How to Preserve Moving Equilibria: Global Flux and Analytical Methods

Davide Torlo, Mirco Ciallella, Mario Ricchiuto, Wasilij Barsukow, Lorenzo Micalizzi, Victor Michel-Dansac

Dipartimento di Matematica "Guido Castelnuovo", Università di Roma La Sapienza, Italy davidetorlo.it

Ferrara - 18th December 2024

Water equilibria and perturbations

- Lake at rest perturbation
- Moving stationary wave
- Vortex type stationary solutions

Equilibria for shallow water equations

Shallow Water Equations

$$\begin{cases} \partial_t h + \partial_x (hu) + \partial_y (hv) = 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{g}{2}h^2\right) + \partial_y (huv) = -gh\partial_x b\\ \partial_t (hv) + \partial_x (huv) + \partial_y \left(hv^2 + \frac{g}{2}h^2\right) = -gh\partial_y b \end{cases}$$

Equilibria for shallow water equations

$\begin{cases} \partial_t h + \partial_x (hu) + \partial_y (hv) = 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{g}{2}h^2 \right) + \partial_y (huv) = -gh\partial_x b\\ \partial_t (hv) + \partial_x (huv) + \partial_y \left(hv^2 + \frac{g}{2}h^2 \right) = -gh\partial_y b \end{cases}$

Lake at rest equilibrium

Shallow Water Equations

$$h(x, y) + b(x, y) \equiv \eta_0$$
 $u(x, y) = v(x, y) \equiv 0$
 $\partial_x \left(\frac{g}{2}h^2\right) + gh\partial_x b = gh\partial_x h + gh\partial_x b = gh\partial_x \eta_0 = 0.$

Simulation example lake at rest with perturbation

Simulation example lake at rest with perturbation

Equilibria for shallow water equations

Shallow Water Equations 1D

$$\begin{cases} \partial_t h + \partial_x (hu) = 0 \\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{g}{2}h^2 \right) = -gh\partial_x b \end{cases}$$

Stationary waves in 1D $hu(x) =: q(x) \equiv q_0^x$ and *h* such that $\partial_x \left(hu^2 + \frac{g}{2}h^2\right) + gh\partial_x b = 0$ $\partial_x \left(rac{q^2}{2gh^2} + h + b ight) = 0$ $rac{q^2}{2gh^2(x)} + h(x) + b(x) = \mathcal{Q}(x_0)$ (1)

Shallow Water Equations 1D

$$\begin{cases} \partial_t h + \partial_x (hu) = 0\\ \partial_t (hu) + \partial_x \left(hu^2 + \frac{g}{2}h^2 \right) = -gh\partial_x b \end{cases}$$

Cubic equation solutions

- Supercritical state $u > \sqrt{gh}$
- Subcritical state $u < \sqrt{gh}$
- Negative *h*

Stationary waves in 1D

 $hu(x) =: q(x) \equiv q_0^x$

and h such that

$$\partial_x \left(hu^2 + \frac{g}{2}h^2\right) + gh\partial_x b = 0$$

$$\partial_x \left(\frac{q^2}{2gh^2} + h + b \right) = 0$$

$$\frac{q^2}{2gh^2(x)} + h(x) + b(x) = \mathcal{Q}(x_0) \qquad (1)$$

Simulation example moving equilibria non flat bathymetry

Simulation example moving equilibria non flat bathymetry

Continuous Bathymetry

Discontinuous Bathymetry

10

10

x

x

444000

20

20

2

Preserving Moving Equilibria with Global Elux D. Torlo

5/25

Shallow Water Equations (no bathymetry)

$$\begin{cases} \partial_t h + \partial_x (hu) + \partial_y (hv) = 0\\ \partial_t (hu) + \partial_x (hu^2 + \frac{g}{2}h^2) + \partial_y (huv) = 0\\ \partial_t (hv) + \partial_x (huv) + \partial_y (hv^2 + \frac{g}{2}h^2) = 0 \end{cases}$$

Vortices: Div-free solutions

$$\begin{cases} r = (x - x_0)^2 + (y - y_0)^2 \quad \theta = \arctan\left(\frac{y - y_0}{x - x_0}\right) \\ u(r) = -\sin(\theta)u_\theta(r) \qquad v(r) = \cos(\theta)u_\theta(r) \\ h(r) : \quad h'(r)gr = u_\theta^2(r) \end{cases}$$

Other equations

- Euler equations (isentropic)
- Linear Acoustic equations

Simulation example of a vortex (for linear acoustics)

7/25

Table of contents

1 State of the art

2 Global Flux

3 Results

4 Perspectives

Exactly!

