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R rder Model

e Fluid

{pf [Oeur + (ur - V) uf] — divor(ur, pr) = br

—divur =0
e Structure
ps02ds — divP(ds) = bs

e |nteraction

o Continuity of the velocities us and %ds
o Balance of stresses
o Continuity of displacements (?)

e Boundary/initial conditions
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R rder M Is for FSI with domain mposition

Techniques

-
==

e Arbitrary Lagrangian-Eulerian (ALE) map for . . . b
fluid changing domain s - e ezt
N TR E B
2 r
A - Qf

) e rh of rh

X x =X+ dr(%, 1)
o Extension problem O,ext(af(t)) -0 rf .......................................... ]

D

e Interface condition (ALE form) on I’
o if = %as

o Db, pr)F=T iy = —P(ds)hs Cauchy stress tensor

o df =ds
e Deformation gradient

&¢(r, r) = 67(dr, iie) + 67 (pr)
&,5'“(3{, flf) = pfUF (@i\lfi:__l ar fA'__T@TfIf)
&7 (br) = —prl

F:=vA,




Monolithic vs Partitioned

Monolithic Domain Decomposition / Partitioned /
e Global functional spaces Segregated

e Interface continuity conditions incorporated ® Local spaces
into the spaces e lterative procedure
e Fully coupled problem e Use the state-of-the-art codes for each
e Computationally expensive (sometimes subcomponent
prohibitive) e Computationally effective
e In general stable e Subject to possible stability issues

Model order reduction

e Both expensive

e Parametric context too expensive
e Reduce costs with MOR
Intrusive (POD-Galerkin + hyper-reduction) vs non-intrusive (POD-NN)




Model order reduction offline costs and tests

CFD Velocity
-
e Offline we need some FOM simulations
e Both monolithic and DD are anyway expensive l
e Simulations can last some days to have CED Pressure

reasonable accuracy Im
3000

- 2000
Iz
-0.51
e CFD test (no structure) Fst Displacement
o Backward facing step Velocity

o Left inlet BC, right outflow, top/bottom walls
o Pressure great changes I
e FSI test

o Double leaflets in channel (haemodynamics)
o Left inlet BC through pressure, outflow right,
wall top/bottom

Pressure changes

o At=10"% and T.,y = 0.01

Pressure rm

o
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Model order reduction offline costs and tests

CFD Velocity
Computational problems [;”
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PRRVERMM D 7orio "me-acaptive CFDand PSR
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M | order r ion offlin n
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Time adaptivity!

Classical time-adaptivity

e Two time integrators: A, B

o Either order of A different from order of B:
ex = O(AtPA), eg = O(AtPB) with pa < ps

e Constant in front of the error is different in A : .
L Saddle-point problems estimators
and B (and proportionality is known):
ea = CACALtP, eg = CgCALtP with Ca # Cp ®© O:u is in the equation
® ep— €3 = Up— U~ €ea ® O¢p is not in the equation
e Choose At according to error and tolerances e Many estimators consider only u

o low error = increase At
o large error =—> decrease At

e We will use implicit BDF2 and implicit BDF3

o BDF2 is stable and cheap
o BDF3 less stable, but good for estimator
o Difference is in the way they discretize O;

D. Torlo
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Time adaptivity!

Our saddle-point estimator

* Maxee (u,p,ap||€"THEOT — EMHEOT| 5 )

e Cheaper way to compute £2°F still being 3rd order

o find UyHBPR = Y tHBOR2 4 sUpthBP®E € W, where GUTHBPT € Wy s the solution of the
following linearised equation

J [R (EEEII.::)’ (UEDF2) , U’I11+1,BDF2)] (6U’111+1,BDF3) — _R (EEEll.:3 (UEDFZ) ) U;11+1,BDF2)

; 1,BDF2
e Nonlinear solver to get U,',’+ ’

] i‘jn+1,BDF3
© Linear solver to get U,',’+
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Numerical simulations: CFD

