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Woater equilibria and perturbations

e Lake at rest perturbation
e Moving stationary wave

e Vortex type stationary solutions

g Moving Equilibri ith Global FI
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Equilibria for shallow water equations

Shallow Water Equations /\/_/\s
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Equilibria for shallow water equations

Shallow Water Equations /\/_/\
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Lake at rest equilibrium .
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Simulation example lake at rest with perturbation

Bathymetry: 0.05 0.25 0.45 0.65 0.85

Equilibria



Simulation example lake at rest with perturbation
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Equilibria for shallow water equations

Shallow Water Equations 1D Stationary waves in 1D

{th + Ok(hu) =0 hu(x) =: q(x) = g
9 (hu) + O« (h”2 + %hz) = —ghdxb and h such that

o, (hu2 n §h2) + ghdb =0

q2
2

q— X X) = X0
sy ) B0 = Q0a) (1)
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Equilibria for shallow water equations

Stationary waves in 1D

hu(x) =: q(x) = @

Och + 0x(hu) =0 and h such that
Oe(hu) + Ox (hu” + &%) = —ghd,b

Shallow Water Equations 1D

o, (hu2 ¥ §h2) + ghdb = 0

Cubic equation solutions

e Supercritical state u > /gh Oy < qzz +h+ b> =0
e Subcritical state u < /gh 22gh
® Negative h _9 —
2gM2(x) + h(x) + b(x) = Q(x0) (1)
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Simulation example moving equilibria non flat bathymetry

Continuous Bathymetry Discontinuous Bathymetry
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Simulation example moving equilibria non flat bathymetry

Continuous Bathymetry Discontinuous Bathymetry
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Equilibria for shallow water equations

Shallow Water Equations (no bathymetry)

Vortices: Div-free solutions

Oth + 0x(hu) + 9, (hv) =0
O¢(hu) + O« (hu2 —+ %hz) + 9y (huv) =0 r=(x—x0)>+(y—y)> 6=arctan (i:—'—){;)

0:(hv) + O« (huv) + 0, (hv2 + §h2) =0 u(r) = —sin(0)we(r) v(r) = cos(8)ug(r)
h(r): h'(r)gr = ud(r)

Other equations

|| ® Euler equations (isentropic)

/ e Linear Acoustic equations
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imulation example of a vortex (for linear
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How can we preserve the equilibria?

Impossible: discretization of data b, of the solutions h, u, v

Exactly with respect to discretization

e Possible E thv Well
Xac e
e Might involve some analytical equation to be solved y X
) o o Balancing
e Requires the knowledge a priori of equilibria type
Better than the underlying method
e Possible
e No need of inverting analytical equations Well Balancing

e No need of a priori knowledge of the equilibrium type
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Global Flux

Global Flux

e Obtain 1 differential
operator for everything

e Put together flux and source
o Integrate the forms

e Gascén 20017, Chertock
2022°, Ciallella 2023,
Barsukow 20249

?Gascédn, L., Corberan, J. J. Comput.
Phys. 172(1), 261-297 (2001)

bChertock, A., Kurganov, A., Liu, X.,
Liu, Y., & Wu, T. (2022). Journal of
Scientific Computing, 90, 1-21.

‘Ciallella, M., Torlo, D., & Ricchiuto,
M. (2023). Journal of Scientific
Computing, 96(2), 53.

9Barsukow, W., Ricchiuto, M., &
Torlo, D. (2025). Numerical Methods for
Partial Differential Equations 41.1
(2025): €23167.
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Global Flux

e Obtain 1 differential
operator for everything

8.V + 8 F(V) = S(V, x)
BV + 8 (F(V) — K(V,x)) =0

e Put together flux and source

o Integrate the forms

e Gascén 20017, Chertock K(V,x):= / S(V(s),s)ds
2022°, Ciallella 2023,
Barsukow 20249
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‘Ciallella, M., Torlo, D., & Ricchiuto,
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Global Flux

e Obtain 1 differential
operator for everything

8.V + 8 F(V) = S(V, x)
BV + 8 (F(V) — K(V,x)) =0

e Put together flux and source

o Integrate the forms
e Gascén 20017, Chertock K(V,x):= / S(V(s),s)ds
2022°, Ciallella 2023¢, o
Barsukow 20247

