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ABSTRACT

Numerical simulations are extremely important to forecast physical events. In particular,
this is true when experiments are too expensive or unfeasible. The field of numerical analysis
studies how to obtain reliable simulations of physical phenomena. Physics provides the modeling
equations, e. g. partial differential equations (PDEs), then numerical analysis creates numerical
methods that approximate the solutions of such equations. In this manuscript, we focus on
numerical methods for ordinary differential equations (ODEs) and hyperbolic PDEs.

ODEs can model many chemical and biological processes and the numerical methods to solve
them are fundamental to solve also PDEs. Hyperbolic PDEs comprise many physical models,
including fluid dynamics, transport equations, kinetic models and wave equations. The numerical
methods for this kind of problems are vital for many engineering applications.

The schemes that we aim to obtain must verify many properties. They should converge to
the analytical solution as the discretization scale decreases, they should be stable in order to
produce spurious oscillations, they should guarantee a certain level of accuracy and they should
be computable in reasonable times. Often, these last two factors are in contradiction as more
accurate solutions require more computational time.

To tackle this problem we propose in this thesis some possible solutions. The first one is to
speed up the convergence process by using high order accurate schemes. These schemes obtain
much more accurate solutions with less refinements of the discretization scale with respect to low
order accurate solutions. Hence, the computational costs needed to reach a certain error threshold
is lower a priori. Another technique that we will use are implicit schemes. These schemes do not
need to follow the restriction that explicit schemes have on the time discretization, allowing the
use of less time steps. Finally, model order reduction techniques are tools that create a smaller
discrete model, which represents, up to a certain error, an approximation of the solution manifold
for parametric problems.

For high order accurate ODE solvers, we present in this work a class of arbitrarily high
order schemes, called deferred correction (DeC) methods, which consist of an iterative procedure
that, in a fixed number of loops, reaches an approximation of the required order. We study their
A–stability for many possible orders of accuracy. In order to preserve positivity and conservation
of physical quantities in production–destruction systems, we create a modified version of the
DeC, which guarantees all these properties. This is possible thanks to the so–called Patankar
trick, which makes the scheme linearly implicit. So far, the modified Patankar schemes were
developed only up to third order of accuracy. The method we propose is arbitrarily high order
accurate and unconditionally positivity preserving and conservative.

The rest of the thesis is focused on hyperbolic PDEs. We consider the residual distribution
(RD) schemes as high order accurate spatial discretization technique in combination with the
DeC for the time discretization. As a first step, we show a von Neumann stability analysis of
the combination of these two methods, which suggests the optimal value of the stabilization
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ABSTRACT

parameters to maximize the time steps. This analysis uses Kreiss’ theorem as a tool to verify
the stability of the family of matrices that evolve the Fourier coefficients of the solutions. The
complications of this analysis are due to the different nature of different degrees of freedom inside
the polynomial reconstruction.

Furthermore, we extend the RD DeC method to an implicit–explicit version for kinetic models.
Kinetic models contain a source term that, in the asymptotic limit, becomes stiff. To deal with
it, an implicit treatment of such a term is necessary. We propose an implicit—explicit RD DeC
scheme that solves this type of models. Moreover, the proposed scheme is arbitrarily high order
and asymptotic preserving, i. e., in the asymptotic regime the numerical solution converges to the
analytical asymptotic limit. We prove these properties and we validate the theoretical results with
numerical simulations.

Next, we study the model order reduction (MOR) algorithms for parametric hyperbolic
problems. These techniques were originally developed for elliptic and parabolic problems and
not all the algorithms can be extended to the hyperbolic framework. We propose an uncertainty
quantification application of a MOR benchmark algorithm for hyperbolic problems. We show
how the reduction can save computational time and we compute some statistical quantities, like
mean and variance, of stochastic hyperbolic PDEs.

