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Motivation: hyperbolic PDEs

Hyperbolic PDE

Owu(z,t) + V- F(u(z,t)) = S(u(x,t), z€Q,teRt
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Motivation: hyperbolic PDEs

Hyperbolic PDE

Owu(z,t) + V- F(u(z,t)) = S(u(x,t), z€Q,teRt

@ Discontinuities
@ Waves

@ Linear Transport
@ Euler’s

@ Shallow water
@ Kinetic models

Properties
@ Conservation

@ Asymptoticity
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Motivation: hyperbolic PDEs
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Motivation: hyperbolic PDEs

Hyperbolic PDE

Owu(z,t) + V- F(u(z,t)) = S(u(x,t), z€Q,teRt

Numerical Analysis

@ Linear Transport @ Discontinuities @ Space
@ Eulers @ Waves discretization (\)
@ Shallow water @ Time discretization

Properties @ Numerical solvers
@ Conservation

@ Kinetic models

@ Asymptoticity
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Computational costs vs accuracy

@ Numerical simulations = Computational times
@ Scale up to hours, days, months

10° T
P Possible solutions
107 ] % xg\\_*er::%n i
I i | @ High order methods
10° Lax Friedrichs | 4 E a
] @ Model order reduction
1074 [ o FEtc’):Wendrcff ) <
10° -
1073 102 107

Computational time
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PhD Thesis

@ Hyperbolic Problems

© High order time integration for ODEs
o Runge—Kutta
e Deferred Correction
o Modified Patankar Deferred Correction

© High order numerical methods for PDEs
Finite Element

Finite Volume

Residual Distribution

IMEX RD DeC for kinetic models

© Model order reduction

o POD EIM Greedy for hyperbolic PDEs
e Application to UQ
o Arbitrary Lagrangian Eulerian formulation
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PhD Thesis

@ Hyperbolic Problems

@ High order time integration for ODEs
o Runge—Kutta
e Deferred Correction
o Modified Patankar Deferred Correction

© High order numerical methods for PDEs
Finite Element

Finite Volume

Residual Distribution

IMEX RD DeC for kinetic models

© Model order reduction

o POD EIM Greedy for hyperbolic PDEs
@ Application to UQ
o Arbitrary Lagrangian Eulerian formulation
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@ High Order Methods
@ High Order in Time: Deferred Correction
@ High Order in Space: Residual Distribution
@ IMEX RD DeC for Kinetic Models
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High order methods: Why?

@ Given a threshold tol

@ We want ||error| < tol

@ Minimize number of cells N

@ Computational t ime depends on N/
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High order methods: Why?

@ Given a threshold tol
@ We want ||error| < tol
@ Minimize number of cells

@ Computational t ime depends on N/
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@ Order p

@ |error| & Nlﬁ
@ N ~ toll/r

@ pT=time |
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High order methods: Why?

@ Given a threshold tol @ Order p
@ We want ||error]| < tol @ |lerror| = Nlﬁ
@ Minimize number of cells A/ @ N ~toll/p

@ Computational time dependson ' @ p 1= time |

10°

102k

107 proe
s
i
106k = = ~orderl
. order 2
——— order3
— — —order4
. wwnsssns Order 5
order 6
““““““  Threshold
10710 ‘
ot 10°

Discretization scale
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High order in time: Deferred Correction (DeC)

Classical Runge Kutta (RK)
@ One step method
@ Internal stages

4
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High order in time: Deferred Correction (DeC)

Classical Runge Kutta (RK)
@ One step method
@ Internal stages

Explicit Runge Kutta
+ Simple to code

- Not easily generalizable to
arbitrarily high order

- Stages > order

4
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High order in time: Deferred Correction (DeC)

Classical Runge Kutta (RK)
@ One step method
@ Internal stages

Explicit Runge Kutta
+ Simple to code

- Not easily generalizable to
arbitrarily high order

- Stages > order
Implicit Runge Kutta
+ Arbitrarily high order

- Require nonlinear solvers for
nonlinear systems

- May not converge

V.
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High order in time: Deferred Correction (DeC)

Classical Runge Kutta (RK)
@ One step method
@ Internal stages

Explicit Runge Kutta
+ Simple to code

- Not easily generalizable to
arbitrarily high order

- Stages > order
Implicit Runge Kutta
+ Arbitrarily high order

- Require nonlinear solvers for
nonlinear systems

- May not converge

V.

