}) - \mathbf{u}_{i}^{n}(\boldsymbol{\mu}))\psi_{RB}^{i} + \sum_{i=1}^{N_{RB}} \sum_{j=1}^{N_{EIM}} \tau_{j}(\mathcal{E}(\mathbf{u}_{RB}^{n}, \boldsymbol{\mu}))\Pi_{RB,i}(f_{j})\psi_{RB}^{i} = 0$$

- $\Pi_{RB,i}(f_j)$ offline
- $\tau_j(\mathcal{E}(U^n, \mu))$ online (evaluation of \mathcal{E} in EIM point τ_j)
- MOR cost $\mathcal{O}(N_t N_{RB} N_{EIM})$ vs FOM cost $\mathcal{O}(N_t \mathcal{N})$
- Gain if $N_{RB}, N_{EIM} \ll \mathcal{N}$

Traveling shock, time evolution solution, little diffusion

Figure: Solution of advection equation with shock IC

Traveling shock, POD, little diffusion

Figure: POD of time evolution of advection equation with shock IC

Problem: one basis function for every shock position

Calibration map

$$\theta: \mathcal{P} \times [0, t_f] \to \Theta$$

• Smooth: $\theta(\cdot, \mu) \in C^1([0, t_f], \Theta)$ for all $\mu \in \mathcal{P}$.

Geometry map

 $T: \Theta \times \mathcal{R} \to \Omega$

- Bijection: $\exists T^{-1} : \Theta \times \Omega \to \mathcal{R}$ such that $T^{-1}(\theta, T(\theta, y)) = y$ for $y \in \mathcal{R}$ and $T(\theta, T^{-1}(\theta, x)) = x$ for $x \in \Omega$,
- Smooth: $T(\cdot, \cdot) \in \mathcal{C}^1(\Theta \times \mathcal{R}, \Omega), T^{-1}(\cdot, \cdot) \in \mathcal{C}^1(\Theta \times \Omega, \mathcal{R}).$

Goal

 $u_{\mathcal{N}}(T(\theta(t,\boldsymbol{\mu}),y),t,\boldsymbol{\mu})\approx \bar{v}(y), \quad \forall \boldsymbol{\mu}\in \mathcal{P}, \, t\in [0,t_f], y\in \mathcal{R}$

Examples: θ is the point of maximum height or of steepest solution.

• Translation:
$$T(\theta, y) = y + \theta - 0.5$$

 $T^{-1}(\theta, x) = x - \theta + 0.5$

• Dilatation:
$$T(\theta, y) = \frac{y\theta}{(2\theta-1)y+1-\theta}$$

 $T^{-1}(\theta, x) = \frac{x(\theta-1)}{(2\theta-1)x-\theta}$

- High degree polynomials
- Gordon-Hall (see Cagniart, Crisovan, Maday, Abgrall)

Examples: θ is the point of maximum height or of steepest solution.

• Translation:
$$T(\theta, y) = y + \theta - 0.5$$

 $T^{-1}(\theta, x) = x - \theta + 0.5$

• Dilatation:
$$T(\theta, y) = \frac{y\theta}{(2\theta-1)y+1-\theta}$$

 $T^{-1}(\theta, x) = \frac{x(\theta-1)}{(2\theta-1)x-\theta}$

 Gordon-Hall (see Cagniart, Crisovan, Maday, Abgrall)

Transformation examples

Dilatation (for other BCs): $T^{-1}(\theta, x) = x \frac{\theta - 1}{(2\theta - 1)x - \theta}$

Figure: Original solutions for traveling discontinuity

D. Torlo (UZH)

Transformation examples

Dilatation (for other BCs): $T^{-1}(\theta, x) = x \frac{\theta - 1}{(2\theta - 1)x - \theta}$

Figure: Calibrated solutions for traveling discontinuity

POD of calibrated solutions

Dilatation (for other BCs): $T^{-1}(\theta, x) = x \frac{\theta - 1}{(2\theta - 1)x - \theta}$

Figure: POD of calibrated solutions for traveling discontinuity

Arbitrary Lagrangian–Eulerian formulation

Influence on the online phase?