Impossible: discretization of data b, of the solutions h, u, v

Exactly with respect to discretization

- Possible
- Might involve some analytical equation to be solved
- Requires the knowledge a priori of equilibria type

Better than the underlying method

- Possible
- No need of inverting analytical equations
- No need of a priori knowledge of the equilibrium type

Exactly Well Balancing

Well Balancing

State of the art techniques (part 1)

Subtract equilibrium

- Know analytical equilibrium
- Dedner 2004^a and Berberich 2021^b

Procedure

- Base Scheme: $V^{n+1} = V^n + S(V^n)$
- Equilibrium: $V^{eq} := (h^{eq}, u^{eq}, v^{eq})$
- Discrete exact equilibrium residual: S^{eq}(tⁿ) := S(V^{eq}(tⁿ))
- Well balanced scheme : $V^{n+1} = V^n + S(V^n) S^{eq}(t^n)$

^aDedner, A., Rohde, C., Schupp, B., & Wesenberg, M. (2004). Computing and Visualization in Science, 7(2), 79-96.

^bJ. P. Berberich, P. Chandrashekar, and C. Klingenberg. Computers & Fluids, 219:104858, 2021.

State of the art techniques (part 1)

Subtract equilibrium

- Know analytical equilibrium
- Dedner 2004^a and Berberich 2021^b

Procedure

- Base Scheme: $V^{n+1} = V^n + S(V^n)$
- Equilibrium: $V^{eq} := (h^{eq}, u^{eq}, v^{eq})$
- Discrete exact equilibrium residual: $\mathcal{S}^{eq}(t^n) := \mathcal{S}(V^{eq}(t^n))$
- Well balanced scheme : $V^{n+1} = V^n + S(V^n) S^{eq}(t^n)$

^aDedner, A., Rohde, C., Schupp, B., & Wesenberg, M. (2004). Computing and Visualization in Science, 7(2), 79-96.

^bJ. P. Berberich, P. Chandrashekar, and C. Klingenberg. Computers & Fluids, 219:104858, 2021.

Properties

- \odot Ridiculously well balanced: $V^n = V^{eq} \Longrightarrow V^{n+1} = V^{eq}$
- S Know equilibrium a priori
- Cake at rest
- Stationary waves
- ② 2D vortices

Example: subtract equilibrium¹

¹Ciallella, M., Micalizzi, L., Öffner, P., & Torlo, D. (2022). Computers & Fluids, 247, 105630.

State of the art techniques $(part 2)^2$

Equilibrium reconstruction

- In every cell solve an ODE at reconstruction/quadrature points, constrained with the state Vⁿ (BVP)
- ODE solver either exact or very accurate
- Malaga school

Procedure

- Base Scheme: $V^{n+1} = V^n + S(V^n)$
- Equilibrium: V^{eq,ODE} :=ODE_Solver(1) subject to Vⁿ
- Discrete equilibrium residual: $S^{eq,ODE}(t^n) := S(V^{eq,ODE}(t^n))$
- Well balanced scheme : $V^{n+1} = V^n + S(V^n) S^{eq,ODE}(t^n)$

²Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.

State of the art techniques $(part 2)^2$

Equilibrium reconstruction

- In every cell solve an ODE at reconstruction/quadrature points, constrained with the state Vⁿ (BVP)
- ODE solver either exact or very accurate
- Malaga school

Procedure

- Base Scheme: $V^{n+1} = V^n + S(V^n)$
- Equilibrium: V^{eq,ODE} :=ODE_Solver(1) subject to Vⁿ
- Discrete equilibrium residual: $S^{eq,ODE}(t^n) := S(V^{eq,ODE}(t^n))$
- Well balanced scheme : $V^{n+1} = V^n + S(V^n) S^{eq,ODE}(t^n)$

Properties

- \odot Exactly well-balanced $V^n = V^{eq,ODE} \Longrightarrow V^{n+1} = V^{eq,ODE}$
- ⑤ For all equilibria of one type
- S Expensive (ODE solver for each cell)
- Cake at rest
- Stationary waves
- © Problem for transcritical flows $u = \sqrt{gh}$
- ② 2D vortices

²Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.

