IMEX ADER and DeC: arbitrary high order schemes, stability and application to advection–diffusion–dispersion

### Davide Torlo, Philipp Öffner, Louis Petri, Maria Han Veiga, Lorenzo Micalizzi

SISSA MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy INDAM Workshop INSIDEs <u>davidetorlo.it</u>

Rome - 21st February 2024

IMEX ADER and DeC: arbitrary high order schemes, STABILITY and application to advection–diffusion–dispersion

### Davide Torlo, Philipp Öffner, Louis Petri, Maria Han Veiga, Lorenzo Micalizzi

SISSA MathLab, Mathematics Area, SISSA International School for Advanced Studies, Trieste, Italy INDAM Workshop INSIDEs <u>davidetorlo.it</u>

Rome - 21st February 2024

## 1 DeC and ADER (explicit)

- 2 DeC and ADER (implicit and IMEX)
- 3 Application to Advection–Diffusion PDE
- Application to Advection–Dispersion PDE
- **5** Conclusions

0/39

## 1 DeC and ADER (explicit)

2 DeC and ADER (implicit and IMEX)

**③** Application to Advection–Diffusion PDE

**④** Application to Advection–Dispersion PDE

**6** Conclusions

1/39

## DeC (Deferred Correction)

- Originally Nonlinear Solver ('60)
- Spectral formulation ODE solver: explicit (Dutt et al. 2000), implicit/IMEX (Minion 2003)
- More general operators for PDEs (Abgrall 2018)
- Arbitrary high order method (ODE/PDE)
- High Order FEM discretization in time
- Explicit, Implicit, IMEX
- Two operators
- Iterative method

## DeC (Deferred Correction)

- Originally Nonlinear Solver ('60)
- Spectral formulation ODE solver: explicit (Dutt et al. 2000), implicit/IMEX (Minion 2003)
- More general operators for PDEs (Abgrall 2018)
- Arbitrary high order method (ODE/PDE)
- High Order FEM discretization in time
- Explicit, Implicit, IMEX
- Two operators
- Iterative method

### ADER (Arbitrary Derivatives)

- High order discretization for PDEs through Cauchy–Kovalevskaya (Titarev, Toro 2002)
- High order DG in space-time (Dumbser et al. 2008)
- Arbitrary high order methods (PDE)
- Based on Space-Time Galerkin Projection
- Explicit, Implicit, IMEX
- Compact high order implicit formulation
- Iterative method

## DeC (Deferred Correction)

- Originally Nonlinear Solver ('60)
- Spectral formulation ODE solver: explicit (Dutt et al. 2000), implicit/IMEX (Minion 2003)
- More general operators for PDEs (Abgrall 2018)
- Arbitrary high order method (ODE/PDE)
- High Order FEM discretization in time
- Explicit, Implicit, IMEX
- Two operators
- Iterative method

### ADER (Arbitrary Derivatives)

- High order discretization for PDEs through Cauchy–Kovalevskaya (Titarev, Toro 2002)
- High order DG in space-time (Dumbser et al. 2008)
- Arbitrary high order methods (PDE)
- Based on Space-Time Galerkin Projection
- Explicit, Implicit, IMEX
- Compact high order implicit formulation
- Iterative method

Relationship between ADER and DeC as ODE solvers (Han Veiga et al. 2020)

DeC/ADER discretization and iterations

$$oldsymbol{c}(t_n)pproxoldsymbol{c}_n \qquad oldsymbol{c}(t)=\sum_{m=0}^Marphi_n^m(t)oldsymbol{c}_n^m \quad t\in[t_n,t_{n+1}]\Longrightarrowoldsymbol{c}_{n+1}pproxoldsymbol{c}(t_{n+1})$$





 <sup>&</sup>lt;sup>1</sup>M. Han Veiga, P. Öffner, and D. T.. "DeC and ADER: Similarities, Differences and a Unified Framework." JSC, 87, 2 (2021)
 <sup>2</sup>M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024)



 <sup>&</sup>lt;sup>1</sup>M. Han Veiga, P. Öffner, and D. T.. "DeC and ADER: Similarities, Differences and a Unified Framework." JSC, 87, 2 (2021)
 <sup>2</sup>M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024)



<sup>1</sup>M. Han Veiga, P. Öffner, and D. T.. "DeC and ADER: Similarities, Differences and a Unified Framework." JSC, 87, 2 (2021)
 <sup>2</sup>M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024)



 <sup>&</sup>lt;sup>1</sup>M. Han Veiga, P. Öffner, and D. T.. "DeC and ADER: Similarities, Differences and a Unified Framework." JSC, 87, 2 (2021)
 <sup>2</sup>M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024)

<sup>1</sup>M. Han Veiga, P. Öffner, and D. T.. "DeC and ADER: Similarities, Differences and a Unified Framework." JSC, 87, 2 (2021)
 <sup>2</sup>M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024)

DeC  $\mathcal{L}^2$  operator  $t_n^0 \top c_n^0$  $\mathcal{L}^{2,m}(\underline{c}) = oldsymbol{c}_n^m - oldsymbol{c}_n^0 - \Delta t \sum_{r=0}^M heta_r^m oldsymbol{\mathsf{G}}(oldsymbol{c}_n^r) = 0 \quad orall m \in \llbracket 1, M 
rbracket$  $t_n^1$  $\boldsymbol{c}_{n}^{1}$  $t_{n}^{2}$  +  $c_n^2$ M + 1 = 2 Gauss–Lobatto nodes 0 1  $\mathcal{L}^2(oldsymbol{c}) = oldsymbol{c}_n^1 - oldsymbol{c}_n^0 - \Delta t rac{1}{2} \left( oldsymbol{G}(oldsymbol{c}_n^0) + oldsymbol{G}(oldsymbol{c}_n^1) 
ight)$  $t_n^{m-1}$   $d_n^{m-1}$  $t_n^m$  $\boldsymbol{c}_{n}^{m}$  $t_n^M \stackrel{!}{=} \boldsymbol{c}_n^M$ 

DeC  $\mathcal{L}^2$  operator  $t_n^0 \top c_n^0$  $\mathcal{L}^{2,m}(\underline{c}) = c_n^m - c_n^0 - \Delta t \sum_{r=0}^M heta_r^m \mathbf{G}(c_n^r) = 0 \quad \forall m \in \llbracket 1, M 
rbracket$  $t_n^1$  $\boldsymbol{c}_{n}^{1}$  $t_n^2$ ' **c**\_p^2 M + 1 = 2 Gauss–Lobatto nodes  $\begin{array}{c|c}
0 \\
1 \\
\frac{1}{2}
\end{array}$  $t_n^{m-1}$  $\mathcal{L}^2(\underline{c}) = oldsymbol{c}_n^1 - oldsymbol{c}_n^0 - \Delta t rac{1}{2} \left( \mathsf{G}(oldsymbol{c}_n^0) + \mathsf{G}(oldsymbol{c}_n^1) 
ight)$ M + 1 = 3 Gauss–Lobatto nodes  $t_n^m \neq \boldsymbol{c}_n^m$  $t_n^M \stackrel{!}{=} \boldsymbol{c}_n^M$  $\mathcal{L}^{2}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2} \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{2} \mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix}$ 

ADER  $\mathcal{L}^2$  operator  $\begin{aligned} t_n^1 & \qquad \forall m \in \llbracket 0, M \rrbracket, \quad \mathcal{L}^{2,m}(\underline{c}) &:= A^{m,r} \boldsymbol{c}_n^r - \varphi_n^m(t_n) \boldsymbol{c}_n - R^{m,r} \mathbf{G}(\boldsymbol{c}_n^r) = \\ \varphi_n^m(t_{n+1}) \varphi_n^r(t_{n+1}) \boldsymbol{c}_n^r - \varphi_n^m(t_n) \boldsymbol{c}_n - \int_{t_n}^{t_{n+1}} \partial_t \varphi_n^m(t) \varphi_n^r(t) dt \, \boldsymbol{c}_n^r - \int_{t_n}^{t_{n+1}} \varphi_n^m(t) \varphi_n^r(t) dt \, \mathbf{G}(\boldsymbol{c}_n^r) = 0 \end{aligned}$  $t_n^{m-1}$   $\mathbf{t}_n^{m-1}$  $t_n^m \neq c_n^m$  $t_{n}^{M} \stackrel{!}{=} \boldsymbol{c}_{n}^{M}$ 