$$\begin{aligned} \frac{d}{dt}u(x,t,\boldsymbol{\mu}) &+ \frac{d}{dx}F(u(x,t,\boldsymbol{\mu}),\boldsymbol{\mu}) = 0\\ x &:= T(\theta(t,\boldsymbol{\mu}),y), \quad v(y,t,\boldsymbol{\mu}) := u(T(\theta(t,\boldsymbol{\mu}),y),t,\boldsymbol{\mu}) = u(x,t,\boldsymbol{\mu})\\ \frac{\partial}{\partial t}v(y,\boldsymbol{\mu},t) &+ \frac{dy}{dx}\frac{d}{dy}F(v,\boldsymbol{\mu}) - \frac{dy}{dx}\frac{dv}{dy}\frac{\partial T}{\partial t} = 0 \end{aligned}$$

ALE formulation \Longrightarrow EIM procedure on the reference domain \mathcal{R} .

- Jacobian $\frac{dy}{dx}$ low cost
- Flux $\frac{dv}{dy}$ low cost
- $\frac{\partial T}{\partial t}$??? \implies We must know $T(\theta(t, \mu), y)$: easy parametrization in θ
- We must know θ

Learning of θ

- Quick evaluation of $\theta(t, \mu)$
 - Offline: $\mu_i \in \mathcal{P}_{train} \Longrightarrow \theta(\mu_i, t)$ with optimization or detection
 - Online: estimator $\hat{\theta}$ obtained with regression from $\theta(\mu_i, t)$

Regression Maps

- Piecewise interpolation in µ_i for every tⁿ
- Polynomial regression in μ and t
- Neural network: multilayer perceptron

Modification to original algorithm

- Calibration map θ optimized on training samples $\theta(\mu_k, t)$
- Regression on $\theta(\mu_k, t)$ to have $\hat{\theta}$
- ALE formulation of the evolution operator $\mathcal{E}(\hat{\theta})$

Advection: traveling discontinuity

$u_t + \mu_0 u_x = 0, D = [0, 1], T_{max} = 1.5$, Dirichlet BC					
$\begin{cases} u_0(x, \mu) = \begin{cases} \mu_1 & \text{if } x < 0.35 + 0.05\mu_2 \end{cases}$					
(0 else					
$\mu_0 \sim \mathcal{U}([0,2]), \ \mu_1, \mu_2 \sim \mathcal{U}([-1,1])$					
Without calibration		With calibration: Poly2			
RB dim	64	RB dim	17		
EIM dim	124	EIM dim	22		
FOM time	49 s	FOM time	125 s		
RB time	9 s	RB time	6 s		
RB/FOM time	18%	RB/FOM time	5%		

Advection: traveling discontinuity

D. Torlo (UZH)

Burgers: formation and motion of a shock

$$\begin{cases} u_t + \mu_0 (u^2/2)_x = 0, \ D = [0, \pi], \ T_{max} = 0.15, \text{ periodic BC} \\ u_0(x, \mu) = |\sin(x + \mu_1)| + 0.1 \\ \mu_0 \sim \mathcal{U}([0, 2]), \ \mu_1 \sim \mathcal{U}([0, \pi]) \end{cases}$$

Without calibration: FAIL!		With calibration: Poly4	
RB dim	failed	RB dim	19
EIM dim	>600	EIM dim	41
FOM time	167 s	FOM time	444 s
RB time	∞	RB time	53 s
RB/FOM time	∞	RB/FOM time	11%

Burgers: formation and motion of a shock

$$\begin{cases} u_t + \mu_0 (u^2/2)_x = 0, \ D = [0, \pi], \ T_{max} = 0.15, \text{ periodic BC} \\ u_0(x, \mu) = |\sin(x + \mu_1)| + 0.1 \\ \mu_0 \sim \mathcal{U}([0, 2]), \ \mu_1 \sim \mathcal{U}([0, \pi]) \end{cases}$$

Outline

High Order Methods

- High Order in Time: Deferred Correction
- High Order in Space: Residual Distribution
- IMEX RD DeC for Kinetic Models

Model Order Reduction for Hyperbolic Problems Advection Dominated Problems in MOR

ALE Formulation

3 Conclusions and Perspectives

Summary

High order space and time discretization

- Deferred Correction method
- Residual distribution
- Application on kinetic models
- IMEX scheme
- Asymptotic preserving

Model order reduction for hyperbolic problems

- POD EIM Greedy
- Troubles with advection
- ALE framework
- Calibration maps

High order space discretization

- Multiphase flows
- BGK models

Model order reduction for hyperbolic problems

- Systems
- Multidimensional geometries
- More complicated transformation maps
- Different regression maps

Thank you for the attention!