12/25

State of the art techniques (part 3)³

emann problem modification	Properties
For FV schemesChange the Riemann problem approximation	 Exactly well-balanced (if (1) analytically invertible else accurate solver) Vⁿ = V^{eq,ODE} ⇒ Vⁿ⁺¹ = V^{eq,ODE} Constant equilibria of one type
 Exploit (1) such that at equilibrium it is satisfied by the Riemann problem Michel-Dansac 2016 	 Computations by hand for Riemann Solver Only 1st order, blending with high order Lake at rest
	 Stationary waves Problem for transcritical flows u = √gh 2D vortices

³Michel-Dansac, V., Berthon, C., Clain, S., & Foucher, F. (2016). Computers & Mathematics with Applications, 72(3), 568-593.

Example: Riemann Problem Change⁴

⁴Ciallella, M., Micalizzi, L., Michel-Dansac, V., Öffner, P., & Torlo, D. (2024). arXiv preprint arXiv:2402.12248.

Example: Riemann Problem Change⁴

⁴Ciallella, M., Micalizzi, L., Michel-Dansac, V., Öffner, P., & Torlo, D. (2024). arXiv preprint arXiv:2402.12248.

14/25

State of the art techniques (part 4)

Global Flux

1D source recipe

- Obtain 1 differential operator for everything
- Put together flux and source
- Integrate the forms

Phys. 172(1), 261-297 (2001)

M. (2023). Journal of Scientific Computing, 96(2), 53.

 Gascón 2001^a, Chertock 2022^b, Ciallella 2023^c, Barsukow 2024^d

^aGascón, L., Corberán, J. J. Comput.

^bChertock, A., Kurganov, A., Liu, X., Liu, Y., & Wu, T. (2022). Journal of Scientific Computing, 90, 1-21.

^cCiallella, M., Torlo, D., & Ricchiuto,

^dBarsukow, W., Ricchiuto, M., & Torlo, D. (2024). arXiv preprint

$$\partial_t V + \partial_x f(V) = S(V, x)$$

 $\partial_t V + \partial_x (f(V) - K(V, x)) = 0$
 $K(V, x) := \int_{x_0}^x S(V(s), s) ds$

2D divergence recipe

$$\partial_t h + \partial_x f + \partial_y g = 0, \qquad f = hu, \quad g = hv,$$

$$\partial_t h + \partial_{xy} (F + G) = 0$$

$$F(x, y) := \int_{y_0}^y f(x, \xi) d\xi, \quad G(x, y) := \int_{x_0}^x g(\xi, y) d\xi$$

arXiv:2407 10579

State of the art techniques (part 4)

Global Flux

- Obtain 1 differential operator for everything
- Put together flux and source
- Integrate the forms
- Gascón 2001^a, Chertock 2022^b, Ciallella 2023^c, Barsukow 2024^d

^aGascón, L., Corberán, J. J. Comput.
 Phys. 172(1), 261–297 (2001)
 ^bChertock, A., Kurganov, A., Liu, X.,
 Liu, Y., & Wu, T. (2022). Journal of
 Scientific Computing, 90, 1-21.
 ^cCiallella, M., Torlo, D., & Ricchiuto,
 M. (2023). Journal of Scientific
 Computing, 96(2), 53.
 ^dBarsukow, W., Ricchiuto, M., &
 Torlo, D. (2024). arXiv preprint

Properties

- ③ Well balanced (not exactly)
- © No need for any analytical equilibria
- © No need for analytical relation
- So further ODE solver
- So problems with transcritical points
- Explicit methods
- 🙂 Lake at rest
- Stationary waves
- ② 2D vortices
- © Applicable to FV, FEM, DG

arXiv:2407 10579

Table of contents

1 State of the art

2 Global Flux

3 Results

4 Perspectives

$$\partial_t q + \partial_x f(q) = S(q, x) \implies \partial_t q + \partial_x G(q, x) = 0$$

with $G(q, x) := f(q) - K(q, x) = f(q) - \int_{x_0}^x S(q(s), s) \mathrm{d}s.$
FV: $q_i \approx \int_{x_{i-1/2}}^{x_{i+1/2}} q(x) \mathrm{d}x$

$$\partial_t q + \partial_x f(q) = S(q, x) \implies \partial_t q + \partial_x G(q, x) = 0$$

with $G(q, x) := f(q) - K(q, x) = f(q) - \int_{x_0}^x S(q(s), s) ds.$
FV: $q_i \approx \int_{x_{i-1/2}}^{x_{i+1/2}} q(x) dx$

$$\begin{split} f_{i} &:= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} f(q(x,t)) \mathrm{d}x, \\ \mathcal{K}_{i} &\approx \mathcal{K}(x_{i}, q(x_{i})) = \int_{x_{0}}^{x_{i}} S(q(s), s) \mathrm{d}s \approx \mathcal{K}_{i-1} + \int_{x_{i-1}}^{x_{i}} S(q(s), s) \mathrm{d}s, \\ \mathcal{K}_{i} &:= \mathcal{K}_{i-1} + \Delta x \frac{S_{i-1} + S_{i}}{2} \\ \mathcal{G}_{i} &:= f_{i} - \mathcal{K}_{i}. \end{split}$$