5/39

ADER  $\mathcal{L}^2$  operator  $t_n^0 \top c_n^0$  $t_n^1$  $c_n^1$  $\forall m \in [0, M], \quad \mathcal{L}^{2,m}(c) := c_n^m - c_n - (A^{-1})_{m,\ell} R^{\ell,r} \mathbf{G}(c_n^r) = 0$  $t_n^2 + c_n^2$ M + 1 = 2 Gauss–Lobatto nodes  $\mathcal{L}^{2}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{0} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) - \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{1}) \right) \\ \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{1}) \right) \end{pmatrix}$  $t_n^{m-1}$  $t_n^m \neq c_n^m$  $t_n^M \stackrel{!}{-} c_n^M$ 

ADER  $\mathcal{L}^2$  operator  $t_n^0 \top c_n^0$  $t_n^1 + c_n^1$  $\forall m \in \llbracket 0, M \rrbracket, \quad \mathcal{L}^{2,m}(\boldsymbol{c}) := \boldsymbol{c}_n^m - \boldsymbol{c}_n - (A^{-1})_m \, \ell R^{\ell,r} \mathbf{G}(\boldsymbol{c}_n^r) = 0$  $t_n^2 + c_n^2$  M + 1 = 2 Gauss-Lobatto nodes  $\begin{array}{c|c|c} 0 & -\frac{1}{2} & \frac{1}{2} \\ 1 & \frac{1}{2} & \frac{1}{2} \\ \hline 1 & 1 & 1 \end{array}$  $\mathcal{L}^{2}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{0} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) - \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{1}) \right) \\ \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{1}) \right) \end{pmatrix}$  $t_n^{m-1}$ M + 1 = 3 Gauss–Lobatto nodes  $t_n^m \neq c_n^m$  $t_n^M \stackrel{!}{=} c_n^M$  $\mathcal{L}^{2}(\underline{c}) = \begin{pmatrix} \mathbf{c}_{n}^{0} - \mathbf{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\mathbf{c}_{n}^{0}) - \frac{1}{3} \mathbf{G}(\mathbf{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\mathbf{c}_{n}^{2}) \right) \\ \mathbf{c}_{n}^{1} - \mathbf{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\mathbf{c}_{n}^{0}) + \frac{5}{12} \mathbf{G}(\mathbf{c}_{n}^{1}) - \frac{1}{12} \mathbf{G}(\mathbf{c}_{n}^{2}) \right) \\ \mathbf{c}_{n}^{2} - \mathbf{c}_{n} - \Delta t \left( \frac{1}{4} \mathbf{G}(\mathbf{c}_{n}^{0}) + \frac{2}{3} \mathbf{G}(\mathbf{c}_{n}^{1}) - \frac{1}{4} \mathbf{G}(\mathbf{c}_{n}^{2}) \right) \end{pmatrix} \qquad \begin{array}{c} \mathbf{0} & \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{5}{12} & -\frac{1}{12} \\ \frac{1}{2} & \frac{1}{6} & \frac{5}{12} & -\frac{1}{12} \\ 1 & \frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\$ 

| Method       | DeC         |               | ADER       |               |                |
|--------------|-------------|---------------|------------|---------------|----------------|
| Nodes        | Equispaced  | Gauss–Lobatto | Equispaced | Gauss–Lobatto | Gauss–Legendre |
| Order        | M+1         | 2 <i>M</i>    | M+1        | 2 <i>M</i>    | $2M + 1^3$     |
| Known method | Collocation | Lobatto IIIA  |            | Lobatto IIIC  |                |
| A-stability  | -           | $\odot$       | -          | $\bigcirc$    |                |

<sup>&</sup>lt;sup>3</sup>M. Han Veiga, L. Micalizzi and D. T.. "On improving the efficiency of ADER methods." AMC, 466, page 128426, (2024) <sup>4</sup>P. Öffner, L. Petri, D.T.. "Analysis for Implicit and Implicit-Explicit ADER and DeC Methods for Ordinary Differential Equations, Advection-Diffusion and Advection-Dispersion Equations" (2024)

### DeC and ADER operators



### DeC and ADER operators



How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$oldsymbol{c}^{m,(0)} := oldsymbol{c}(t_n), \quad m = 0, \dots, M$$
  
 $\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)}) ext{ with } p = 1, \dots, P.$ 

#### DeC Theorem

- $\mathcal{L}^1$  coercive with constant  $\mathcal{O}(1)$
- $\mathcal{L}^1 \mathcal{L}^2$  Lipschitz with constant  $\mathcal{O}(\Delta t)$

DeC converges and  $\min(P, Q)$  is the order of accuracy.

• 
$$\mathcal{L}^2(\underline{c}) = 0$$
, high order  $Q(=2M)$ .



How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$oldsymbol{c}^{m,(0)} := oldsymbol{c}(t_n), \quad m = 0, \dots, M$$
  
 $\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)}) ext{ with } p = 1, \dots, P.$ 

#### DeC Theorem

- $\mathcal{L}^1$  coercive with constant  $\mathcal{O}(1)$
- $\mathcal{L}^1 \mathcal{L}^2$  Lipschitz with constant  $\mathcal{O}(\Delta t)$

DeC converges and  $\min(P, Q)$  is the order of accuracy.

• 
$$\mathcal{L}^2(\underline{c}) = 0$$
, high order  $Q(=2M)$ .



How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$oldsymbol{c}^{m,(0)} := oldsymbol{c}(t_n), \quad m = 0, \dots, M$$
  
 $\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)}) ext{ with } p = 1, \dots, P.$ 

#### DeC Theorem

- $\mathcal{L}^1$  coercive with constant  $\mathcal{O}(1)$
- $\mathcal{L}^1 \mathcal{L}^2$  Lipschitz with constant  $\mathcal{O}(\Delta t)$

DeC converges and  $\min(P, Q)$  is the order of accuracy.

• 
$$\mathcal{L}^2(\underline{c}) = 0$$
, high order  $Q(=2M)$ .



How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$oldsymbol{c}^{m,(0)} := oldsymbol{c}(t_n), \quad m = 0, \dots, M$$
  
 $\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)}) ext{ with } p = 1, \dots, P.$ 

#### DeC Theorem

- $\mathcal{L}^1$  coercive with constant  $\mathcal{O}(1)$
- $\mathcal{L}^1 \mathcal{L}^2$  Lipschitz with constant  $\mathcal{O}(\Delta t)$

DeC converges and  $\min(P, Q)$  is the order of accuracy.

• 
$$\mathcal{L}^2(\underline{c}) = 0$$
, high order  $Q(=2M)$ .



How to combine two methods keeping the accuracy of the second and the stability and simplicity of the first one?

$$oldsymbol{c}^{m,(0)} := oldsymbol{c}(t_n), \quad m = 0, \dots, M$$
  
 $\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)}) ext{ with } p = 1, \dots, P.$ 

#### DeC Theorem

- $\mathcal{L}^1$  coercive with constant  $\mathcal{O}(1)$
- $\mathcal{L}^1 \mathcal{L}^2$  Lipschitz with constant  $\mathcal{O}(\Delta t)$

DeC converges and  $\min(P, Q)$  is the order of accuracy.