Finally, we extend this algorithm in order to gain more compression in the reduced model.
Indeed, MOR algorithms are badly suited for advection dominated problems and most of the
hyperbolic problems are of this kind. Even for the simplest wave transport problems, the classical
MOR techniques fail to obtain a reasonable reduction, since they try to express the solution
manifold as a linear combination of modes. What we propose in the last part of this thesis
is to contextualize the PDEs into an arbitrary Lagrangian–Eulerian framework, which allows,
through a transformation map, to align the advected features and to strongly compress the relevant
information of the solution manifold. The transformation map must also be quickly computable
in the reduced model and to do so, we use different regression techniques, such as polynomial
regression and artificial neural networks, and we compare their performances.

All the algorithms and schemes are validated through adequate numerical simulations.
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1
INTRODUCTION

In naval, aerospace, astrophysical and industrial domains, several engineering applications
face fluid dynamics problems, such as gas dynamics, multi phase flows, wave and tsunamis
formation, structure/fluid interaction and so on. The study of these problems is often characterized
by many difficulties, such as multiple scales, the high speed of the media and the dual behavior
of fluids as particles and as macroscopic quantities.

These and other reasons make the engineering experiments on these applications often too
expensive or even physically prohibitive. That is why in recent years numerical simulations are
very successfully studied, in order to predict and approximate physical situations that cannot be
realized in the real world.

To be able to simulate a specific phenomenon with a software, a mathematical model is
necessary. The modeling of physics has a long history and it brought to very famous systems of
equations often written into the partial differential equation (PDE) setting. For fluid dynamics the
Euler and the Navier–Stokes equations are the most known models to describe the macroscopic
behavior of gas dynamics. More simple shallow water equations can describe the water height
under the gravity force, given the description of the bathymetry. More complicated models, like
the Boltzmann equations, describe the time evolution of the particle distribution function of a gas,
thus keeping track of the velocity distribution at every location in space. Doing a truncation of the
Taylor expansion in the Knudsen number, known as Chapman–Enskog expansion, one can obtain
macroscopic equations, such as Euler or Navier–Stokes, according to the level of approximation
one wants to keep. More simple problems, like transport equations or production–destruction
ordinary differential equations (ODEs) will be also considered in this work. Hyperbolic systems
of PDEs comprise many of these models, such as Euler equations, kinetic models, transport and
shallow water equations. Hence, I will focus on this class of PDEs in this thesis.

Given an analytical model of the phenomenon, it is not always easy or possible to find an
analytical solution. Numerical methods and computer simulations provide reliable and provably
accurate approximations of the sought solutions. They are discrete schemes that produce a finite
dimensional solution, provided some initial or boundary data. Researchers seek in these schemes
the following properties: convergence to the exact solution, provably accuracy, not excessive
computational costs and robustness of these methods working in different situations.

Moreover, physical properties or structures that belong to the analytical models can also
be shared by the numerical methods, inter alia positivity, well–balancedness of the solutions
or asymptotic preserving behaviors. This type of methods are able to guarantee that also the
approximated solutions will respectively be positive, it will not perturb an equilibrium state and it
will converge to the asymptotic limit for specific regimes.

Computational times should be reasonable and feasible. It is well known that numerical
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CHAPTER 1. INTRODUCTION

10 -1 10 0

Discretization Scale

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

E
rr

or

order 1
order 2
order 3
order 4
order 5
order 6
Threshold

Figure 1.1: Error of methods with different order of accuracy

schemes have to respect some restriction on the discretization scales in order to be stable. This is
often one reason of strong limitations in the speed of the computations that many schemes are
trying to overcome.

In this work, I will study and develop schemes and methods that are providing solutions to
hyperbolic problems.

First of all, I will focus on high order accurate methods. These methods are able to converge
to the exact solution as the discretization scale is refined, much quicker than low order schemes.
This allows to solve smaller systems of discretized equations and to obtain better solutions in
shorter times, see fig. 1.1. On the other side, high order methods are more sensitive to instabilities
and they must be carefully applied to difficult problems. In the last decades many tools that
stabilize these methods and guarantee a faster convergence to the solutions have been developed.