?Gascédn, L., Corberan, J. J. Comput. 2D divergence recipe
Phys. 172(1), 261-297 (2001)

bChertock, A., Kurganov, A., Liu, X.,
Liu, Y., & Wu, T. (2022). Journal of

Scientific Computing, 90, 1-21. _ _ _
Ciallella, M., Torlo, D., & Ricchiuto, GG G =, =l g,
M. (2023). Journal of Scientific O¢h + 8Xy(F uiE G) =0
Computing, 96(2), 53. y X
9Barsukow, W., Ricchiuto, M., &
Torlo, D. (2025). Numerical Methods for F(X7y) = f(X,f)d&, G(X’y) o= g(S,y)dﬁ.
Partial Differential Equations 41.1 Yo X0

(2025): €23167.
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Global Flux in 1D for FV 1st order

9:q + 0xf(q) = S(q, x) = drq + 0xG(g,x) =0 L e
x i1 qi
with G(q,x) := f(q) — K(q,x) = f(q) — / S(q(s), s)ds. —Gm2 @1
0 Xi-2 Xi-1 o Xi o Xisl Xiy2

Xi-5/2 Xi-3/2 Xi—1/2 Xit+1/2 Xi+3/2 Xit5/2

FV: q; = fxxj//j q(x)dx

i

D. Torlo  Preserving M with Global Flu:

ving Equilibria

12/ 35



Global Flux in 1D for FV 1st order

9:q + 0xf(q) = S(q, x) = drq + 0xG(g,x) =0 L e
x i1 i
with G(g,x) := f(q) — K(q,x) = f(q) — / S(q(s), s)ds. @2 G
0 Xi-2 Xi-1 o Xi o Xisl Xit2

Xi—5/2 Xi—3/2 Xi—1/2 Xit+1/2 Xi+3/2 Xit+5/2

FV: g ~ fxxj//: q(x)dx

i

1 Xi+1/2
fii=ay f(a(x, t))dx,
Xj—1/2
K ~K(x, q(x)) = / Sl K,»_1+/ S(a(s), s)ds,
X0 Xj—1
K =K1 + Axw
G,' :ﬁ — K,'.

D. Torlo  Preser ith Global Flu:

ing Moving Equilibria v
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Global Flux in 1D for FV 1st order

9:q + 0xf(q) = S(q, x) = 0eq + 0xG(q,x) =0 e
x 2 i—1 a;
with 6(a, ) = f(a) = K(ax) = () — / S(a(s),s)ds.
X0 Xi—2 Xi-1 Xi o il Xi+2
. e Xiy1/2 Xi—5/2 Xi—3/2 Xi—1/2 Xit+1/2 Xi+3/2 Xit+5/2
FV: g fxi71/2 q(x)dx
Numerical flux depends only on G:
upwind, Roe, NO Rusanov
1 Xi+1/2
fi T Ax g f(q(x, t))dx, Bea + Git12— Gi12 0
i—1/2 y y tqi —AX =V,
Ki =K (xi, q(xi)) = / S(q(s),s)ds ~ Ki—1+/ S(q(s),s)ds, Git1j2 = sign(J)" G; + sign(J)~ Gisa,
X0 Xj—1
Ki=Kio1 + Axw
G,' :f; e K,'.
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Global Flux in 1D for FV 1st order

0eq + 0xf(q) = S(q,x)

with 6(a.) = 1(a) = K(a.x) = ()~ [ " S(als),s)ds.

S 0rq + 9xG(g,x) =0

X0
C o~ [Kit1/2
FV: g = fxi71/2 q(x)dx
1 Xi+1/2
fii=ay f(a(x, t))dx,
Xj—1/2
K ~K(x, q(x)) = / el )is K,»_1+/ S(a(s), s)ds,
X0 Xi—1
Ki =K1 + Axw
G,' :f; — K,'.

D. Torlo  Preserving Mc

quilibria with Global Flux

qi+1

Xi—5/2 Xi—3/2 Xi—1/2 Xit+1/2 Xi+3/2 Xit+5/2

Numerical flux depends only on G:
upwind, Roe, NO Rusanov

Ci+1/2 - Ci—1/2 _
Ax N
Gi+1/2 = sign(J) " G; + sign(J)~ Gis1,

0rqi + 0,

Equilibrium: @fﬂ/g = C,-_l/g = G for
all i
fi— K= Go
Mind: high order, other equilibria
(LAR), super convergence




Developing GF 1D FV 1st order

| want you to hate me, let’s do the computations in a simple case (upwind)!

Formulae
Grrg/p—Gr
o Orq = — L2 Expand!

o Gi=fi—K;
Si_1+Si
Ki = Ki—1 + Ax>—=— o .
’ LA Gir1/2 — Gi_1)2
e sign(J) = +1 0:qi = ——Ax
® Gi+l/2 = G; _ G = Grn
Ax
. " _ fi—fia | Ki—Kia
Classical Upwind FV =t g,
fi—fie Si— Si
= -1 LI 12+ .
fi—fia X

0rqi = — + S

Ax
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High order WENO GF 1

Uit2
Uit1
Ui Ui_1 Ui
® 3 @ @ * °
Xj—5/2 Xi—3/2 Xj—1/2 Xi+1/2 Xi+3/2 Xi+5/2

ICiallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.