• 
$$\mathcal{L}^2(\underline{c}) = 0$$
, high order  $Q(=2M)$ .



$$\mathcal{L}^{2}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix}$$

$$\mathcal{L}^{2}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left(\frac{5}{24}\mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3}\mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24}\mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left(\frac{1}{6}\mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3}\mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6}\mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix} \qquad \qquad \mathcal{L}^{1}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2}\mathbf{G}(\boldsymbol{c}_{n}^{0}) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{0}) \end{pmatrix}$$

$$\mathcal{L}^{2}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix} \qquad \mathcal{L}^{1}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{0}) \end{pmatrix}$$

$$\mathcal{L}^{2}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix} \qquad \mathcal{L}^{1}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{0}) \end{pmatrix}$$

0

$$*oldsymbol{c}_n^{(0),0} = oldsymbol{c}_n^{(0),1} = oldsymbol{c}_n^{(0),2} = oldsymbol{c}_n^{(1),0} = oldsymbol{c}_n^{(2),0} = oldsymbol{c}_n^{(3),0} = oldsymbol{c}_n$$

$$\mathcal{L}^{2}(\underline{\mathbf{c}}) = \begin{pmatrix} \mathbf{c}_{n}^{1} - \mathbf{c}_{n} - \Delta t \left(\frac{5}{24}\mathbf{G}(\mathbf{c}_{n}^{0}) + \frac{1}{3}\mathbf{G}(\mathbf{c}_{n}^{1}) - \frac{1}{24}\mathbf{G}(\mathbf{c}_{n}^{2}) \right) \\ \mathbf{c}_{n}^{2} - \mathbf{c}_{n} - \Delta t \left(\frac{1}{6}\mathbf{G}(\mathbf{c}_{n}^{0}) + \frac{2}{3}\mathbf{G}(\mathbf{c}_{n}^{1}) + \frac{1}{6}\mathbf{G}(\mathbf{c}_{n}^{2}) \right) \end{pmatrix} \qquad \mathcal{L}^{1}(\underline{\mathbf{c}}) = \begin{pmatrix} \mathbf{c}_{n}^{1} - \mathbf{c}_{n} - \Delta t \frac{1}{2}\mathbf{G}(\mathbf{c}_{n}^{0}) \\ \mathbf{c}_{n}^{2} - \mathbf{c}_{n} - \Delta t \mathbf{G}(\mathbf{c}_{n}^{0}) \end{pmatrix}$$

$$* \boldsymbol{c}_{n}^{(0),0} = \boldsymbol{c}_{n}^{(0),1} = \boldsymbol{c}_{n}^{(0),2} = \boldsymbol{c}_{n}^{(1),0} = \boldsymbol{c}_{n}^{(2),0} = \boldsymbol{c}_{n}^{(3),0} = \boldsymbol{c}_{n}$$

$$* \boldsymbol{c}_{n}^{(1),1} - \boldsymbol{c}_{n}^{(1),0} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{(1),0}) = \boldsymbol{c}_{n}^{(0),1} - \boldsymbol{c}_{n}^{(0),0} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{(0),0}) -$$

$$\mathbf{c}_{n}^{(0),1} + \boldsymbol{c}_{n}^{(0),0} + \Delta t \left(\frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{(0),0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{(0),1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{(0),2})\right)$$

$$\mathcal{L}^{2}(\underline{\mathbf{c}}) = \begin{pmatrix} \mathbf{c}_{n}^{1} - \mathbf{c}_{n} - \Delta t \left(\frac{5}{24}\mathbf{G}(\mathbf{c}_{n}^{0}) + \frac{1}{3}\mathbf{G}(\mathbf{c}_{n}^{1}) - \frac{1}{24}\mathbf{G}(\mathbf{c}_{n}^{2}) \right) \\ \mathbf{c}_{n}^{2} - \mathbf{c}_{n} - \Delta t \left(\frac{1}{6}\mathbf{G}(\mathbf{c}_{n}^{0}) + \frac{2}{3}\mathbf{G}(\mathbf{c}_{n}^{1}) + \frac{1}{6}\mathbf{G}(\mathbf{c}_{n}^{2}) \right) \end{pmatrix} \qquad \mathcal{L}^{1}(\underline{\mathbf{c}}) = \begin{pmatrix} \mathbf{c}_{n}^{1} - \mathbf{c}_{n} - \Delta t \frac{1}{2}\mathbf{G}(\mathbf{c}_{n}^{0}) \\ \mathbf{c}_{n}^{2} - \mathbf{c}_{n} - \Delta t \mathbf{G}(\mathbf{c}_{n}^{0}) \end{pmatrix}$$

 $\mathcal{L}^{1}(\underline{\boldsymbol{c}}^{(p)}) = \mathcal{L}^{1}(\underline{\boldsymbol{c}}^{(p-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{c}}^{(p-1)}), \qquad p = 1, \dots, 3.$ 

$$\begin{aligned} * \boldsymbol{c}_{n}^{(0),0} &= \boldsymbol{c}_{n}^{(0),1} = \boldsymbol{c}_{n}^{(0),2} = \boldsymbol{c}_{n}^{(1),0} = \boldsymbol{c}_{n}^{(2),0} = \boldsymbol{c}_{n}^{(3),0} = \boldsymbol{c}_{n} \\ * \boldsymbol{c}_{n}^{(1),1} &= \boldsymbol{c}_{n} + \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}) \end{aligned}$$

| 0<br>1<br>2 | $\frac{1}{2}$ |  |  |  |
|-------------|---------------|--|--|--|
|             |               |  |  |  |

9/ 39

$$\mathcal{L}^{2}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left(\frac{5}{24}\mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3}\mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24}\mathbf{G}(\boldsymbol{c}_{n}^{2})\right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left(\frac{1}{6}\mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3}\mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6}\mathbf{G}(\boldsymbol{c}_{n}^{2})\right) \end{pmatrix} \qquad \qquad \mathcal{L}^{1}(\underline{\boldsymbol{c}}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2}\mathbf{G}(\boldsymbol{c}_{n}^{0}) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{0}) \end{pmatrix}$$

$$\begin{aligned} * \boldsymbol{c}_{n}^{(0),0} &= \boldsymbol{c}_{n}^{(0),1} = \boldsymbol{c}_{n}^{(0),2} = \boldsymbol{c}_{n}^{(1),0} = \boldsymbol{c}_{n}^{(2),0} = \boldsymbol{c}_{n}^{(3),0} = \boldsymbol{c}_{n} \\ * \boldsymbol{c}_{n}^{(1),1} &= \boldsymbol{c}_{n} + \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}) \\ * \boldsymbol{c}_{n}^{(1),2} &= \boldsymbol{c}_{n} + \Delta t \mathbf{G}(\boldsymbol{c}_{n}) \end{aligned}$$

| 0<br>1<br>1 | $\frac{1}{2}$ <b>1</b> |  |  |
|-------------|------------------------|--|--|
|             |                        |  |  |

$$\mathcal{L}^{2}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix} \qquad \qquad \mathcal{L}^{1}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{0}) \end{pmatrix}$$

 $\mathcal{L}^{1}(\underline{\boldsymbol{c}}^{(p)}) = \mathcal{L}^{1}(\underline{\boldsymbol{c}}^{(p-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{c}}^{(p-1)}), \qquad p = 1, \dots, 3.$ 

$$\begin{aligned} *\boldsymbol{c}_{n}^{(0),0} &= \boldsymbol{c}_{n}^{(0),1} = \boldsymbol{c}_{n}^{(0),2} = \boldsymbol{c}_{n}^{(1),0} = \boldsymbol{c}_{n}^{(2),0} = \boldsymbol{c}_{n}^{(3),0} = \boldsymbol{c}_{n} \\ *\boldsymbol{c}_{n}^{(1),1} &= \boldsymbol{c}_{n} + \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}) \\ *\boldsymbol{c}_{n}^{(1),2} &= \boldsymbol{c}_{n} + \Delta t \mathbf{G}(\boldsymbol{c}_{n}) \\ *\boldsymbol{c}_{n}^{(2),1} &= \boldsymbol{c}_{n} + \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{(1),0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{(1),1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{(1),2}) \right) \\ *\boldsymbol{c}_{n}^{(2),2} &= \boldsymbol{c}_{n} + \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{(1),0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{(1),1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{(1),2}) \right) \end{aligned}$$

| 0             |               |    |                        |  |
|---------------|---------------|----|------------------------|--|
| $\frac{1}{2}$ | $\frac{1}{2}$ |    |                        |  |
| $\hat{1}$     | 1             |    |                        |  |
| 1             | 5             | 1  | _ 1                    |  |
| 2<br>1        | 24<br>1       | 32 | <u>1</u> <sup>24</sup> |  |
|               | 6             | 3  | 6                      |  |
|               |               |    |                        |  |