- High order
- FE based
- Compact stencil
- Explicit
- Can recast some other FV, FE, FD, DG schemes²

 $\partial_t U + \nabla \cdot F(U) = 0 \tag{9}$

 $V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), \, U|_K \in \mathbb{P}^k, \, \forall K \in \Omega_h \}.$ (10)

$$U_{h} = \sum_{\sigma \in D_{\mathcal{N}}} U_{\sigma} \varphi_{\sigma} = \sum_{K \in \Omega_{h}} \sum_{\sigma \in K} U_{\sigma} \varphi_{\sigma}|_{K}$$
(11)

²R. Abgrall. Computational Methods in Applied Mathematics; 2018.

- High order
- FE based
- Compact stencil
- Explicit
- Can recast some other FV, FE, FD, DG schemes²

$$\partial_t U + \nabla \cdot F(U) = 0 \tag{9}$$

$$V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), \, U|_K \in \mathbb{P}^k, \, \forall K \in \Omega_h \}.$$
(10)

$$U_{h} = \sum_{\sigma \in D_{\mathcal{N}}} U_{\sigma} \varphi_{\sigma} = \sum_{K \in \Omega_{h}} \sum_{\sigma \in K} U_{\sigma} \varphi_{\sigma}|_{K}$$
(11)

²R. Abgrall. Computational Methods in Applied Mathematics; 2018.

Residual Distribution - Spatial Discretization

- Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot F(U) dx$
- 2 Define a nodal residual $\phi_{\sigma}^{K} \forall \sigma \in K$:

$$\phi^{K} = \sum_{\sigma \in K} \phi^{K}_{\sigma}, \quad \forall K \in \Omega_{h}.$$
 (12)

The resulting scheme is

$$U_{\sigma}^{n+1} - U_{\sigma}^{n} + \Delta t \sum_{K \mid \sigma \in K} \phi_{\sigma}^{K} = 0, \quad \forall \sigma \in D_{\mathcal{N}}.$$
 (13)
- High order
- Easy to code
- FE based
- Compact stencil
- No need of Riemann solver
- No need of conservative variables
- Can recast some other FV, FE schemes

 $\partial_t U + \nabla \cdot A(U) = S(U)$ $V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), U |_K \in \mathbb{P}^k, \forall K \in \Omega_h \}.$ $U_h = \sum_{\sigma \in D_N} U_\sigma \varphi_\sigma = \sum_{K \in \Omega_h} \sum_{\sigma \in K} U_\sigma \varphi_\sigma |_K$ (16)

- High order
- Easy to code
- FE based
- Compact stencil
- No need of Riemann solver
- No need of conservative variables
- Can recast some other FV, FE schemes

$$\partial_t U + \nabla \cdot A(U) = S(U)$$
 (14)

$$V_h = \{ U \in L^2(\Omega_h, \mathbb{R}^D) \cap \mathcal{C}^0(\Omega_h), \, U|_K \in \mathbb{P}^k, \, \forall K \in \Omega_h \}.$$
(15)

$$U_{h} = \sum_{\sigma \in D_{\mathcal{N}}} U_{\sigma} \varphi_{\sigma} = \sum_{K \in \Omega_{h}} \sum_{\sigma \in K} U_{\sigma} \varphi_{\sigma}|_{K}$$
(16)

Residual Distribution - Spatial Discretization

Focus on steady case.