Another type of schemes that can be used in order to speed up the computations are implicit
schemes. This type of schemes are often more complicated to solve and require more involved
techniques, but allow to overcome the classical restrictions on the discretization scale. For
example, in kinetic models such as the Boltzmann equations, the discretization scale of the
particle can heavily affect the performance of an explicit scheme, making it unfeasible. An
implicit discretization of the source term can heavily speed up the computation of the final
solution.

A final way of reducing the computational costs for parametric problems are model order
reduction (MOR) techniques. In this context, when a quick evaluation of the map parameter–
to–simulation or many simulations for different parameters are necessary, as in uncertainty
quantification or optimization tasks, MOR can provide a surrogate model faster to be solved,
which is an approximation of the classical high–fidelity model. Usually, these techniques extract
information from the solution manifold in an offline phase, where some high–fidelity solutions
are generated. Then, they use this data to build a reduced model that will provide a solution in
shorter computational times.
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1.1. OBJECTIVES AND ACCOMPLISHMENTS

1.1 Objectives and Accomplishments

During my PhD I have had the chance of developing many numerical methods and of solving
some of the previously presented problems. My work has branches in many directions and I had
contributed in different fields with my research. This was possible also thanks to the precious
collaborations within the working group, with the group of Dr. Mario Ricchiuto at INRIA
Bordeaux and with the group of Prof. Giovanni Russo at University of Catania.

In more detail, I studied and developed a class of arbitrarily high order accurate time integra-
tion methods called Deferred Correction (DeC) methods. These methods allow, with an iterative
procedure, to obtain high order schemes from two operators of different orders. I have studied
the stability of these schemes and compared them with the Arbitrary Derivative (ADER) schemes
in a work that is currently under revision [149].

I have also developed a modified version of these schemes for production–destruction systems,
guaranteeing the conservation of the quantities and the positivity of the physical variables of the
systems. This work is also an extension of a series of works that were based on the Patankar
trick [116]. Before this work, the maximum order of accuracy reached was three. With the work
in [112] I have extended this trick to arbitrarily high order methods.

DeC schemes were originally motivated by their usage for hyperbolic PDEs. Their combina-
tion with residual distribution (RD) spatial discretization was first proposed in [5]. RD schemes
are very versatile methods that can be easily parallelized and that possess a compact stencil.
Moreover, many of the well–known finite volume, finite element and discontinuous Galerkin
schemes can be rewritten into the RD framework. On this type of schemes I have performed
a stability analysis, in order to determine which of the schemes and for which parameters the
method is more robust.

During my PhD, I have developed another version of the RD DeC schemes. It consists of an
implicit–explicit scheme for kinetic models. This work is based on the kinetic model proposed
in [17] and, thanks to its special structure, it is possible to obtain an implicit method which is
computationally explicit and does not require any nonlinear solver. The combination of DeC and
RD allows to obtain arbitrarily high order accurate schemes in an automatic way. This saves a lot
of computational time, when a high accuracy is demanded [14].

Finally, I have studied model order reduction algorithms. I have tested them on many–query
applications and developed new methodologies. In particular, in a first work I have studied how
the MOR techniques can be applied to hyperbolic problems and for uncertainty quantification
tasks, like computation of statistical momenta [49]. This work has also highlighted the difficulties
that classical MOR techniques have on advection dominated problems.

It is well known that classical MOR techniques, like the proper orthogonal decomposition, are
better suited for diffusion dominated problems and that they struggle in compressing information
for advection dominated problems, which are common in hyperbolic PDEs. This motivated my
last work on MOR [143], which introduces an arbitrary Lagrangian–Eulerian framework for
the considered models. This allows to calibrate the advected feature and to largely improve the
compression properties of the MOR techniques.