9/ 39

$$\mathcal{L}^{2}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{2}) \right) \end{pmatrix} \qquad \qquad \mathcal{L}^{1}(\underline{c}) = \begin{pmatrix} \boldsymbol{c}_{n}^{1} - \boldsymbol{c}_{n} - \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}^{0}) \\ \boldsymbol{c}_{n}^{2} - \boldsymbol{c}_{n} - \Delta t \mathbf{G}(\boldsymbol{c}_{n}^{0}) \end{pmatrix}$$

$$*\boldsymbol{c}_{n}^{(0),0} = \boldsymbol{c}_{n}^{(0),1} = \boldsymbol{c}_{n}^{(0),2} = \boldsymbol{c}_{n}^{(1),0} = \boldsymbol{c}_{n}^{(2),0} = \boldsymbol{c}_{n}^{(3),0} = \boldsymbol{c}_{n}$$

$$\begin{aligned} &* \boldsymbol{c}_{n}^{(1),1} = \boldsymbol{c}_{n} + \Delta t \frac{1}{2} \mathbf{G}(\boldsymbol{c}_{n}) \\ &* \boldsymbol{c}_{n}^{(1),2} = \boldsymbol{c}_{n} + \Delta t \mathbf{G}(\boldsymbol{c}_{n}) \\ &* \boldsymbol{c}_{n}^{(2),1} = \boldsymbol{c}_{n} + \Delta t \left( \frac{5}{24} \mathbf{G}(\boldsymbol{c}_{n}^{(1),0}) + \frac{1}{3} \mathbf{G}(\boldsymbol{c}_{n}^{(1),1}) - \frac{1}{24} \mathbf{G}(\boldsymbol{c}_{n}^{(1),2}) \right) \end{aligned}$$

$$*\boldsymbol{c}_{n}^{(2),2} = \boldsymbol{c}_{n} + \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{(1),0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{(1),1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{(1),2}) \right) \\ *\boldsymbol{c}_{n+1} = \boldsymbol{c}_{n}^{(3),2} = \boldsymbol{c}_{n} + \Delta t \left( \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{(2),0}) + \frac{2}{3} \mathbf{G}(\boldsymbol{c}_{n}^{(2),1}) + \frac{1}{6} \mathbf{G}(\boldsymbol{c}_{n}^{(2),2}) \right)$$



### Stability of explicit DeC/ADER

### Stability function

10/39

All the described DeC/ADER explicit methods of order P have stability function given by




## 1 DeC and ADER (explicit)

2 DeC and ADER (implicit and IMEX)

**3** Application to Advection–Diffusion PDE

**4** Application to Advection–Dispersion PDE

#### **5** Conclusions

# Implicit Recipe

•  $\mathcal{L}^1$  implicit



## Implicit Recipe

- $\mathcal{L}^1$  implicit
- Fully implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \mathbf{G}(\underline{c})$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \mathbf{G}(\underline{c})$ 

## Implicit Recipe

- $\mathcal{L}^1$  implicit
- Fully implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \mathbf{G}(\underline{c})$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \mathbf{G}(\underline{c})$ 

$$\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)})$$

• Linearly implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathbf{G}(c_{n}) + \partial_{c} \mathbf{G}(c_{n}) (\underline{c} - c_{n}) 
ight)$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathbf{G}(c_{n}) + \partial_{c} \mathbf{G}(c_{n}) (\underline{c} - c_{n}) 
ight)$ 

### Implicit Recipe

- $\mathcal{L}^1$  implicit
- Fully implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \mathbf{G}(\underline{c})$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \mathbf{G}(\underline{c})$ 

• Linearly implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathbf{G}(c_{n}) + \partial_{c} \mathbf{G}(c_{n})(\underline{c} - c_{n}) \right)$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathbf{G}(c_{n}) + \partial_{c} \mathbf{G}(c_{n})(\underline{c} - c_{n}) \right)$ 

$$\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)})$$

## DeC Full Implicit IMDeC

$$\underline{\boldsymbol{c}}^{(p)} - \underline{\boldsymbol{c}}^{(p-1)} + \Delta t \beta \left( \mathsf{G}(\underline{\boldsymbol{c}}^{(p)}) - \mathsf{G}(\underline{\boldsymbol{c}}^{(p-1)}) \right) \\ = \boldsymbol{c}_n - \underline{\boldsymbol{c}}^{(p-1)} + \Delta t \Theta \mathsf{G}(\underline{\boldsymbol{c}}^{(p-1)})$$

#### DeC Linearly Implicit IMDeC-Lin

$$[I - \Delta t \beta \partial_{\boldsymbol{c}} \mathbf{G}(\boldsymbol{c}_n)] (\underline{\boldsymbol{c}}^{(p)} - \underline{\boldsymbol{c}}^{(p-1)})$$
$$= \boldsymbol{c}_n - \underline{\boldsymbol{c}}^{(p-1)} + \Delta t \Theta \mathbf{G}(\underline{\boldsymbol{c}}^{(p-1)})$$



### Implicit Recipe

- $\mathcal{L}^1$  implicit
- Fully implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \mathbf{G}(\underline{c})$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \mathbf{G}(\underline{c})$ 

• Linearly implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathbf{G}(c_{n}) + \partial_{c} \mathbf{G}(c_{n})(\underline{c} - c_{n}) \right)$$
  
$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathbf{G}(c_{n}) + \partial_{c} \mathbf{G}(c_{n})(\underline{c} - c_{n}) \right)$$

$$\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)})$$

### ADER Full Implicit IMADER

$$\mathcal{L}^1 = \mathcal{L}^2$$
  
 $\underline{\boldsymbol{c}}^{(p)} - \boldsymbol{c}_n - \Delta t A^{-1} R \mathbf{G}(\underline{\boldsymbol{c}}^{(p)}) = 0$ 

### ADER Linearly Implicit IMADER-Lin

$$\begin{bmatrix} I - \Delta t A^{-1} R \partial_{\boldsymbol{c}} \mathbf{G}(\boldsymbol{c}_n) \end{bmatrix} (\underline{\boldsymbol{c}}^{(p)} - \underline{\boldsymbol{c}}^{(p-1)})$$
$$= \boldsymbol{c}_n - \underline{\boldsymbol{c}}^{(p-1)} + \Delta t A^{-1} R \mathbf{G}(\underline{\boldsymbol{c}}^{(p-1)})$$



$$\mathcal{L}^{1}(\underline{\boldsymbol{c}}^{(p)}) = \mathcal{L}^{1}(\underline{\boldsymbol{c}}^{(p-1)}) - \mathcal{L}^{2}(\underline{\boldsymbol{c}}^{(p-1)})$$

#### ADER Full Implicit IMADER

$$\mathcal{L}^{1} = \mathcal{L}^{2}$$
$$\underline{c}^{(p)} - c_{n} - \Delta t A^{-1} R \mathbf{G}(\underline{c}^{(p)}) = 0$$

#### ADER Linearly Implicit IMADER-Lin

$$\begin{bmatrix} I - \Delta t A^{-1} R \partial_{\boldsymbol{c}} \mathbf{G}(\boldsymbol{c}_n) \end{bmatrix} (\underline{\boldsymbol{c}}^{(p)} - \underline{\boldsymbol{c}}^{(p-1)})$$
$$= \boldsymbol{c}_n - \underline{\boldsymbol{c}}^{(p-1)} + \Delta t A^{-1} R \mathbf{G}(\underline{\boldsymbol{c}}^{(p-1)})$$