$$\partial_t q + \partial_x f(q) = S(q, x) \implies \partial_t q + \partial_x G(q, x) = 0$$

with $G(q, x) := f(q) - K(q, x) = f(q) - \int_{x_0}^x S(q(s), s) ds.$

FV:
$$q_i \approx \int_{x_{i-1/2}}^{x_{i+1/2}} q(x) \mathrm{d}x$$

$$\begin{split} f_{i} &:= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} f(q(x,t)) \mathrm{d}x, \\ \mathcal{K}_{i} &\approx \mathcal{K}(x_{i}, q(x_{i})) = \int_{x_{0}}^{x_{i}} S(q(s), s) \mathrm{d}s \approx \mathcal{K}_{i-1} + \int_{x_{i-1}}^{x_{i}} S(q(s), s) \mathrm{d}s \\ \mathcal{K}_{i} &:= \mathcal{K}_{i-1} + \Delta x \frac{S_{i-1} + S_{i}}{2} \\ \mathcal{G}_{i} &:= f_{i} - \mathcal{K}_{i}. \end{split}$$

Numerical flux depends only on *G*: upwind, Roe, NO Rusanov

$$egin{aligned} &\partial_t q_i + rac{\hat{G}_{i+1/2} - \hat{G}_{i-1/2}}{\Delta x} = 0, \ &\hat{G}_{i+1/2} := \mathrm{sign}(J)^+ G_i + \mathrm{sign}(J)^- G_{i+1}, \end{aligned}$$

$$\partial_t q + \partial_x f(q) = S(q, x) \implies \partial_t q + \partial_x G(q, x) = 0$$

with $G(q, x) := f(q) - K(q, x) = f(q) - \int_{x_0}^x S(q(s), s) \mathrm{d}s.$

FV:
$$q_i \approx \int_{x_{i-1/2}}^{x_{i+1/2}} q(x) \mathrm{d}x$$

$$\begin{split} f_{i} &:= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} f(q(x,t)) \mathrm{d}x, \\ K_{i} &\approx \mathcal{K}(x_{i}, q(x_{i})) = \int_{x_{0}}^{x_{i}} S(q(s), s) \mathrm{d}s \approx \mathcal{K}_{i-1} + \int_{x_{i-1}}^{x_{i}} S(q(s), s) \mathrm{d}s, \\ \mathcal{K}_{i} &:= \mathcal{K}_{i-1} + \Delta x \frac{S_{i-1} + S_{i}}{2} \\ G_{i} &:= f_{i} - \mathcal{K}_{i}. \end{split}$$

Numerical flux depends only on *G*: upwind, Roe, NO Rusanov

$$\partial_t q_i + \frac{\hat{G}_{i+1/2} - \hat{G}_{i-1/2}}{\Delta x} = 0,$$

$$\hat{G}_{i+1/2} := \operatorname{sign}(J)^+ G_i + \operatorname{sign}(J)^- G_{i+1},$$

Equilibrium: $\hat{G}_{i+1/2} = \hat{G}_{i-1/2} = \hat{G}_0$ for
all *i*
 $f_i - K_i = G_0$
Mind: high order, other equilibria
(LAR), super convergence

Developing GF 1D FV 1st order

I want you to hate me, let's do the computations in a simple case (upwind)!

Table of contents

1 State of the art

2 Global Flux

3 Results

4 Perspectives

19/25

D. Torlo Preserving Moving Equilibria with Global Flux

Validation: Subcritical flow and perturbation

Figure: Subcritical flow: characteristic variables compute by means of the GF-WENO5 (red continuous line) and WENO5 (black dashed line) schemes with $N_e = 100$.

Validation: Subcritical flow and perturbation

Figure: Subcritical flow: convergence tests with WENO3 and WENO5.