D. Torlo (UZH)

Deferred Correction

@ One step method

@ Internal stages

@ Can be seen as explicit RK
+ Explicit

+ Simple to code
+ Stages = order

+ Arbitrarily high order

- Large memory storage
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DeC

ou(t)
ot

Discretization of each time step [t", " +1].

+ F(u(t)) =0 (forget space for the moment)

u” un+1
[ ° ° L L J
tn tn+1
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DeC
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Discretization of each time step [t", " +1].

+ F(u(t))=0 (forget space for the moment)

u’ ul u™ uM
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t0 th e tM

D. Torlo (UZH) PhD Defense

8/40



DeC

ou(t)
ot
Discretization of each time step [t", " +1].

+ F(u(t))=0 (forget space for the moment)

u’ ul u™ uM
[ T 7 7 7 o
t0 th e tM

High order approximation of the equation in the Picard—Lindel6f form

tm

u” =u’ — / F(u(t))dt.

0
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DeC: operators

D. Torlo (UZH)

(

M
ul —uHAY 0 F(W) e implicit
=0 @ high order = M + 1
M @ not easy to solve
uM_u'+ AtZGf«WF(uT) @ as implicit RK

k r=0
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DeC: operators

Y

) ul —uHAY 0 F(W) e implicit

52(‘1)_ =0 @ high order = M + 1
M @ not easy to solve

uM_u'+ AtZ&MF(uT) @ as implicit RK

\ r=0 . 9
O\ (ul w0 AP
ol ( ) ) @ explicit

@ low order =1
@ easy to solve
@ as explicit Euler

(

LuM —u’ + AtpMF(u°)
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DeC: algorithm

LYu)™ =u™ — u’ + At F(u?)
M
L™ =u"—u’+ At 6F(u)

r=0
DeC lterations

u® — yn u® = (B0, ukIM),
£ u®) = 1 ut-) - L2EY), k=1,...,p,
un—l—l _ u(p),M

)

v

DeC Theorem

@ L! coercive

@ L£? — L' Lipschitz
DeC is explicit method of order min{p, M + 1} )

D. Torlo (UZH) PhD Defense 10/40



High Order Space Discretization: Residual Distribution

Classical solvers Residual Distribution

Finite Element
inite Elemen @ FE based

High order

+ Naturally high order

+ Compact stencil

- Inversion of mass matrix

- Tuning of stabilization terms
Finite Volume

+ Naturally conservative

+ No mass matrix

- More involved techniques for
high order

- Choice of numerical flux
U + V.- A(U) = S(U)
Vi, = {U € L*(Q,,RP)nC%(Qy), Ulg € PP, VK € Q).
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+

+ Compact stencil

+ Naturally conservative

+ No mass matrix

+ Easy to code

+ No need of Riemann solver
°

Can recast some other FV, FE
schemes

- Choice of residuals




Residual Distribution - Spatial Discretization
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Residual Distribution - Spatial Discretization

@ Define VK € Q,, a fluctuation term (total residual)
oK = [, (V-AU) - S(U))dz

D. Torlo (UZH) PhD Defense 12/40



Residual Distribution - Spatial Discretization
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Residual Distribution - Spatial Discretization

@ Define VK € Q,, a fluctuation term (total residual)
oK = [, (V-AU) - S(U))dz
@ Define a nodal residual ¢ Vo € K :

¢ =" ¢F, VK e, (1)

ceK

Choices in nodal residual

Basic algorithm (Galerkin), numerical fluxes (Rusanov), limiters (PSI),
stabilization terms (SUPG).
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¢ =" ¢F, VK e, (1)

ceK

Choices in nodal residual
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© The resulting scheme is

/ U, + > ¢X =0, Voe Dy 2)
K

KloeK
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Residual Distribution - Spatial Discretization

@ Define VK € Q,, a fluctuation term (total residual)
oK = [, (V-AU) - S(U))dz
@ Define a nodal residual ¢ Vo € K :

¢ =" ¢F, VK e, (1)

ceK

Choices in nodal residual

Basic algorithm (Galerkin), numerical fluxes (Rusanov), limiters (PSI),
stabilization terms (SUPG).