## Example of IMDeC and IMDeC-Lin

$$\partial_t oldsymbol{c} = \mathbf{G}(oldsymbol{c})$$

IMD<sub>a</sub>C<sub>2</sub> Lin

## IMDeC2

| INDECZ-LIII                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                     |
| $*m{c}^{(0),0}=m{c}^{(0),1}=m{c}^{(1),0}=m{c}^{(2),0}=m{c}_n$                                                                                                                       |
| $*oldsymbol{c}^{(1),1} = oldsymbol{c}_n + \Delta t \partial_{oldsymbol{c}} \mathbf{G}(oldsymbol{c}_n)(oldsymbol{c}^{(1),1} - oldsymbol{c}_n) + \Delta t \mathbf{G}(oldsymbol{c}_n)$ |
| $*m{c}^{(2),1} = m{c}_n + \Delta t igg( \partial_{m{c}} {f G}(m{c}_n) (m{c}^{(2),1} - m{c}^{(1),1}) +$                                                                              |
| $\frac{\boldsymbol{G}(\boldsymbol{c}^{(1),1})+\boldsymbol{G}(\boldsymbol{c}^{(1),0})}{2} \biggr)$                                                                                   |
|                                                                                                                                                                                     |

#### Example of IMADER and IMADER-Lin

 $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c})$ 

#### **IMADER2-Lin**

#### IMADER2

 $\begin{aligned} * \boldsymbol{c}^{(0),0} &= \boldsymbol{c}^{(0),1} = \boldsymbol{c}_n \\ * \boldsymbol{c}^{(1),0} &= \boldsymbol{c}_n + \frac{\Delta t}{2} (-\boldsymbol{G}(\boldsymbol{c}^{(1),0}) + \boldsymbol{G}(\boldsymbol{c}^{(1),1})) \\ * \boldsymbol{c}^{(1),1} &= \boldsymbol{c}_n + \frac{\Delta t}{2} (\boldsymbol{G}(\boldsymbol{c}^{(1),0}) + \boldsymbol{G}(\boldsymbol{c}^{(1),1})) \\ * \boldsymbol{c}^{(2),0} &= \boldsymbol{c}_n + \frac{\Delta t}{2} (-\boldsymbol{G}(\boldsymbol{c}^{(2),0}) + \boldsymbol{G}(\boldsymbol{c}^{(2),1})) \\ * \boldsymbol{c}^{(2),1} &= \boldsymbol{c}_n + \frac{\Delta t}{2} (\boldsymbol{G}(\boldsymbol{c}^{(2),0}) + \boldsymbol{G}(\boldsymbol{c}^{(2),1})) \\ \end{aligned}$ 

$$\begin{aligned} \mathbf{c}^{(0),0} &= \mathbf{c}^{(0),1} = \mathbf{c}_n \\ \mathbf{c}^{(1),0} &= \mathbf{c}_n + \frac{\Delta t}{2} \partial_{\mathbf{c}} \mathbf{G}(\mathbf{c}_n) (-\mathbf{c}^{(1),0} + \mathbf{c}^{(1),1}) \\ \mathbf{c}^{(1),1} &= \mathbf{c}_n + \frac{\Delta t}{2} \partial_{\mathbf{c}} \mathbf{G}(\mathbf{c}_n) (\mathbf{c}^{(1),0} + \mathbf{c}^{(1),1} - 2\mathbf{c}_n) + \Delta t \mathbf{G}(\mathbf{c}_n) \\ \mathbf{c}^{(2),0} &= \mathbf{c}_n + \frac{\Delta t}{2} \partial_{\mathbf{c}} \mathbf{G}(\mathbf{c}_n) (-\mathbf{c}^{(2),0} + \mathbf{c}^{(2),1} + \mathbf{c}^{(1),0} - \mathbf{c}^{(1),1}) \\ &+ \frac{\Delta t}{2} \left( -\mathbf{G}(\mathbf{c}^{(1),0}) + \mathbf{G}(\mathbf{c}^{(1),1}) \right) \\ \mathbf{c}^{(2),1} &= \mathbf{c}_n + \frac{\Delta t}{2} \partial_{\mathbf{c}} \mathbf{G}(\mathbf{c}_n) (\mathbf{c}^{(2),0} + \mathbf{c}^{(2),1} - \mathbf{c}^{(1),0} - \mathbf{c}^{(1),1}) \\ &+ \frac{\Delta t}{2} \left( \mathbf{G}(\mathbf{c}^{(1),0}) + \mathbf{G}(\mathbf{c}^{(1),1}) \right) \end{aligned}$$



Figure: ImDeC stability region for orders 2 to 13.

#### Almost A-Stable!



Figure: Zoomed ImDeC stability region for orders 2 to 7.

## Stability of IMADER



A-Stable? GLB Yes! Proof <sup>5</sup>, Equi Not clear

<sup>&</sup>lt;sup>5</sup>P. Öffner, L. Petri, D.T.. "Analysis for Implicit and Implicit-Explicit ADER and DeC Methods for Ordinary Differential Equations, Advection-Diffusion and Advection-Dispersion Equations" (2024)

$$\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}}(\boldsymbol{c})$$
 or better  $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}} \cdot \boldsymbol{c}$ 

## IMEX Recipe

•  $\mathcal{L}^1$  implicit for  $\boldsymbol{S}$ 

$$\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}}(\boldsymbol{c})$$
 or better  $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}} \cdot \boldsymbol{c}$ 

## IMEX Recipe

- $\mathcal{L}^1$  implicit for  $\boldsymbol{S}$
- Nonlinear implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathsf{S}(\underline{c}) + \mathsf{G}(c_{n}) \right)$$
$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathsf{S}(\underline{c}) + \mathsf{G}(c_{n}) \right)$$

$$\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}}(\boldsymbol{c})$$
 or better  $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}} \cdot \boldsymbol{c}$ 

## IMEX Recipe

- $\mathcal{L}^1$  implicit for  $\boldsymbol{S}$
- Nonlinear implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathbf{S}(\underline{c}) + \mathbf{G}(c_{n}) 
ight)$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathbf{S}(\underline{c}) + \mathbf{G}(c_{n}) 
ight)$ 

• Linearly IMEX (EIN methods / Add-and-subtract)

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \partial_{c} \mathsf{S}(c_{n}) \underline{c} + \mathsf{G}(c_{n}) \right)$$
$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \partial_{c} \mathsf{S}(c_{n}) \underline{c} + \mathsf{G}(c_{n}) \right)$$

$$\mathcal{L}^1(\underline{\boldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{\boldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{\boldsymbol{c}}^{(p-1)})$$

$$\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}}(\boldsymbol{c})$$
 or better  $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}} \cdot \boldsymbol{c}$ 

### **IMEX** Recipe

- $\mathcal{L}^1$  implicit for  $\boldsymbol{S}$
- Nonlinear implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathsf{S}(\underline{c}) + \mathsf{G}(c_{n}) 
ight)$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathsf{S}(\underline{c}) + \mathsf{G}(c_{n}) 
ight)$ 

• Linearly IMEX (EIN methods / Add-and-subtract)

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \partial_{c} \mathbf{S}(c_{n}) \underline{c} + \mathbf{G}(c_{n}) \right)$$
$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \partial_{c} \mathbf{S}(c_{n}) \underline{c} + \mathbf{G}(c_{n}) \right)$$

$$\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)})$$

# IMEX DeC (nonlinear)

$$\underline{\mathbf{c}}^{(p)} - \underline{\mathbf{c}}^{(p-1)} + \Delta t \beta \left( \mathbf{S}(\underline{\mathbf{c}}^{(p)}) - \mathbf{S}(\underline{\mathbf{c}}^{(p-1)}) \right) \\
= \mathbf{c}_n - \underline{\mathbf{c}}^{(p-1)} + \Delta t \Theta (\mathbf{S}(\underline{\mathbf{c}}^{(p-1)}) + \mathbf{G}(\underline{\mathbf{c}}^{(p-1)})) \\
\iff \\
\underline{\mathbf{c}}^{(p)} = \mathbf{c}_n + \Delta t \left[ \beta \mathbf{S}(\underline{\mathbf{c}}^{(p)}) \\
+ (\Theta - \beta) \mathbf{S}(\underline{\mathbf{c}}^{(p-1)}) + \Theta \mathbf{G}(\underline{\mathbf{c}}^{(p-1)}) \right]$$

$$\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}}(\boldsymbol{c})$$
 or better  $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}} \cdot \boldsymbol{c}$ 



$$\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}}(\boldsymbol{c})$$
 or better  $\partial_t \boldsymbol{c} = \boldsymbol{\mathsf{G}}(\boldsymbol{c}) + \boldsymbol{\mathsf{S}} \cdot \boldsymbol{c}$ 