1g Moving Equilibria with Global FI




High order WENO GF 1

Xj—5/2 Xi—3/2 Xj—1/2 Xi+1/2 Xi+3/2 Xi+5/2

ICiallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
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High order WENO GF 1

Xj—5/2 Xi—3/2 Xj—1/2 Xi+1/2 Xi+3/2 Xi+5/2

ICiallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
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High order WENO GF 1

Xj—5/2 Xi—3/2 Xj—1/2 Xi+1/2 Xi+3/2 Xi+5/2

ICiallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
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Preserving
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High order WENO GF 1

L
Ki—1/2 K,-,2 KR
Ki1 i+1/2
R L
- KiZ1y2 Kii12
. . ® ® . ) } }
Xj—5/2 Xi—3/2 Xi—1/2 Xit1/2 Xi+3/2 Xit5/2 Xj — 1/2 Xi + 1/2 X

ICiallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.
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High order WENO GF 1

L
Ki—1/2 K,-,2 KR
Ki1 i+1/2
R L

Kizas2 Kii1/2

1 1

] ]
Xi—5/2 Xi—3/2 Xi—1/2 Xit1/2 Xi13/2 Xiy5/2 Xi — 1/2 Xi + 1/2 X

Global Flux Reconstruction

e Compute recursively K in quadrature points and interfaces (maybe
also jump of K)
e Reconstruct in all quadrature points

o Flux f; o
o Integral of the source Kj g
o Global fluxes Gj g := fi g + Kj o

e Compute the cell average of the global flux G

e Well balancing for lake at rest

ICiallella, M., Torlo, D., & Ricchiuto, M. (2023). Journal of Scientific Computing, 96(2), 53.

1g Moving Equilibria with Global Flu:




Validation: Subcritical flow and perturbation

Domain and Bathymetry

Q = [0,25],
b(x) = 0.05sin (x — 12.5) exp (1 — (x — 12.5)°)
g = 9.812.

b(x) is chosen C* and such that it has values smaller than
machine precision at the boundaries. b(x)

Subcritical flow test I\
>
X
IC: h(x,0) =2 — b(x), q(x,0)=0, V

BC: h(25,t) = 2, q(0,t) = 4.42,
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Validation: Subcritical flow and perturbation
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Validation: Subcritical flow and perturbation
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Figure: Subcritical flow: convergence tests with WENO3 and WENOS5.
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Validation: Subcritical flow and perturbation

1073 1073 1073
1 \
I I
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Figure: Perturbation on a subcritical flow: n — n®
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FEM-+SUPG GF 2D high order

Acoustics

atu+axp=0
Ov+0,p=0
Otp+ Oxu+0yv =0
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FEM P F 2D high order
SUPG FEM for acoustics

Acoustics

/cp(('?tu + 0xp) + @l Ovp(Oep + Oxu + Oyv) =0

atu+axp=0

OtV + Oyp) + o Oyp(0ip + Oxu + Oyv) = 0
/30( tv + Oyp) + ol 9yp(0:p yv) Orv+0yp=0

/go(atp F Ot + 8yv) + A 8 p(Beu + Oip) + al Byp(Bev + 8yp) =0 P T O+ OV =0
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SUPG FEM for acousticsi

Acoustics

/cp(('?tu + 0xp) + @l Ovp(Oep + Oxu + Oyv) =0

atu+axp=0

/cp(atv + 9yp) + @l By (ep + Oxu + dyv) =0
Ov+0,p=0

/ap(é‘tp + Oku + 0y v) + all Oxp(0ru + Oxp) + ol Dyp(dev + Oyp) =0 Orp +Ocu+0yv =0

Details on discretization

e Cartesian grid!!
e Gauss-Lobatto points for quadrature and Lagrange basis function
e Explicit arbitrary high order time discretization with Deferred Correction

18/ 35 D. Torlo



Global flux in 2D

Define
Yy X
ox(x,y) = / u(x,s)ds o,(x,y) = / v(s,y)ds
Yo X0
So that

8tp+ 8XU+ ayV = 8tp +8xy(ax aF o'y) = O

19/ 35 D. Torlo



Global flux in 2D

Define
Yy X
ox(x,y) = / u(x,s)ds o,(x,y) = / v(s,y)ds
Yo X0
So that

8tp+ axu+ ayV = 8tp +8xy(a'x aF o'y) = 0

Global Flux SUPG for acoustics

Define o, (x, y) := fyyo u(x,s)ds and o,(x,y) == f; v(s,y)ds, with o, 0, € VE(Q4), & 0. o).
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Global flux in 2D

Define
Yy X
ox(x,y) = / u(x,s)ds o,(x,y) = / v(s,y)ds
Yo X0
So that

8tp+ axu+ ayV = 8tp +8xy(a'x aF o'y) = 0

Global Flux SUPG for acoustics

Define o, (x, y) := fyyo u(x,s)ds and o,(x,y) == f); v(s,y)ds, with o, 0, € VE(Q4), & 0. o).