© The resulting scheme is

/ U, + > ¢X =0, Voe Dy 2)
K

KloeK

Method of Line = Coupling with DeC J
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Kinetic and Relaxation Models

Kinetic and relaxation models <= ¢ <« 1 J
Applications

@ Boltzmann equations @ Multiphase flows

@ BGK models @ Viscoelasticity problems

e mean free path, relaxation parameter, reaction time

7= e—=0 -7:2
Asymptotic preserving (AP)
property J A—0 A—0
e—0
FE——— F0

Works of Jin, Bouchut, Natalini
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A Kinetic Model

Kinetic relaxation models by D. Aregba-Driollet and R. Natalini’.
Hyperbolic limit equation is
u
b QCcRP — RE D Ay
Uy +Z@szd(u) =0, u:Q—RE
d=1

M P

RLE D Ay

Relaxation system

D Applications

i+ ZAdc‘)xdff = é (M(Pf°)— f°), e Boltzmann equations
d=1 @ BGK models

Pf — u (AP property), ~ Multiphase flows

P(M(u)) =u, PAgM(u)= Ag(u).

'D. Aregba-Driollet and R. Natalini. Discrete kinetic schemes for multidimensional
systems of conservation laws. SIAM J. Numer. Anal., 37(6):1973-2004, 2000.

D. Torlo (UZH) PhD Defense
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IMEX discretization - Kinetic Model

Stiff source term = oscillations when ¢ <« At
At =~ ¢ not feasible
IMEX approach: IMplicit for source term, EXplicit for advection term

fn+1,s _ fn,z—:

D
n,e __ 1 n+l,e\ _ rn+le
ot ;Ada%f = (P =) g

(@) = f§(2)

How to treat non-linear implicit functions?
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IMEX discretization - Kinetic Model

Stiff source term = oscillations when ¢ <« At
At =~ ¢ not feasible
IMEX approach: IMplicit for source term, EXplicit for advection term

TRy L ne Z L p(p ey _ prite
N + ; A0y, f° = 6 (M(Pf )= f ) (3)

95 (x) = f§ (@)
How to treat non-linear implicit functions?
Recall: PM(u) = w and Pf¢ = u¢, so

un+1,5 n,e

—Uu

D
— — + Y PNy, f° = 0. (4)

d=1

Find «"t1¢ = P f"+1¢ and substitute it in (3).
IMEX formulation = £! (first order accurate).
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IMEX discretization - Kinetic Model

Stiff source term = oscillations when ¢ <« At
At =~ ¢ not feasible
IMEX approach: IMplicit for source term, EXplicit for advection term

DeC RD IMEX scheme

[ — o Arbitrarily high order e
At o Coercivity of £!
fO,E(w) _ o Lipschitz continuity of LN — 2%
@ Asymptotic preserving (P f; — up)

How to treat noi ¢ Computatlonally explicit
Recall: PM (u) === ’

EC— - -

(3)

un+1,5 — uE

D
T + ; PAdﬁxdf"’E =0. (4)

Find «"t1¢ = P f"+1¢ and substitute it in (3).
IMEX formulation = £! (first order accurate).
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Numerical tests: Linear advection for convergence

utuy, =0, xe€l0,1, te€l[0,T],T=012, wug(x)= ¢~ 80(z—04)
outflow BC, ¢ = 10 1°.

Convergence of u

=—a Bl
107'H -~ order 2

e—o B2
- order3

= B3
order 4

9
10° 10! 10% 10*
N

(a) Scalar 1D convergence
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Numerical tests: Euler’s equation

Next simulations will be over Euler’s equation

p pv
pv| + | pv?4p =0, xz €[0,1], t €[0,T]
EJ, (E+po/

p is the density, v the speed, p the pressure and E the total energy.
The system is closed by the equation of state

p I 5
E=-2_ 4
S—1 13"

D. Torlo (UZH) PhD Defense
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Numerical tests: Sod shock test

v = 1.4, T = 0.16, outflow BC, £ = 1079, CFL = 0.2.