• Define $\forall K \in \Omega_h$ a fluctuation term (total residual) $\phi^K = \int_K \nabla \cdot A(U) - S(U) dx$

2 Define a nodal residual $\phi_{\sigma}^{K} \forall \sigma \in K$:

$$\phi^{K} = \sum_{\sigma \in K} \phi^{K}_{\sigma}, \quad \forall K \in \Omega_{h}.$$
(17)

Often done assigning $\phi_{\sigma}^{K} = \beta_{\sigma}^{K} \phi^{K}$, where must hold that

$$\sum_{\sigma \in K} \beta_{\sigma}^{K} = \text{Id.}$$
(18)

The resulting scheme is

$$\sum_{K|\sigma\in K} \phi_{\sigma}^{K} = 0, \quad \forall \sigma \in D_{\mathcal{N}}.$$
(19)

This will be called residual distribution scheme.

D. Torlo (UZH)

PhD Defense

Residual distribution - Choice of the scheme

How to split total residuals into nodal residuals \Rightarrow choice of the scheme.

$$\begin{split} \phi_{\sigma}^{K,LxF}(U_{h}) &= \int_{K} \varphi_{\sigma} \left(\nabla \cdot A(U_{h}) - S(U_{h}) \right) dx + \alpha_{K} (U_{\sigma} - \overline{U}_{h}^{K}), \\ \overline{U}_{h}^{K} &= \int_{K} U_{h}, \quad \alpha_{K} = \max_{e \text{ edge } \in K} \left(\rho_{S} \left(\nabla A(U_{h}) \cdot \mathbf{n}_{e} \right) \right), \\ \beta_{\sigma}^{K}(U_{h}) &= \max \left(\frac{\Phi_{\sigma}^{K,LxF}}{\Phi^{K}}, 0 \right) \left(\sum_{j \in K} \max \left(\frac{\Phi_{j}^{K,LxF}}{\Phi^{K}}, 0 \right) \right)^{-1}, \qquad (20) \\ \phi_{\sigma}^{*,K} &= (1 - \Theta) \beta_{\sigma}^{K} \phi_{\sigma}^{K} + \Theta \Phi_{\sigma}^{K,LxF}, \quad \Theta = \frac{|\Phi^{K}|}{\sum_{j \in K} |\Phi_{j}^{K,LxF}|}, \\ \phi_{\sigma}^{K} &= \beta_{\sigma}^{K} \phi_{\sigma}^{*,K} + \sum_{e | edge \text{ of } K} \theta h_{e}^{2} \int_{e} [\nabla U_{h}] \cdot [\nabla \varphi_{\sigma}] d\Gamma. \end{split}$$

Additional hypothesis:

- $Id + \Delta t \mathcal{L}$ is Liptschitz continuous with constant C > 0,
- There are N'_{EIM} extra functions and functionals that capture the evolution of the solutions. (experimentally not so strict),
- Initial conditions are exactly represented in the reduced basis *RB*.

Total error estimator:

- EIM error, estimated by other N'_{EIM} basis functions f and functional τ iterating the EIM procedure after the stop, cost $\mathcal{O}(N'_{EIM})$,
- RB error given by the Lipschitz constant times residual of the small system,
- additionally one can add the projection error of the initial condition when not in *RB*.

INPUT: $\mathcal{L}^n(U^n, \boldsymbol{\mu}, t^n)$, for $\boldsymbol{\mu} \in \mathcal{P}_h, n \leq N_t$

OUTPUT: $EIM = (\tau_k, f_k)_{k=1}^{N_{EIM}}$ where functions $f_k \in \mathbb{R}^N$ and $\tau_k \in (\mathbb{R}^N)'$ (Examples of τ_k are point evaluations)

- Greedy iterative procedure
- At each step chooses the worst approximated function via an error estimator $\mathcal{L}^{worst} = \arg \max_{\mathcal{L}} ||\mathcal{L} \sum_{k=1}^{N_{EIM}} \tau_k(\mathcal{L}) f_k||$
- Maximise the functional τ on the function \mathcal{L}^{worst} $\tau^{chosen} = \underset{\tau}{\arg \max} |\tau(\mathcal{L}^{worst})|$
- $EIM = EIM \cup (\tau^{chosen}, \mathcal{L}^{worst})$
- Stop when error is smaller than a tolerance