### **IMEX** Recipe

- $\mathcal{L}^1$  implicit for  $\boldsymbol{S}$
- Nonlinear implicit

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \mathsf{S}(\underline{c}) + \mathsf{G}(c_{n}) \right)$$
  
 $\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \mathsf{S}(\underline{c}) + \mathsf{G}(c_{n}) \right)$ 

• Linearly IMEX (EIN methods / Add-and-subtract)

$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t \beta \left( \partial_{c} \mathbf{S}(c_{n}) \underline{c} + \mathbf{G}(c_{n}) \right)$$
$$\mathcal{L}^{1}(\underline{c}) := \underline{c} - c_{n} - \Delta t A^{-1} R \left( \partial_{c} \mathbf{S}(c_{n}) \underline{c} + \mathbf{G}(c_{n}) \right)$$

$$\mathcal{L}^1(\underline{oldsymbol{c}}^{(p)}) = \mathcal{L}^1(\underline{oldsymbol{c}}^{(p-1)}) - \mathcal{L}^2(\underline{oldsymbol{c}}^{(p-1)})$$

## IMEX ADER (nonlinear)

$$\underline{\boldsymbol{c}}^{(p)} - \underline{\boldsymbol{c}}^{(p-1)} - \Delta t A^{-1} R \left( \mathbf{S}(\underline{\boldsymbol{c}}^{(p)}) - \mathbf{S}(\underline{\boldsymbol{c}}^{(p-1)}) \right) \\
= \boldsymbol{c}_n - \underline{\boldsymbol{c}}^{(p-1)} + \Delta t A^{-1} R \left( \mathbf{S}(\underline{\boldsymbol{c}}^{(p-1)}) + \mathbf{G}(\underline{\boldsymbol{c}}^{(p-1)}) \right) \\
\iff \\
\underline{\boldsymbol{c}}^{(p)} = \boldsymbol{c}_n + \Delta t A^{-1} R \left[ \mathbf{S}(\underline{\boldsymbol{c}}^{(p)}) + \mathbf{G}(\underline{\boldsymbol{c}}^{(p-1)}) \right]$$



### Stability for IMEX methods

How to compute the stability region for IMEX methods?  $\partial_t c = Gc + Sc$ ,  $G, S \in \mathbb{C}$  $c_{n+1} = R(\Delta t G, \Delta t S)c_n = R(\lambda_G, \lambda_S)c_n$   $R(\cdot, \cdot) : \mathbb{C}^2 \to \mathbb{C}$  Hard to study  $\{|R| < 1\} \subset \mathbb{C}^2$ 

| Minion <sup>a</sup>                                                                                                                                                                                           | Hundsdorfer <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>λ<sub>G</sub> ∈ iℝ</li> <li>λ<sub>S</sub> ∈ ℝ</li> <li>R(λ<sub>G</sub>, λ<sub>S</sub>) : C → C</li> <li>Not really representative of high order operators</li> <li>Simple for comparisons</li> </ul> | • $\mathcal{D}_0 := \{\lambda_G \in \mathbb{C} :  R(\lambda_G, \lambda_S)  \le 1, \forall \lambda_S \in \mathbb{C}^-\}$<br>• $\mathcal{D}_1 := \{\lambda_S \in \mathbb{C} :  R(\lambda_G, \lambda_S)  \le 1, \forall \lambda_G \in \mathcal{S}_0\}$<br>• $\mathcal{S}_0 = \{z \in \mathbb{C} :  1 + z  \le 1\}$<br>• Quite restrictive<br>• $\mathcal{D}_0 = \emptyset$ often, we are asking essentially more than A-stability<br>• Numerical discretization more involved than Minion's |
| <sup>a</sup> M. L. Minion. Semi-implicit spectral deferred<br>correction methods for ordinary differential<br>equations. Commun. Math. Sci., 1(3):471–500, 09<br>2003.                                        | one<br><sup>a</sup> W. Hundsdorfer and J. Verwer. Numerical Solution of<br>Time-Dependent Advection-Diffusion-Reaction Equations. Springer Berlin<br>Heidelberg. 2003                                                                                                                                                                                                                                                                                                                    |

Heidelberg, 2003.

## Minion's Approach



#### IMEX DeC Stability Region with Minion's approach

## Minion's Approach



#### IMEX ADER Stability Region with Minion's approach

## Hundsdorfer's Approach

#### IMEX ADER Stability Region with $\mathcal{D}_0$ Hundsdorfer's approach



20/39

## Hundsdorfer's Approach

#### IMEX DeC Stability Region with $\mathcal{D}_1$ Hundsdorfer's approach: Bounded areas



## Hundsdorfer's Approach

#### IMEX ADER Stability Region with $\mathcal{D}_1$ Hundsdorfer's approach: Unbounded areas



22/39

| Method         | Minion                                      | $\mathcal{D}_0$ Hundsdorfer | $\mathcal{D}_1$ Hundsdorfer |
|----------------|---------------------------------------------|-----------------------------|-----------------------------|
| IMEX DeC equi  | A( $lpha$ )-stability $lpha pprox 35^\circ$ | Always unstable             | Bounded areas               |
|                | Order 2 strictest stab                      | Always unstable             | increasing with order       |
|                | <b>*</b>                                    | Always unstable             | Bounded areas               |
| IMEX Dec GLD   | I                                           | Always unstable             | increasing with order       |
| IMEX ADER equi |                                             |                             | Unlimited areas             |
|                | 1                                           | Order 2 stable              | almost A-stable             |
|                |                                             |                             | bounded for orders 5        |
|                |                                             |                             | and 8                       |
| IMEX ADER GLB  | <b>†</b>                                    | Order 2-4 stable            | Unlimited areas             |
|                |                                             |                             | almost A-stable             |

1 DeC and ADER (explicit)

2 DeC and ADER (implicit and IMEX)

**3** Application to Advection–Diffusion PDE

**4** Application to Advection–Dispersion PDE

**5** Conclusions

$$\partial_t u + a \partial_x u - d \partial_{xx} u = 0$$
  $a, d \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{a\Delta t}{\Delta x}Du \approx \Delta ta\partial_x u$
- Implicit diffusion term  $\frac{d\Delta t}{\Delta x^2} D_2 u \approx \Delta t d \partial_{xx} u$

$$\partial_t u + a \partial_x u - d \partial_{xx} u = 0$$
  $a, d \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{\partial \Delta t}{\Delta x} Du \approx \Delta t \partial_x u$
- Implicit diffusion term  $\frac{d\Delta t}{\Delta x^2} D_2 u \approx \Delta t d \partial_{xx} u$
- Spatial Discretizations
  - D upwind FD
  - D<sub>2</sub> central FD
- Von Neumann stability analysis

$$\partial_t u + a \partial_x u - d \partial_{xx} u = 0$$
  $a, d \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{a\Delta t}{\Delta x}Du \approx \Delta ta\partial_x u$
- Implicit diffusion term  $\frac{d\Delta t}{\Delta x^2} D_2 u \approx \Delta t d \partial_{xx} u$
- Spatial Discretizations
  - D upwind FD
  - $D_2$  central FD
- Von Neumann stability analysis
- Many parameters
  - $\circ \Delta t$
  - $\Delta x$
  - o a
  - o d