Po = X(0,0.5/()+0.1x[0511(7), vo =0, po = X0,0.5(2)+0.125x0.5,1]()-

Density ,Sod test ,N=64 Density ,Sod test ,N=256
10 /
08 /
0.6 ‘f"
0.4 X
Bl
““““ B2
o2f| — B3 L
ref
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(o) N =64 (c) N = 256
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Numerical tests 2D: Sod shock test

Initial conditions are

Po 1 Po 0.125

U ol . 1 U 0 . 1
v 0 |f7“<27 v 0 Ifr_2
Po 1 Po 0.1

Here r? =22 + 4%, y=14,e =107 A =1.4,CFL=0.1, T = 0.25 and
outflow boundary conditions.

D. Torlo (UZH) PhD Defense 19/40



Numerical tests 2D: Sod shock test

Pseudocolor
Var.
0.9826

—0.7682

-D 5637

—0.3302

0.1247
Max: 0,9826
Min: 0.1247

(d) B', N = 13548
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Numerical tests 2D: Sod shock test

Pseudocolor
ar:
0.9991

—0.7608

- 05624

—0.3401

0.1258
Max: 0.9991
Min: 0.1258

(e) B?, N = 13548

D. Torlo (UZH) PhD Defense 20/40



Numerical tests 2D: Sod shock test

Pseudocalor

1.000
—-0.7812

- 0.5625

—0.3438

0.1251
Max: 1.000
Min: 0.1251

(f) B®, N = 13548
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Numerical tests 2D: Sod shock test

0.90
0.80
0.70
0.60

f2_147!
0.50

L L s N LA B e s s s e
-1.0 -0.5 0.0 0.5

(g) Slices of B' (blue), B? (red) and B3 (green), N = 13548
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e Model Order Reduction for Hyperbolic Problems
@ Advection Dominated Problems in MOR
@ ALE Formulation
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Motivation: parametric hyperbolic problems

ou(z,t, ) + V- Flu,z,t,pn) =0,
B(u, p) = g(t, 11)
u(z,t =0, p) = uo(x, p)

@ .. € P influences boundaries, Offline phase

flux, initial conditions @ Some snapshots of FOM
@ F nonlinear dependence on 1! (expensive)

“ @ Find a RB space (dim Nyz)

@ Classical solvers FOM: @ Construct a ROM

FV, FEM, FD, RD.

(Huge dimension \) Online phase
@ Many query task @ Many fast evaluation of ROM

(UQ, optimization, etc.) (cheap)
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MOR: Ingredients

@ Solution manifold: S := {upn(-,t,u) € Vi : t € RT u € P}
@ Ansatz: S = Vy,,, C Vy, Nrp <N

@ Example: diffusion equation u; + pug, = 0 with ug = sin(z)

FOM solutions 1 modes of POD for FOM with tolerance = le-12

0.8

0.6

04

POD basis functions

02 _ ~

0.0 0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure: POD on a diffusion problem
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MOR: Ingredients

Problem:
U™ (p) = U"(p) = U™, p), UM U™ eVy (7)
Objective:
Nrp Nrp Nrp

ZU?H(HW%B:Z F () VRp — ZE (0", 1)k, (8)
i=1 i=1

wRBEVNau )u eV7NPJ3

@ POD =- RB space from the time evolution U(u*,t), t € [0, 7]
@ Greedy = span the parameter space
@ EIM = Interpolates non-linear fluxes £ in points 7; function f;

@ Works of Haasdonk, Ohlberger, Maday, Farhat, Rozza, Patera,
Willcox, etc.
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Online algorithm: PODEIM—-Greedy

Solve the smaller system:

Ngrp Ngrp

Z (P (i) — 0 ()Y + Z E'(u", p)¢pp = 0,

i=1 i=1

Ngrp Nrp NErm

> () =P () kp + Y Y T (EWRg, ) Trpi(f;)Yhs =0
i=1

=1 j=1

(] HRB,i(fj) offline
® 7;(E(U™, u)) online (evaluation of £ in EIM point ;)

@ MOR cost O(N:NrpNgrn) vs FOM cost O(NtN)
@ Gain if Nrp, Neprv < N

D. Torlo (UZH) PhD Defense
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Traveling shock, time evolution solution, little diffusion

Figure: Solution of advection equation with shock IC

D. Torlo (UZH)

2.001

1.75 A

1.501

1.25 A

1.00 -

0.75 4

0.50 1

0.25 1

0.00

FOM solutions

\— t=00
—— t=0.14
— t=0.29
— t=0.44
— t=0.6
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Traveling shock, POD, little diffusion