X

/cp(atu + 0xp) + alAx Oxp(Oep + 0.0, P) =0

/<,0(<9tv + 0yp) + aly dyp(dep + 0.0, D) =0

/cp(@tp + 0.0, D) + alx Ocp(Oeu + Oxp) + aly Oy (v + dyp) =0




Global Flux SUPG: changes

Global Flux SUPG for acoustics

ox(x,y) = f;; u(x,s)ds and o, (x,y) == f); v(s, y)ds, with o, o, € V().

X(

Discrete equilibrium
Changes in equilibrium 0:95®(x, ;) = 0

X; i
:>/ / 0y0xP(x,y)dxdy =0 Vi, j
V.v=0 x0 Iy

=>8x8y(0'x S 0'}/) =0 S\/ 8X¢(X’-yj)dx — / 8X¢(X’y0)dx =0 Vi’j
=0+ 0o, =f(x)+g(y) o o

=®(x;,y;) — ®(x0,y;) — P(xi, yo) + P(x0, y0) =0 Vi, j
:>¢(Xiayj) = f; +gj

20/ 35 D. Torlo



Myth buster

Global Flux is not global!

e In principle o.(x,y) = fyyB u(x, s)ds should be integrated from the beginning (bottom) of the

domain yg!

e In practice we always use 050, 0«(x, y) integrated in one cell!!!!

ox(x,y) = / (. 5)ds = / " u(x,5)ds + / " u(x, 5)ds

yB yB Yo
|

constant in one cell!

e So,

whatever constant we bring from outside the cell, is canceled out

y

y Y0 y
Oyox(x,y) = 6‘y/ u(x,s)ds = By/ u(x,s)ds + By/ u(x,s)ds = By/ u(x, s)ds

yB YB Yo Yo

e At the discrete level we have an integral operator /, and a differential operator D, that together
give a weird averaging operator D, [,




Coriolis and sources

Global flux for sources
Extension to source terms
Source terms x
oy S,

u -—

Oru+ Okp = Sy e Coriolis )
Ov+0,p=S, e Mass sources G, = p— /
e Friction

Otp+ Oxu+0yv =S,
oefu s

22/ 35 D. Torlo
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Simulation of vortex: errors

Norm of Divergence

Order 2 Order 3 Order 4
E ‘ ‘ E| \\‘ T \\\\\\‘ _ \\\\‘ \\\\\\‘
N 1 . 1072 = N
RN ] Y
N 1073 [
-3 k .
1077 F 0N ]
£ N \ B
C v N B
[ N B
—4 | N | —5 |
107" ¢ 4 10
B E —.-a—- SUPG3
F ] — 5- SUPG-GF3 | —a—- SUPG4
[| —a—- SUPG2 1 order 2 \\ - 9 - SUPG-GF4
1072 | - = - SUPGGF2 || —— orers N order 4
H order 2 ~ 10_ ———— order 4 1078 [ order 5 9 |
T T | ITT —— R [ TTTT T —1 11l
10" 10°  10*° 10 10° 10 10
N N N

Figure: Smooth vortex: convergence of L? error of u with respect to the number of elements in x
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Vortex perturbation

Pressure perturbation

* Gaussian centered in x, = (0.4,0.43)

scaling coefficient rp = 0.1

radius p(x) = /|[x — x,|l/r0

B
(Sp()_() — ce 21—pX) ,

final time T = 0.35
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Vortex perturbation

Non Global Flux Global Flux
0.00064 0.00016
0.00056 0.00014
0.00048 0.00012
0.00040 0.00010
0.00032 0.00008
0.00024 0.00006
0.00016 0.00004
0.00008 0.00002
: : : : : : 0.00000 : : : : : : 0.00000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Perturbation(e = 1073) test. Plot of lueqg — up

optimization process. P! with 80 x 80 cells and 6561 dofs.

|, with U, the equilibrium obtained with a cheap
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Vortex perturbation