25/39

• wave number k

$$\partial_t u + a \partial_x u - d \partial_{xx} u = 0$$
  $a, d \ge 0$ 

| Discretization                                                                                                                                                                                                                                                                                                                                                              | Von Neumann Analysis                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Explicit advection term $\frac{a\Delta t}{\Delta x} Du \approx \Delta t a \partial_x u$<br>• Implicit diffusion term $\frac{d\Delta t}{\Delta x^2} D_2 u \approx \Delta t d \partial_{xx} u$<br>• Spatial Discretizations<br>• D upwind FD<br>• D_2 central FD<br>• Von Neumann stability analysis<br>• Many parameters<br>• $\Delta t$<br>• $\Delta x$<br>• $a$<br>• $d$ | • $w_j = e^{ikx_j}$ eigenmodes of the derivative<br>operators<br>• Suppose that $u_j^n = e^{ikx_j}$<br>• $u^{n+1} = G(k, \Delta x, \Delta t, a, d)u^n$<br>• Stable for a given configuration of<br>$\Delta x, \Delta t, a, d$ if<br>$ G(k, \Delta x, \Delta t, a, d)  \le 1$<br>for all $k \in \mathbb{N}$<br>• Numerically $(n - 1) = -1000$ |
| • wave number k                                                                                                                                                                                                                                                                                                                                                             | • Numerically $K = 1, \dots, 1000$                                                                                                                                                                                                                                                                                                            |

25/39

$$\partial_t u + a \partial_x u - d \partial_{xx} u = 0$$
  $a, d \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{a\Delta t}{\Delta x}Du \approx \Delta ta\partial_x u$
- Implicit diffusion term  $\frac{d\Delta t}{\Delta x^2} D_2 u \approx \Delta t d \partial_{xx} u$
- Spatial Discretizations
  - D upwind FD
  - $D_2$  central FD
- Von Neumann stability analysis
- Many parameters
  - $\circ \Delta t$
  - $\Delta x$
  - o a
  - d
  - wave number k



C

$$\partial_t u + a \partial_x u - d \partial_{xx} u = 0$$
  $a, d \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{a\Delta t}{\Delta x}Du \approx \Delta ta\partial_x u$
- Implicit diffusion term  $\frac{d\Delta t}{\Delta x^2} D_2 u \approx \Delta t d \partial_{xx} u$
- Spatial Discretizations
  - D upwind FD
  - $D_2$  central FD
- Von Neumann stability analysis
- Many parameters
  - $\circ \Delta t$
  - $\Delta x$
  - o a
  - o d

```
• wave number k
```

### Simplify the parameters

• 
$$C = \frac{a\Delta t}{\Delta x}$$
  
•  $D = \frac{d\Delta t}{\Delta x^2}$   
•  $E = \frac{C^2}{D} = \frac{a^2 \Delta t^2 \Delta x^2}{d\Delta t \Delta x^2} = \frac{a^2 \Delta t}{d}$   
•  $|G| \le 1 \forall k$   
•  $|G| \le 1 \forall k$ 

### <u>C – E Stability Areas for advection-diffusion</u>

### Stability region description (often)

- If  $C = \frac{a\Delta t}{\Delta x} \leq C_0 \Longrightarrow$  Stable
- If  $E \leq E_0 \Longrightarrow$  Stable

$${\sf E}=rac{a^2\Delta t}{d}\leq {\sf E}_0 \Longleftrightarrow \Delta t\leq rac{{\sf E}_0 d}{a^2}=: au_0{}^a$$

 $\circ$  Independent on  $\Delta x$ 

<sup>a</sup>M. Tan, J. Cheng, and C.-W. Shu. Stability of high order finite difference schemes with implicit-explicit time-marching for convection-diffusion and convection-dispersion equations. International Journal of Numerical Analysis and Modeling, 18(3):362-383, 2021.



## C – E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection  $Du_j = \frac{u_j u_{j-1}}{\Delta x}$  first order
- Diffusion  $D_2 u_j = \frac{u_{j-1} 2u_j + u_{j+1}}{\Delta x^2}$  second order
- Time orders from 2 to 8



Gauss-Lobatto

Figure: Stability areas for orders 2 to 8 with Gauss-Lobatto nodes.

27/39
## C - E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection  $Du_j = \frac{u_j u_{j-1}}{\Delta x}$  first order
- Diffusion  $D_2 u_j = \frac{u_{j-1} 2u_j + u_{j+1}}{\Delta x^2}$  second order
- Time orders from 2 to 8



Equispaced

Figure: Stability areas for orders 2 to 8 with equispaced nodes.

## C - E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection operators order from 1 to 8
- Diffusion  $D_2 u_j = \frac{u_{j-1} 2u_j + u_{j+1}}{\Delta x^2}$  second order
- Time order 8



Figure: Stability areas for orders 1 to 8 of the advection operator

## C – E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection  $Du_j = \frac{u_j u_{j-1}}{\Delta x}$  first order
- Diffusion operators central order in [2, 4, 6, 8]
- Time order 8



Figure: Stability areas for orders 2 to 8 of the diffusion operator

## C-E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection operator order k
- Diffusion operator order k
- Time order k from 2 to 8

Gauss-Lobatto



Figure: Stability areas for orders 2 to 8 with Gauss-Lobatto nodes.

## C-E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection operator order k
- Diffusion operator order k
- Time order k from 2 to 8



Equispaced

Figure: Stability areas for orders 2 to 8 with equispaced nodes.

## C-E stability optimal values

Approximated border values  $C_0$  (up to 2 decimals) and  $E_0$  (up to 1 decimal) for Gauss-Lobatto methods

| Order | DeC   |                | ADER  |       |
|-------|-------|----------------|-------|-------|
|       | $C_0$ | E <sub>0</sub> | $C_0$ | $E_0$ |
| 2     | 0.50  | 2.5            | 0.50  | 0.7   |
| 3     | 1.63  | 6.1            | 1.63  | 4.5   |
| 4     | 1.04  | 6.9            | 1.04  | 4.2   |
| 5     | 1.74  | 8.8            | 1.74  | 7.2   |
| 6     | 1.60  | 4.1            | 1.60  | 4.1   |
| 7     | 1.94  | 9.5            | 1.94  | 8.5   |
| 8     | 2.00  | 10.2           | 2.00  | 9.8   |

#### **IMEX DeC Gauss-Lobatto**



1 DeC and ADER (explicit)

2 DeC and ADER (implicit and IMEX)

**3** Application to Advection–Diffusion PDE

Application to Advection–Dispersion PDE

**5** Conclusions

 $\partial_t u + a \partial_x u + b \partial_{xxx} u = 0$   $a, b \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{\partial \Delta t}{\Delta x} Du \approx \Delta t \partial_x u$
- Implicit diffusion term  $rac{b\Delta t}{\Delta x^3} D_3 u pprox \Delta t b \partial_{ imes xx} u$

 $\partial_t u + a \partial_x u + b \partial_{xxx} u = 0$   $a, b \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{a\Delta t}{\Delta x}Du \approx \Delta ta\partial_x u$
- Implicit diffusion term  $rac{b\Delta t}{\Delta x^3} D_3 u pprox \Delta t b \partial_{xxx} u$
- Spatial Discretizations
  - D upwind FD
  - $\circ$   $D_3$  slightly upwinded FD: stencil [-k, k+1]
- Von Neumann stability analysis

 $\partial_t u + a \partial_x u + b \partial_{xxx} u = 0$   $a, b \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{a\Delta t}{\Delta x}Du \approx \Delta ta\partial_x u$
- Implicit diffusion term  $rac{b\Delta t}{\Delta x^3} D_3 u pprox \Delta t b \partial_{xxx} u$
- Spatial Discretizations
  - D upwind FD
  - $\circ$   $D_3$  slightly upwinded FD: stencil [-k, k+1]
- Von Neumann stability analysis
- Many parameters
  - $\circ \Delta t$
  - $\Delta x$
  - o a
  - b