Backward-facing step flow CFD ‘I Q I out

r

wall

I_in

Incompressible Navier-Stokes
P> — P! Taylor Hood FEM spaces
Inflow uj, = (@(t)%(y —2)(5—1y),0) on Figure: Backward-facing step domain

p(t) = 0.5(1 — cos(nt)) for t < 1, then
o(t) =1 CFD Velocity

r

wall

Outflow homogeneous Neumann for all [
variables

No slip wall on Ty, i.e., Dirichlet tﬁ;w
homogeneous on u CFD Pressure
v = 0.05 with Reynolds number 300 |‘:

I 1000
-051
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Numerical simulations: CFD

100

u implicit
—u p implicit
I ---- u Newton
— 10-10 ] --=- p Newton
150 175  2.00 000 025 050 075 100 125 150 175 2.00
t
(a) CFD-300: errors and timestep (b) CFD-300: error estimators

Figure: Adaptive time-steps distribution and relative errors w.r.t. constant-timestep solution (left) and the
comparison of implicit and linear implicit (Newton) time estimators (right)
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Numerical simulation: FSI monolithic

rout

Heamodynamic problem

e vr=0.035,pr =1,ps =1.1
e P, —P; — P, with 67,390 DoFs
o pu(t) = {5 (1 — cos((%)) for t <0.1, FSI_ .

" 5 for t > 0.1. Velocity . Displacement
through a Neumann condition in I,
up(x, t) = —pin(t)ne(x)

© Teng =2

Figure: Reference FSI domain

Pressure

D. Torlo
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Computational costs

Table: Computational cost comparison between constant BDF2 and time adaptive algorithms: total simulation
time (left) and time of one evaluation of the error estimator (mean =+ std)

Computational time Estimator cost Timesteps number
Test Constant | LI adaptive Implicit LI Const. Impl. LI
CFD 12 hours 2 hours 2.1 £ 0.2sec | 1.68 £ 0.1 sec 20,000 976 976
FSI 132 hours 5 hours 37 £+ 4 sec 25 4+ 2 sec 20,000 347 360

D. Torlo  Time-adaptive CFD 2
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FSI + DD

m¢(Beur, ve; de) + ar(ug, ve; dr) + cALE(Bedr, ve, ur; dr)

ur € Vi C HY(Q)? + b(pr, vri dr) + cr(ur, ug, vri dr)
pr € Qr = L3(QF)
dr € Er C Hp(Q)? bf(uf,qride) =0 Vgr € Q,
ds € E; C Hp(Q°)? af(dr,er) =0, Ver € Ey

us € Vs C HA(Q)? dr = ds on .
g€ Vi C HY())

ms(atusa Vs) A as(ds, Vs) = fs(Vs) aF (d/s\u Vs)l'jv - (g:, Vs)F, Vvs € Vs,

Interface variable (0tds, es)a, = (us, es)q, Ves € Es.
= —P(d. = T ’
= (ds)ns Objective Functional

Jod(de, ug)F~Tng + JoB(pr)F~ g
1
Iy (uf, us; gr) == 5/ lup — us|?dl + %/ lgr[*ar
Ty ]
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FSI + DD: Optimization strategy for Nonlinear Least Squares problems

Line search methods

® Not too good for our applications

® Gauss-Newton is “too local” - diverges after
the first 12 time steps

® Finds infeasible directions for the nonlinear
solvers

® Gradient-based methods stagnates too much
and are not always able to overcome “flat”
areas

Trust region methods

e Compute (usually) quadratic approximation of
the objective functional around the iterative
point

e Update trust region radius depending on how
well the model approximates the objective

e Solve model optimization problem within the
trust region

e Subspace Interior Trust Region Method
(STIR)?

?M. A. Branch et al. A Subspace, Interior, and Conjugate
Gradient Method for Large-Scale Bound-Constrained
Minimization Problems, 1999
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Perspectives

* Intrusive ® More complex domains (multi-domain
© Galerkin Projection (some effort for Jacobian) decomposition)
® Hyper-reduction

o Nonintrusive: POD-NN e Dimensionality reduction of the Jacobian
® No further models e Matrix-free methods
® Exponential behaviors are difficult for NN . .
e Optimal control problems or inverse problems

e Other questions

o Time-adaptivity for ROM is necessary or a
waste of time?
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