Non Global Flux Global Flux
0.00056 0.00016
0.00048 0.00014
0.00012
0.00040
0.00010
0.00032
0.00008
0.00024
0.00006
0.00016
0.00004
0.00008 0.00002
: : : : : : 0.00000 : : : : : : 0.00000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Perturbation(e = 1073) test. Plot of lueqg — u,ll, with u,, the equilibrium obtained with a cheap

optimization process. P3 with 13 x 13 cells and 1600 dofs.
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Vortex perturbation

Non Global Flux Global Flux
0.000175 0.00016
0.000150 0.00014
0.00012
0.000125
0.00010
0.000100
0.00008
0.000075
0.00006
0.000050
0.00004
0.000025 0.00002
: : : : : : 0.000000 : : : : : : 0.00000
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure: Perturbation(e = 1073) test. Plot of lueg — 4,

ol with Ugq the equilibrium obtained with a cheap

optimization process. P3 with 26 cells and 6241 dofs.

ith Global Flu:

quilibria v
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FEM+SUPG for GF

Discretizations

e GF+SUPG+FEM works easily also for nonlinear problems on paper
e GF+FV less trivial, because ...

GF+FEM+SUPG

atll =F axF(u) 4 ByG(U) U) — atu a4 axayg(u) =

G(u) :=/ (u)+/ G(u) — //S(U)

/(cp + aldpJ* + aldy ot )(Oru + Dy G(u)) =0 V.
Q

GF+FEM+FV
As FEM+SUPG, but on the dual mesh (corner flux)
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Euler equations: isentropic vortex (steady state)

(pyu,v,p) = (1+p, éu, dv, 1+ dp).

The test case is set up in a [0,10] x [0, 10] domain with periodic boundary conditions and vortex radius

= \/(x —5)2 4 (y — 5)2. The vortex strength is € = 5, and the entropy perturbation is assumed to
be zero. Given these hypothesis, the perturbations on velocity and temperature can be written as

-5 (5) ] e

It follows that the perturbations on density and pressure reads

Sp=(1+0T)7T -1, dp=(1+6T)71 1.

D. Torlo  Preserving Moving Equilibria with Global Flu;
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Euler equations: isentropic vortex (steady state)

Euler equations: isentropic vortex (tr = 1). L, error and order of accuracy  for FV-1, FV-2 and GF
methods.

p pu pv pE
Ny, N, [ 7 L 7 L 7 L 7
FV-1
20 3.58E-01 - 6.77E-01 - 6.77E-01 - 1.16E+00 -
40 247E-01 053 4.40E-01 062 4.40E-01 062 820E-01 048

80 1.49E-01 0.72 259E-01 0.76 259E-01 0.76 5.15E-01 0.68
160 8.33E-02 0.84 1.43E-01 085 1.43E-01 0.85 2.91E-01 0.82
320 4.42E-02 091 7.56E-02 091 7.56E-02 091 1.56E-01 0.90
FV-2

20 1.06E-01 - 2.05E-01 - 2.00E-01 - 4.32E-01 -

40 3.62E-02 155 6.74E-02 160 6.71E-02 1.57 1.20E-01 1.85
80 1.07E-02 176 1.93E-02 180 1.95E-02 1.78 2.91E-02 2.04
160 2.39E-03 216 5.58E-03 1.78 5.61E-03 1.79 7.04E-03 2.04
320 5.12E-04 222 1.39E-03 2.00 1.39E-03 2.01 1.56E-03 2.17

GF
20 1.52E-02 - 3.67E-02 - 3.67E-02 - 4.59E-02 -
40 5.95E-03 135 1.15E-02 1.67 1.15E-02 1.67 1.54E-02 1.57
80 1.76E-03 176  3.06E-03 1.90 3.06E-03 1.90 4.35E-03 1.82

160 4.69E-04 190 7.87E-04 196 7.87E-04 1.96 1.16E-03 1.90
320 1.21E-04 195 2.00E-04 197 2.00E-04 1.97 3.02E-04 1.94

D. Torlo

Preserving
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Euler jons: isentropic vortex

Euler equations: isentropic vortex. Isocontours of the velocity norm obtained with FV-1, FV-2 and GF
after a long time integration (t; = 200)
FV-1 FV-2 GF

norm vel norm vel

norm vel
10 10 10 0.675
0.000276 0.45
0.600
0.000246 0.40
8 0525
0.000216 0.35
0.450
6 0.000186 0.30
0.375
- C 0.000156 > 025 5
0.300
a 0.000126 0.20
0.000096 0.1s 0.225
2 0.000066 0.10 0.150
0.000036 0.05 0.075
° 0.000006 0.00 0.000
o 2 a 6 8 10
x x x
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Euler jons: isentropic vortex