33/39

• wave number k

$$\partial_t u + a \partial_x u + b \partial_{xxx} u = 0$$
  $a, b \ge 0$ 

| Discretization                                                                                                                                                                                                                                                                                                                                                                                                                 | Von Neumann Analysis                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Explicit advection term $\frac{a\Delta t}{\Delta x} Du \approx \Delta t a \partial_x u$<br>• Implicit diffusion term $\frac{b\Delta t}{\Delta x^3} D_3 u \approx \Delta t b \partial_{xxx} u$<br>• Spatial Discretizations<br>• D upwind FD<br>• D_3 slightly upwinded FD: stencil $[-k, k+1]$<br>• Von Neumann stability analysis<br>• Many parameters<br>• $\Delta t$<br>• $\Delta x$<br>• $a$<br>• $b$<br>• wave number k | <ul> <li>w<sub>j</sub> = e<sup>ikxj</sup> eigenmodes of the derivative operators</li> <li>Suppose that u<sub>j</sub><sup>n</sup> = e<sup>ikxj</sup></li> <li>u<sup>n+1</sup> = G(k, Δx, Δt, a, d)u<sup>n</sup></li> <li>Stable for a given configuration of Δx, Δt, a, d if <ul> <li> G(k, Δx, Δt, a, b)  ≤ 1</li> </ul> </li> <li>for all k ∈ N</li> <li>Numerically k = 1,, 1000</li> </ul> |

$$\partial_t u + a \partial_x u + b \partial_{xxx} u = 0$$
  $a, b \ge 0$ 

#### Discretization

- Explicit advection term  $\frac{\partial \Delta t}{\Delta x} Du \approx \Delta t \partial_x u$
- Implicit diffusion term  $rac{b\Delta t}{\Delta x^3} D_3 u pprox \Delta t b \partial_{ imes xx} u$
- Spatial Discretizations
  - D upwind FD
  - $\circ$   $D_3$  slightly upwinded FD: stencil [-k, k+1]
- Von Neumann stability analysis
- Many parameters
  - $\stackrel{\circ}{} \Delta t \\ \stackrel{\circ}{} \Delta x$
  - $\Delta x$
  - o a
  - b
  - wave number k

# Simplify the parameters

• 
$$C \equiv \frac{1}{\Delta x}$$
  
•  $B = \frac{b\Delta t}{\Delta x^3}$ 

• 
$$|G| \leq 1 \forall k$$



$$\partial_t u + a \partial_x u + b \partial_{xxx} u = 0$$
  $a, b \ge 0$ 

Simplify the parameters

•  $C = \frac{a\Delta t}{\Delta x}$ 

•  $|G| \leq 1 \forall k$ 

2 С

#### • $C = \frac{a\Delta t}{\Delta x}$ Discretization • $B = \frac{b\Delta t}{\Delta x^3}$ • $E = \frac{C}{B} = \frac{a\Delta t\Delta x^3}{b\Delta t\Delta x} = \frac{a\Delta x^2}{b}$ • Explicit advection term $\frac{\partial \Delta t}{\Delta x} Du \approx \Delta t \partial_x u$ • Implicit diffusion term $\frac{b\Delta t}{\Delta x^3} D_3 u \approx \Delta t b \partial_{xxx} u$ $|G| \leq 1 \, \forall k$ Spatial Discretizations • D upwind FD • $D_3$ slightly upwinded FD: stencil [-k, k+1]0.04 Von Neumann stability analysis 0.03 Many parameters PP- $\circ \Delta t$ 0.02 $\circ \Lambda x$ а h 0.01 • wave number k1

### C – E Stability Areas for advection–dispersion

#### IMEX DeC GLB 2 Advection order 1 Dispersion order 3



### C – E Stability Areas for advection–dispersion

#### IMEX DeC GLB 3 Advection order 1 Dispersion order 3



### <u>C-E</u> Stability Areas for advection-dispersion

IMEX DeC GLB 3 Advection order 1 Dispersion order 3

## Stability region description

- If  $C = \frac{a\Delta t}{\Delta x} \leq C_0 \Longrightarrow$  Stable
- If  $E \leq E_0 \Longrightarrow$  Stable

$${\sf E}=rac{a\Delta x^2}{b}\leq {\sf E}_0 \Longleftrightarrow \Delta x\leq \sqrt{rac{{\sf E}_0 b}{a}}=:\Delta_{x,0}$$

 $\circ$  Independent on  $\Delta t$ 



## C – E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection  $Du_j = \frac{u_j u_{j-1}}{\Delta x}$  first order
- Dispersion  $D_3 u_j = \frac{1}{4h^3} \left( -u_{j-2} u_{j-1} + 10u_j 14u_{j+1} + 7u_{j+2} u_{j+3} \right)$ . Gat third order
  - Gauss–Lobatto

• Time orders from 2 to 6



Stability areas for orders 2 to 6 with Gauss-Lobatto nodes.

## C – E stability plots for IMEX DeC/ADER on advection-diffusion

- Advection  $Du_j = \frac{u_j u_{j-1}}{\Delta x}$  first order
- Dispersion  $D_3 u_j = \frac{1}{4h^3} \left( -u_{j-2} u_{j-1} + 10u_j 14u_{j+1} + 7u_{j+2} u_{j+3} \right)$ . third order
- Time orders from 2 to 6



Equispaced

Stability areas for orders 2 to 6 with equispaced nodes.

## C – E stability plots for IMEX DeC/ADER on advection-dispersion

- Advection operator order k
- Diffusion operator order k
- Time order k from 2 to 6

Gauss-Lobatto



Figure: Stability areas for orders 2 to 6 with Gauss-Lobatto nodes.

## C – E stability plots for IMEX DeC/ADER on advection-dispersion

- Advection operator order k
- Diffusion operator order k
- Time order k from 2 to 6



Equispaced

Figure: Stability areas for orders 2 to 6 with equispaced nodes.

1 DeC and ADER (explicit)

2 DeC and ADER (implicit and IMEX)

**3** Application to Advection–Diffusion PDE

**4** Application to Advection–Dispersion PDE

#### **5** Conclusions

#### Summary

• DeC and ADER

#### Summary

- DeC and ADER
- Explicit, Implicit, IMEX, nonlinear solvers
- Stability analysis

#### Summary

- DeC and ADER
- Explicit, Implicit, IMEX, nonlinear solvers
- Stability analysis
- Diffusion Advection Equation

#### Summary

- DeC and ADER
- Explicit, Implicit, IMEX, nonlinear solvers
- Stability analysis
- Diffusion Advection Equation
- Dispersion Advection Equation

#### Summary

- DeC and ADER
- Explicit, Implicit, IMEX, nonlinear solvers
- Stability analysis
- Diffusion Advection Equation
- Dispersion Advection Equation

#### **Future Research**

#### • Nonlinear stiff equations

coefficients for stability (add/subtract)

#### Summary

- DeC and ADER
- Explicit, Implicit, IMEX, nonlinear solvers
- Stability analysis
- Diffusion Advection Equation
- Dispersion Advection Equation

#### **Future Research**

#### • Nonlinear stiff equations

- coefficients for stability (add/subtract)
- Implicit Advection



#### Summary

- DeC and ADER
- Explicit, Implicit, IMEX, nonlinear solvers
- Stability analysis

38/39

- Diffusion Advection Equation
- Dispersion Advection Equation

#### **Future Research**

#### • Nonlinear stiff equations

- coefficients for stability (add/subtract)
- Implicit Advection
- Other spatial discretizations CG/DG

| Summary                                                                                                                                                                                            | Future Research                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>DeC and ADER</li> <li>Explicit, Implicit, IMEX, nonlinear solvers</li> <li>Stability analysis</li> <li>Diffusion – Advection Equation</li> <li>Dispersion – Advection Equation</li> </ul> | <ul> <li>Nonlinear stiff equations         <ul> <li>coefficients for stability (add/subtract)</li> </ul> </li> <li>Implicit Advection</li> <li>Other spatial discretizations CG/DG</li> </ul> |

#### Other projects with DeC/ADER

- Positivity preserving (Modified Patankar) (Philipp Öffner at 12:00 today)
- Entropy Preserving (Relaxation)

- Efficient version (less stages)
- DOOM a posteriori limiter for ADER-DG in space/time

## THANK YOU!

davidetorlo.it

Preprint: Petri, L., Öffner, P., Torlo, D.. Analysis for Implicit and Implicit-Explicit ADER and DeC Methods for Ordinary Differential Equations, Advection-Diffusion and Advection-Dispersion Equations (2024)