40 modes of POD for FOM with tolerance = 1e-05

601

40

20 A

POD basis functions

OjO 0:2 0j4 0;6 0j8 1;0
Figure: POD of time evolution of advection equation with shock IC

@ Problem: one basis function for every shock position
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Transfomation of the domain
Calibration map

6:Px[0,tf] - O
@ Smooth: 4(-, u) € C([0,t],©) for all u € P.

v

Geometry map

T:0xR—

@ Bijection: 3771 : 0 x Q — R suchthat T=1(0,T(0,y)) =y fory € R
and T(0, T-%(0,2)) = x for x € Q,
@ Smooth: T(-,-) € C1(©® x R,Q), T~1(-,-) € C}(© x O, R).

un (T(O(t, ), y) t, ) = o(y), YmeP,te0tfl,ycR
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Examples of Geometry Maps

Examples: 6 is the point of maximum height or of steepest solution.

@ Translation: T'(0,y) =y +6 — 0.5
T-Y0,2)=2—-0+05
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Examples of Geometry Maps

Examples: 6 is the point of maximum height or of steepest solution.

R

@ Translation: T'(0,y) =y +6 — 0.5
T-Y0,2)=2—-0+05

o Dilatation: T(6,y) = (z5—e-1=
_ 0— o
T(0,2) = g5y :

@ High degree polynomials

@ Gordon-Hall (see Cagniart,
Crisovan, Maday, Abgrall)
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Transformation examples

Dilatation (for other BCs): T71(0, z) = 2 507

( )x—0
FOM solutions

2.00 4

\— t=00

1.75 4 — t=0.14

— t=0.29

1.50 =044

— t=0.6
1.25 A

35 1.00
0.75 4
0.50
0.25 4
0.00 +
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure: Original solutions for traveling discontinuity
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Transformation examples

Dilatation (for other BCs): T-1(6,z) = xm:ﬁ

FOM calibrated solutions

2.00 1
w — t=0.0
175 —— t=0.14
— t=029
150+ — =044
— t=06
1.251
S 1.00
0.75
0.50
025
0.00 1
0.0 02 0.4 0.6 0.8 1.0

X

Figure: Calibrated solutions for traveling discontinuity
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POD of calibrated solutions

Dilatation (for other BCs): T~ (6,z) = = g5’75=5

3 modes of POD for calibrated solutions with tolerance = 1e-05

70 1

60
g
o 501
=
[
C 404
=)
[
L 304
w0
©
Q9 204
S
a 101

-10 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure: POD of calibrated solutions for traveling discontinuity
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Arbitrary Lagrangian—Eulerian formulation

Influence on the online phase?

d d
%u(%t,ﬂ)ﬂ‘d F( (xatvu)vp’)_o

=T n)y), vyt p) =uTOnp),y)t ) =ut p

0 y d
_— _— _— Y = 0
ALE formulation = EIM procedure on the reference domain R.

@ Jacobian % low cost
@ Flux "” Iow cost

° %—f ??? = We must know T'(6(t, ), y): easy parametrization in 6
@ We must know ¢
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Learning of 6

@ Quick evaluation of 6(t, )
o Offline: w; € Pirain = 0(4, t) with optimization or detection
e Online: estimator # obtained with regression from 6(p;,t)

Regression Maps

@ Piecewise interpolation in p; for every t"
@ Polynomial regression in p and ¢

@ Neural network: multilayer perceptron

Modification to original algorithm

@ Calibration map 6 optimized on training samples 0(py, t)
@ Regression on 6(py, t) to have 6

@ ALE formulation of the evolution operator £(6)
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Advection: traveling discontinuity

ug + pougy =0, D = [0, 1], Trnae = 1.5, Dirichlet BC
1 if x < 0.35+ 0.05u2

UO(%N) =
0 else

po ~ U([0,2]), p1, p2 ~ U([=1,1])

Without calibration With calibration: Poly2
RB dim 64 RB dim 17
EIM dim 124 EIM dim 22

FOM time 49 s FOM time 125 s
RB time 9s RB time 6s
RB/FOM time | 18% RB/FOM time | 5%
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Advection: traveling discontinuity

ug + pougy =0, D = [0, 1], Trnae = 1.5, Dirichlet BC
o ifz < 0.35 4+ 0.05
UO(QZ',H) =