Euler equations: perturbation of the isentropic vortex. Isocontours of the p — peq norm obtained with
FV-1, FV-2 and GF at final time tr = 2 with a 80 x 80 mesh. Take as IC the final simulation of
longtime + perturbation

FV-1 FV-2 GF

norm vel norm vel norm vel

0.0135

0.00276 10 0.00288

0.00246 0.0120
0.00252

0.00216 0.0105
0.00216

0.00186 0.0090
0.00180

0.00156 0.0075
> 0.00144

0.00126 0.0060
0.00108

0.00096 0.0045
0.00066 0.0030 0.00072
0.00036 0.0015 0.00036
0.00006 0.0000 0.00000
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Euler equations: Kevin-Helmoltz instability

Domain [0,2] x [-1/2,1/2]

Final time tr = 80
initial condition
p=v+H(y)r, u= MH(y), v =6 M sin(27x), p=1,
Mach number parameter M = 1072, r =103, 6§ = 0.1
H(y)
Ssn(2(+d). o —i-gs<y<—ies,
-1, if —i+5<y<i—¥%,
H(y = . T 1 if 1 w < 1 w
sin (Z (v — 1)) Tiozsy<itzy
1 else,
where w = 1/16.
D. Torlo  Preserving Moving Equilibria with Global Flu;
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Euler equations: Kevin-Helmoltz instability

N, = 64, N, = 32
FV-1 FV-2 GF

1402182
04 04 1401635

1.401089
02 02

1.400542
00 00 1.399996

1399449
0.2 02

1.398903
04 04 1398356

1397810

000 025 050 075 100 125 150 175 2.00 000 025 050 075 100 125 150 175 2.00
Ny = 128, N, = 64

1.401695
04 1.401276
02 1.400858

1.400440
0.0 1.400021

1.399603
0.2

1.399185
0.4 1.398766

1.398348
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Euler equations: Kevin-Helmoltz instability

N, = 256, N, = 128
FV-1 FV-2 GF

1.401300
04 1.400937
02 1.400574
1.400210
00 1.399847
1.399484

02
1.399120
04 1.398757
1.398394

000 025 050 075 100 125 150 175 2.00 y 25 050 075 100 125 150 175 2.00
N, = 512, N, = 256

1.401224
04 1.400877
02 1.400530
1.400184
0.0 1.399837
1.399490

02
1.399144
04 1.398797
1.398450

000 025 050 075 100 125 150 175 2.00

RPN 0. "ic reserving Moving Equilbia with Global Flux



Euler equations, FEM: Thermal rising bubble

1000 1000 1000
800 800 800
600{ 6001 6001 m
y y y . :
400+ 400+ 400+
200- 200- 200-
e SN G SR [ P e [ o o O SRS G SN
200 400 X 600 800 1000 0 200 400 X 600 800 1000 200 400 x 600 800 1000 0 200 400 X 600 800 1000
1000 1000
Top: GF 300.49989
150x150 oo | 8004 20045
300.4 °
Bottom 300.35 E
600+ 600+ it
left: GF —300.3 g
60x60 y y 30025 5
400+ 400 [ 002 3
Bottom . 300.15 g
rlght 200+ 200+ 300.1 I
S U P G 300.05
e . . . . e . 1 e . A4
60x60 0 200 400 600 800 1000 0 200 400 600 800 1000 - 299.99926
X
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Shallow water: subcritical flow with bathymetry

h, FV-1

A RAVIRLT]

D. Torlo
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Shallow water: subcritical flow with bathymetry

32/ 35
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2.06
2.04
2.02
2.00
1.98
1.96
194
1.92
1.90
1.88

hv, FV-1

hv, FV-2

hv, GF

13.10

12.95

12.80

12.65

12.50

12.35

12.20

12.05

11.90




Acoustics equations: potential flow around a cylinder

Using immersed boundary method (IBM) based on extrapolation

Velocity vector I s

14 - 1.50
-1.25

> 07 = -1.00
. - 0.75

) 0.50

-1 0 1 2 3 0.25

D. Torlo  Prese|
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Extensions and Perspectives

Global Flux to preserve moving equilibria
1D integrate the source and unique flux
2D integrate F in y and G in x

Some superconvergence in steady states
Extra accuracy in vorticity like problems

Small stability issues with very very long time
simulations in nonlinear 2D

No problem with shocks (we were surprised)
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e Very long time behavior weak instability for
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Other methods: DG seems less trivial

Immersed Boundary Method developments
e Riemann solver for corner problems?