INPUT: Collection of functions $\{f_j\}_{j=1}^N$ OUTPUT: Reduced basis spaces $RB = \underset{U|dim(U)=N_{POD}}{\arg \min} \sum_{j=1}^N ||f_j - \mathcal{P}_U(f_j)||_2$

- Based on SVD
- Prescribed tolerance to stop the algorithm
- Global optimizer of the problem

INPUT: Collection of functions $\{f_j\}_{j=1}^N$

OUTPUT: Reduced basis space RB

- There is an error estimator (normally cheap) $\varepsilon_{RB}(f) \sim ||f \mathcal{P}_{RB}(f)||$
- Iteratively choose the worst represented function $f^{worst} = \underset{f}{\arg \max} \varepsilon_{RB}(f)$
- Add f^{worst} to the RB space
- Stop up to a certain tolerance

DeC: Iterative process

K iterations where the iteration index is the superscript (k), with $k=0,\ldots,K$

- **1** Define $\mathbf{u}^{(0),m} = \mathbf{u}^n = \mathbf{u}(t^n)$ for $m = 0, \dots, M$
- 2 Define $\mathbf{u}^{(k),0} = \mathbf{u}(t^n)$ for $k = 0, \dots, K$
- Sind $\underline{\mathbf{u}}^{(k)}$ as $\mathcal{L}^1(\underline{\mathbf{u}}^{(k)}) = \mathcal{L}^1(\underline{\mathbf{u}}^{(k-1)}) \mathcal{L}^2(\underline{\mathbf{u}}^{(k-1)})$
- $u^{n+1} = \mathbf{u}^{(K),M}.$

Theorem (Convergence DeC)

- If L¹ coercive with constant C₁
- If $\mathcal{L}^1 \mathcal{L}^2$ Lipschitz with constant $C_2 \Delta t$

Then $\|\underline{\mathbf{u}}^{(k)} - \underline{\mathbf{u}}^*\| \le C\Delta t^k$

Hence, choosing K = M + 1, then $\|\mathbf{u}^{(K),M} - \mathbf{u}^{ex}(t^{n+1})\| \leq C\Delta t^{K}$

Proof.

Let $\underline{\mathbf{u}}^*$ be the solution of $\mathcal{L}^2(\underline{\mathbf{u}}^*) = 0$. We know that $\mathcal{L}^1(\underline{\mathbf{u}}^*) = \mathcal{L}^1(\underline{\mathbf{u}}^*) - \mathcal{L}^2(\underline{\mathbf{u}}^*)$ and $\mathcal{L}^1(\underline{\mathbf{u}}^{(k+1)}) = \left(\mathcal{L}^1(\underline{\mathbf{u}}^{(k)}) - \mathcal{L}^2(\underline{\mathbf{u}}^{(k)})\right)$, so that

$$C_{1}||\underline{\mathbf{u}}^{(k+1)} - \underline{\mathbf{u}}^{*}|| \leq ||\mathcal{L}^{1}(\underline{\mathbf{u}}^{(k+1)}) - \mathcal{L}^{1}(\underline{\mathbf{u}}^{*})|| =$$

$$= ||\mathcal{L}^{1}(\underline{\mathbf{u}}^{(k)}) - \mathcal{L}^{2}(\underline{\mathbf{u}}^{(k)}) - (\mathcal{L}^{1}(\underline{\mathbf{u}}^{*}) - \mathcal{L}^{2}(\underline{\mathbf{u}}^{*}))|| \leq$$

$$\leq C_{2}\Delta t||\underline{\mathbf{u}}^{(k)} - \underline{\mathbf{u}}^{*}||.$$

$$||\underline{\mathbf{u}}^{(k+1)} - \underline{\mathbf{u}}^{*}|| \leq \left(\frac{C_{2}}{C_{1}}\Delta t\right)||\underline{\mathbf{u}}^{(k)} - \underline{\mathbf{u}}^{*}|| \leq \left(\frac{C_{2}}{C_{1}}\Delta t\right)^{k+1}||\underline{\mathbf{u}}^{(0)} - \underline{\mathbf{u}}^{*}||.$$

After K iteration we have an error at most of $\eta^{K} \cdot ||\underline{\mathbf{u}}^{(0)} - \underline{\mathbf{u}}^{*}||$.