0 else

po ~ U([0,2]), p1, p2 ~ U([=1,1])

Without calibration

With calibration: Poly2

—— FOM t=0.0000
00 RB t=0.0000
—— FOM t=0.0299
—oad|™ RB t=0.0299
—— FOM t=0.0598
----- RB t=0.0598
-02 FOM t=0.0897
“+ RBt=0.0897
—03 FOM t=0.1196
RB t=0.1196
~0.4{ — FOM t=0.1495
RB t=0.1495
-05
-06
-07
0.0 02 04 06 0.8 10
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PhD Defense

0.6

05

0.4

03

0.2

01

0.0

...................................... - —— FOM t=0.0000
a’ RB t=0.0000
—— FOM t=0.0375
o RBt=0.0375
—— FOM t=0.0750
w RBt=0.0750
FOM t=0.1125
RB t=0.1125
FOM t=0.1500
RB t=0.1500
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Burgers: formation and motion of a shock

ug + po(u?/2)z =0, D = [0, 7], Thnae = 0.15, periodic BC
ug(z, p) = [sin(z + p1)| + 0.1
Ko ~ u([oa 2])7 H1 ~ Z/[([O, W])

Without calibration: FAIL! With calibration: Poly4
RB dim failed RB dim 19
EIM dim >600 EIM dim 41
FOM time 167 s FOM time 444 s
RB time 00 RB time 53s
RB/FOM time | oo RB/FOM time | 11%
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Burgers: formation and motion of a shock

ug + po(u?/2)z =0, D = [0, 7], Thnae = 0.15, periodic BC
ug(z, p) = [sin(z + p1)| + 0.1
Ko ~ Z/[([O, 2])7 H1 ~ Z/[([O, W])

Without calibration: FAIL! With calibration: Poly4

/,‘
y

—— FOM t=0.0000
06 RB t=0.0000
—— FOMt=0.3748
o RB=0.3748
0.4 — FOMt=0.7496
o RBt=0.7496
FOM t=1.1245
RB t=1.1245
FOM t=1.4993
RB t=1.4993

0.0 0.2 0.4 0.6 0.8 1.0
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e Conclusions and Perspectives
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Summary

High order space and time discretization
@ Deferred Correction method

@ Residual distribution

@ Application on kinetic models

@ IMEX scheme

@ Asymptotic preserving

Model order reduction for hyperbolic problems
@ POD EIM Greedy

@ Troubles with advection

@ ALE framework

@ Calibration maps
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High order space discretization

@ Multiphase flows
@ BGK models

Model order reduction for hyperbolic problems
@ Systems

@ Multidimensional geometries

@ More complicated transformation maps

@ Different regression maps
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PhD Defense

Thank you for the attention!
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Residual Distribution

@ High order

@ FE based

@ Compact stencil

@ Explicit

@ Can recast some other FV, FE, FD, DG schemes?

2R. Abgrall. Computational Methods in Applied Mathematics; 2018.
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Residual Distribution

@ High order
@ FE based
@ Compact stencil
@ Explicit
@ Can recast some other FV, FE, FD, DG schemes?
oU+V-FU)=0 9)
Vi ={U € L*(Q,,RP)n (), Ul e PF YK € Q). (10)

Up = Z Uspo = Z ZUO'SO0'|K (11)

cE€D N KeQyp oeK

2R. Abgrall. Computational Methods in Applied Mathematics; 2018.
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Residual Distribution - Spatial Discretization

@ Define VK € Q, a fluctuation term (total residual)
oK = [ V-F(U)da
@ Define a nodal residual ¢X Vo € K :

oK = o, VK e, (12)
ceK

© The resulting scheme is

Ut  — U+ At Y ¢ =0, Vo€ Dy (13)
KloeK
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Residual Distribution

@ High order

@ Easy to code

@ FE based

@ Compact stencil

@ No need of Riemann solver

@ No need of conservative variables

@ Can recast some other FV, FE schemes
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Residual Distribution

@ High order

@ Easy to code

@ FE based

@ Compact stencil

@ No need of Riemann solver

@ No need of conservative variables

@ Can recast some other FV, FE schemes

KU +V-AU)=SU) (14)
Vi ={U € L2(Q,,RP)n (), Ul e PF YK € Q). (15)