Non Cartesian meshes




Extensions and Perspectives

Global Flux to preserve moving equilibria e Very long time behavior weak instability for

1D integrate the source and unique flux vortices

Other methods: DG seems less trivial

2D integrate F in y and G in x

Some superconvergence in steady states Immersed Boundary Method developments

5 A 5 i ?
Extra accuracy in vorticity like problems * Riemann solver for corner problems?

Small stability issues with very very long time * Non Cartesian meshes
simulations in nonlinear 2D

No problem with shocks (we were surprised)

THANKS!!
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State of the art techniques (part 1)

Subtract equilbrum

e Know analytical equilibrium e Base Scheme: V™' = V"4 S(V")
e Dedner 20047 and Berberich e Equilibrium: V7 := (h*?, u®, v*7)

2021° e Discrete exact equilibrium residual: S¢9(t") := S(V(t"))
o Well balanced scheme : V" = V" + S(V") — S*(t")

“Dedner, A., Rohde, C., Schupp, B.,
& Wesenberg, M. (2004). Computing
and Visualization in Science, 7(2), 79-96.

b). P. Berberich, P. Chandrashekar,
and C. Klingenberg. Computers &
Fluids, 219:104858, 2021.
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State of the art techniques (part 1)

Subtract equilibrium

e Know analytical equilibrium e Base Scheme: V™' = V"4 S(V")
e Dedner 20047 and Berberich e Equilibrium: V9 := (h%, u®?, v*7)

2021° e Discrete exact equilibrium residual: S(t") := S(V*(t"))
o Well balanced scheme : V" = V" + S(V") — S*(t")

“Dedner, A., Rohde, C., Schupp, B.,
& Wesenberg, M. (2004). Computing

and Visualization in Science, 7(2), 79-96. .
b). P. Berberich, P. Chandrashekar, Propertles
and C. Klingenberg. Computers &
Fluids, 219:104858, 2021. © Ridiculously well balanced: V" = V¥ = V"1 = v
® Know equlibrium a priori
© Lake at rest
® Stationary waves

® 2D vortices
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Example: subtract equilibrium?

CoordinateY CoordinateY

CoordinateY

2

1

O

CoordinateY

CoordinateY

CoordinateY

o




State of the art techniques (part 2)3

Equilibrium reconstruction Procedure

e In every cell solve an ODE ¢ Base Scheme: V™' = V"4 S(V")
at reconstruction/quadrature o Equilibrium: V*#°°F :—=ODE_Solver(1) subject to V"
points, constrained with the e Discrete equilibrium residual: Seq’ODE(t”) = S(Veq’ODE(t"))

state V" (BVP
( : ) o Well balanced scheme : V™ = V" 4 S(V") — §9:9PE(¢n)
o ODE solver either exact or

very accurate

e Malaga school

3Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.
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State of the art techniques (part 2)3

Equilibrium reconstruction Procedure

e In every cell solve an ODE ¢ Base Scheme: V™' = V"4 S(V")
at reconstruction/quadrature o Equilibrium: V*#°°F :—=ODE_Solver(1) subject to V"
points, constrained with the o Discrete equilibrium residual: Seq,ODE(tn) - S(veq,ODE(tn))

state V" (BVP
( _ ) o Well balanced scheme : V™ = V" 4 S(V") — §9:9PE(¢n)
o ODE solver either exact or

very accurate Properties

* Malaga school © Exactly well-balanced V" — \/¢%:0PE — \/n#l _ \/eq,0DE
For all equilibria of one type

Expensive (ODE solver for each cell)

Lake at rest

Stationary waves

® 0 0 6 O

Problem for transcritical flows u = /gh

(@]

2D vortices

3Castro, M. J., & Parés, C. (2020). Journal of Scientific Computing, 82(2), 48.
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State of the art techniques (part 3)*

* For FV schemes e Exactly well-balanced (if (1) analytically invertible else accurate
solver) V" = Ve#0PE —, \yntl —_ yyeq, ODE

e Change the Riemann
problem approximation

e Exploit (1) such that at
equilibrium it is satisfied by
the Riemann problem

e Michel-Dansac 2016

®© For all equilibria of one type

® Computations by hand for Riemann Solver
® Only 1st order, blending with high order
© Lake at rest

© Stationary waves

® Problem for transcritical flows u = \/gh
®

2D vortices

*Michel-Dansac, V., Berthon, C., Clain, S., & Foucher, F. (2016). Computers & Mathematics with Applications, 72(3),
568-593.