Validation: Subcritical flow and perturbation

Figure: Perturbation on a subcritical flow: $\eta - \eta^{eq}$

Simulation of vortex (linear acoustics) FEM+SUPG: \mathbb{Q}^1 , $N_x = N_y = 20$ exact $||\underline{v}||$, p SUPG $||\underline{v}||$, p SUPG-GF $||\underline{v}||$, p

21/25

Simulation of vortex (linear acoustics) FEM+SUPG: \mathbb{Q}^2 , $N_x = N_y = 10$ exact $\|\underline{v}\|$, p SUPG $\|\underline{v}\|$, p SUPG-GF $\|\underline{v}\|$, p

D. Torlo Preserving Moving Equilibria with Global Flux

21/25

Simulation of vortex: errors

Figure: Smooth vortex: convergence of L^2 error of u with respect to the number of elements in x

Pressure perturbation

- Gaussian centered in $\underline{x}_p = (0.4, 0.43)$
- scaling coefficient $r_0 = 0.1$
- radius $ho(\underline{x}) = \sqrt{||\underline{x} \underline{x}_{
 ho}||}/r_0$

$$\delta_{\rho}(\underline{x}) = \varepsilon e^{-\frac{1}{2(1-\rho(\underline{x}))^2} + \frac{1}{2}},$$

• final time T = 0.35

Vortex perturbation

Figure: Perturbation($\varepsilon = 10^{-3}$) test. Plot of $||\underline{u}_{eq} - \underline{u}_p||$, with \underline{u}_{eq} the equilibrium obtained with a cheap optimization process. \mathbb{P}^1 with 80 × 80 cells and 6561 dofs.

Vortex perturbation

Figure: Perturbation($\varepsilon = 10^{-3}$) test. Plot of $||\underline{u}_{eq} - \underline{u}_p||$, with \underline{u}_{eq} the equilibrium obtained with a cheap optimization process. \mathbb{P}^3 with 13×13 cells and 1600 dofs.

Vortex perturbation

Figure: Perturbation($\varepsilon = 10^{-3}$) test. Plot of $||\underline{u}_{eq} - \underline{u}_p||$, with \underline{u}_{eq} the equilibrium obtained with a cheap optimization process. \mathbb{P}^3 with 26 cells and 6241 dofs.

Table of contents

1 State of the art

2 Global Flux

3 Results

4 Perspectives

24/25

Extensions and Perspectives

Extensions

- Source + divergence: funny systems in 2D
- Other methods (FV, CG, DG, FD)
- Other stabilizations (FEM + SUPG, FEM + OSS)

References

- Dedner, A., Rohde, C., Schupp, B., & Wesenberg, M. (2004). Computing and Visualization in Science, 7(2), 79-96.
- Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.
- Michel-Dansac, V., Berthon, C., Clain, S., & Foucher, F. (2016). Computers & Mathematics with Applications, 72(3), 568-593.
- Ciallella, M., Micalizzi, L., Michel-Dansac, V., Öffner, P., & Torlo, D. (2024). arXiv preprint arXiv:2402.12248. (accepted in GEM - International Journal on Geomathematics)
- Gascón, L., Corberán, J. J. Comput. Phys. 172(1), 261–297 (2001)
- Chertock, A., Kurganov, A., Liu, X., Liu, Y., & Wu, T. (2022). Journal of Scientific Computing, 90, 1-21.
- Ciallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
- Barsukow, W., Ricchiuto, M., & Torlo, D. (2024). arXiv preprint arXiv:2407.10579. (accepted in Numerical Methods for Partial Differential Equations)

Perspectives

- 2D nonlinear
- Non Cartesian meshes
- Curl-preserving
- Curl-free form MHD

Extensions and Perspectives

Extensions

- Source + divergence: funny systems in 2D
- Other methods (FV, CG, DG, FD)
- Other stabilizations (FEM + SUPG, FEM + OSS)

References

- Dedner, A., Rohde, C., Schupp, B., & Wesenberg, M. (2004). Computing and Visualization in Science, 7(2), 79-96.
- Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.
- Michel-Dansac, V., Berthon, C., Clain, S., & Foucher, F. (2016). Computers & Mathematics with Applications, 72(3), 568-593.
- Ciallella, M., Micalizzi, L., Michel-Dansac, V., Öffner, P., & Torlo, D. (2024). arXiv preprint arXiv:2402.12248. (accepted in GEM - International Journal on Geomathematics)
- Gascón, L., Corberán, J. J. Comput. Phys. 172(1), 261–297 (2001)
- Chertock, A., Kurganov, A., Liu, X., Liu, Y., & Wu, T. (2022). Journal of Scientific Computing, 90, 1-21.
- Ciallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
- Barsukow, W., Ricchiuto, M., & Torlo, D. (2024). arXiv preprint arXiv:2407.10579. (accepted in Numerical Methods for Partial Differential Equations)

Perspectives

- 2D nonlinear
- Non Cartesian meshes
- Curl-preserving
- Curl-free form MHD

THANKS!!