Uy = Z Uspo = Z ZU0'<PU|K (16)

o€Dyr KeQp oeK
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Residual Distribution - Spatial Discretization

Focus on steady case.
@ Define VK € Q,, a fluctuation term (total residual)
of = [ V- AU) - S(U)dx
@ Define a nodal residual ¢X Vo € K :

=D o, VK e, (17)
ceK

Often done assigning ¢X = 3X¢X, where must hold that

> BF =1d (18)
ceK
© The resulting scheme is
Y ¢K =0, VoeDy. (19)

KloeK

This will be called residual distribution scheme.
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Residual distribution - Choice of the scheme

How to split total residuals into nodal residuals = choice of the
scheme.

KL @) = [ 0 (9 AW~ S + ey~ TF).

e edge €K

. ol LaF (I)J((,LxF -1
B4 (Up,) = max @7,0 Z max oK ,0 , (20)

jeK

UfZ/Uh, ag = max (ps (VAU) -n.)),
K

b
K,LzF |’
Diex 127

oF = KoK+ S on? / VU, - [Vipo]dT.
eledge of K ¢

07" = (1-0)87 ¢y + 0,7, 0=

D. Torlo (UZH) PhD Defense 40/40



Error estimator

Additional hypothesis:
@ [/d+ AtL is Liptschitz continuous with constant C' > 0,

@ There are Ny;,, extra functions and functionals that capture the
evolution of the solutions. (experimentally not so strict),

@ Initial conditions are exactly represented in the reduced basis RB.

Total error estimator:
@ EIM error, estimated by other N7,;,, basis functions f and functional
7 iterating the EIM procedure after the stop, cost O(Ng;,,),

@ RB error given by the Lipschitz constant times residual of the small
system,

@ additionally one can add the projection error of the initial condition
when not in RB.
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Empirical interpolation method (EIM)

INPUT: £(U", s, %), for p € Pp, n < N,

OUTPUT: EIM = (m, fi)r %™ where functions f; € RV and
7, € (RV) (Examples of 7;, are point evaluations)

@ Greedy iterative procedure

@ At each step chooses the worst approximated function via an error
estimator £¥o7st = arg max||.c SOVEIM 1 (L) fi|

@ Maximise the functlonal 7 on the function £worst
7_chosen = arg max |T(£worst)|
T

@ EIM = EIM U (TChosen7 ﬁworst)
@ Stop when error is smaller than a tolerance
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Proper orthogonal decomposition (POD)

INPUT: Collection of functions {f;}_,

OUTPUT: Reduced basis spaces

RB = arg min Z;yﬂ”fj*PU(fj)”Z
Uldim(U)=Npop

@ Based on SVD
@ Prescribed tolerance to stop the algorithm
@ Global optimizer of the problem
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Greedy algorithm

INPUT: Collection of functions {f;},
OUTPUT: Reduced basis space RB

@ There is an error estimator (normally cheap) erg(f) ~ ||f — Pra(f)||

@ lteratively choose the worst represented function
frorst = arg maxerp(f)

@ Add fworst to the RB space
@ Stop up to a certain tolerance
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DeC: Iterative process

K iterations where the iteration index is the superscript (k), with
k=0,....,K

@ Define u®™ =u” =u(t") form=0,...,M
@ Define u)0 = u(t") for k=0,..., K

@ Find u® as £'(u®) = £ (u*k—1) — £2(uk-1)
O u't! = uE)M,

Theorem (Convergence DeC)

@ If L' coercive with constant C,
e If L' — £? Lipschitz with constant Cy At

Then [u® — u*|| < CAtF

Hence, choosing K = M + 1, then [[u(®)-M — uez(gnt1)|| < CALK
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DeC — Proof

Proof.

Let u* be the solution of £2(u*) = 0. We know that £ (u*) = £ (u*) — £2(u*)
and £ (u* 1)) = (£1(u®) — £2(u®)), so that

Cullu®™ —u*|| <[l @) - L1 (")l =

=[|'@®) — £2@®) — (£ (u") - L2(u"))]| <
<CAt|[u® — u*|.

i< (C qi<(C2ag) " .
I+ -l < (a0 1w -l < () O - w

After K iteration we have an error at most of < - [[u(® — u*||.
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