1g Moving Equilibria with Global Flu:
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FV for GF 2D
Corner numerical flux!!
Gy e Upwind didn't work for nonlinear

Ot + 0x0,G(u) =0 2D problems (it worked in 1D, it
1 [V works for 2D linear acoustics, but
/ / (O¢u + B%yG(u))dxdy =0 for nonlinear 2D all tentative
%3 V¥4 methods were unstable)
Deuyj + g“i+l 1 G 1 a1 éi+l 1+ G._1 i1=0 e We ended up with the same SUPG
22 22 2 2 2 2 scheme, applied on the dual mesh
of the FV
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FV for GF 2D
Corner numerical flux!!
Gy e Upwind didn't work for nonlinear

Oru+ 8x0,G(u) =0 2D problems (it worked in 1D, it
works for 2D linear acoustics, but
/ / *(Oru + D5y G(u))dxdy =0 for nonlinear 2D all tentative
=2 methods were unstable)

~1
2

e We ended up with the same SUPG
scheme, applied on the dual mesh
of the FV

Corner numerical flux: SUPG e
! Cijr | Ciprjn

Si+l,j+m _ 7= (l+£,1+m) D(I+E,J+m)
gi+%,j+1 =9 + 10

Oruj +gl+ 1+3 G ye} — Girgj-1 t9i-1-1 =0

,,,,,,,,,

in
i+3.+3 i Ll i3t

I+Z,j+r))

l+ Jt+5 5 Ct-_/ C1+1,J

(i+£,j+r) .
Dl+2,J+ = D(gi‘*'%’j‘*' ? q’+2 it 1n;

1, 1
:O[A/’E (EJ aquZ,r + A_nyangi)g,,) 8§ngl+ J+2d€d77,

g Moving Equilibri ith Global FI




Example: Riemann Problem Change®

2.02F T T 4.42001 __— .- G-
2
SUBCRITICAL 142
198} .
196 F — 441009 | —
0 10 20 0 10 20
z T
(a) free surface 1 and bathymetry b, shifted (b) discharge g.
and rescaled
24.00006 —
1 24.00004 |- e ]]
2 24.00002 -
SUPERCRITICAL 2
23.00908 |- :
93.99906 |- .
0 10 20 28000045 10 2
&r T
(a) free surface 7 and bathymetry b, shifted (b) discharge ¢.

and rescaled

SCiallella, M., Micalizzi, L., Michel-Dansac, V., Offner, P., & Torlo, D. (2025)




Example: Riemann Problem Change®

SUBCRITICAL

SUPERCRITICAL

llen(w)ll

llen(w)ll

102
1073
104

107

107!
10-2
1072
1074

107

F —a- @ B

Ev —— B 5

F Y fifth order |

o | E

0.125  0.25 0.5 1
mesh size

% ¥ ~—— fifth order

| |

0.125 0.25 0.5 1

mesh size

e ()l

l[en ()]l

SCiallella, M., Micalizzi, L., Michel-Dansac, V., Offner, P., & Torlo, D. (2025)

1071

10718

107%

10-7

10—11

10718

L
0.25 0.5 1

mesh size

|
0.125

~ @ (diserete b)
.- 4

i
—o— B

L e |
b L S,
0.125  0.25 0.5 1

mesh size




Vortex simulation: divergence error

]PI,N:4O PZ,N:20

> -1 =
kS \ ———- SUPG 10 &_\ E—
o) \___ |- sueeer Pue |- - svpecr
% 1075 [ \\ ____________________ | 10—8 | \\ = |
) . .
a) 10—10*‘ ‘ T 10~ L N

0 50 100 0 50 100

Time Time

P, N =10
10°? B ———- SUPG
P~ _ |- - - supeGF
10—9 - - . =] —
10-16 L et et |
0 0 50 100
Time

Figure: Norm of discrete divergence of u for SUPG (dxu + 8y v) and SUPG-GF (8x9y(ox + o)) simulations

with respect to time for different orders

g Moving Equilibri
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Euler equations, FV: Low-Mach Shu Vortex
FV FV-2 GF

05~ 05 05

ob L e ob b ——— Ma=0.01

ost e 05 0s-  ®  Ma=0.0001
%; 15 T T jg; aE %; 4F ———— Ma=0.000001 '
\5‘ 15; \E, A5 \E, A5E —e— e slope 2 /_/’
il 3 %F - i
2 a5t Ma =0.01 Lo o7 ——— Mazoo1 Tiﬁ 2sb
s L = Ma=0.0001 E L = Maz0.0001 SIS
2 Ma = 0.000001 & b ——— Ma=0000001 & 5o

4%— T slope 0.5 4 - slope 2 4

455 2 ) 3 I T e T R T I T PRt T I N LI VS PR

log10(h) log10(h) log10(h)
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