1.2 Thesis Outline

In this thesis I sought a balance between two topics that were mentioned above. The first
one are the arbitrarily high order schemes with structure preserving properties, such as positivity,
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1.2. THESIS OUTLINE

conservation or asymptoticity. The second one are the MOR techniques and their applications
to hyperbolic problems, with a further attention to advection dominated problems. The thesis is
structured as follows.

In chapter 2 I introduce the hyperbolic PDEs on which the thesis is focused. I present some of
the well–known theoretical results without proofs and some strategies to understand the behavior
of the solutions.

In chapter 3 I discuss classical Runge–Kutta time integration techniques and their properties.
Then, I explain the DeC arbitrarily high order time integration methods and I provide some
examples of their explicit versions. I also show an A–stability analysis of all the methods for
Dahlquist’s equation. Finally, I present the modified Patankar DeC scheme for production–
destruction systems of ODEs [112].

In chapter 4 I review classical spatial discretization methods: finite difference, finite volume,
finite element and discontinuous Galerkin. Then, I introduce the less known residual distribution
methods, highlighting their relation with finite volume and finite element. I combine them with
the DeC time integration method and I perform a von Neumann stability analysis on the resulting
schemes.

In chapter 5 I extend the residual distribution DeC algorithm to be applied to stiff kinetic
problems [14]. This requires an implicit treatment of the source term of the model, which leads
to an implicit–explicit method. I prove that the method is asymptotic preserving and high order
accurate. I validate our analytical studies with many tests for systems of hyperbolic equations as
limit of the kinetic model.

In chapter 6 I apply MOR algorithms to hyperbolic problems in order to perform uncertainty
quantification tasks [49]. First, a benchmark algorithm is proposed. It is composed of several
classical MOR techniques such as Greedy, proper orthogonal decomposition and empirical
interpolation methods. Then, I introduce the stochastic PDEs and the statistical momenta in
which I am interested in. Finally, I apply the MOR method to this task and I show how the
computations can be reduced.

In chapter 7 I present a different approach to MOR for advection dominated problems [143].
Since most of the MOR techniques fail in reducing even the simplest advection dominated
problems, I propose an arbitrary Lagrangian–Eulerian approach. This allows to calibrate the
solutions aligning the advected features. The maps that perform this calibration are learned by
regression algorithms to be quickly reproduced in the online phase of the MOR. The outcome is a
much stronger reduction in the computational costs.

In chapter 8 I summarize the achieved goals and their significance. Moreover, I suggest
possible extensions and perspective works that could follow from this thesis.

4



2
HYPERBOLIC SYSTEM OF BALANCE LAWS

Many physical quantities can be described through hyperbolic balance laws. In this chapter,
we give a summary of the theoretical aspects of the solutions of these equations. This step is
crucial to understand the properties and the structure of the numerical methods that approximate
these solutions. We will mainly follow the lectures and the books [61, 105]. The hyperbolic
balance laws describe the variation in time of some physical quantities due to a flux that exchanges
these quantities between different areas of the domain or due to an external source term. We can
express it through the following system of partial differential equations

∂tu(x, t)+∑
D
d=1 ∂xd Fd(u(x, t)) = R(u(x, t)), ∀x ∈Ω⊂ RD, ∀t ∈ R+,

u(x,0) = u0(x), ∀x ∈Ω,

B(u) = g(x, t), ∀x ∈ ∂Ω, ∀t ∈ R+,

(2.1)

where Ω⊂ RD is the spatial domain, while the time t ∈ R+, u : Ω×R+→ RS are the unknowns
of the system and they are C 1 and R+ = {t ≥ 0}. Fd : RS→ RS are flux–functions that describe
the variation in space of the variable u. Usually they are required to be sufficiently smooth, e.g.
Lipschitz continuous. R : RS→ RS is a source term that comprises all the external forces, e.g.
gravity, friction or relaxation terms. Furthermore, we prescribe an initial condition u0 : Ω→ RS

and boundary conditions through a boundary operator B : RD→Rb and a function g : Ω×R+→
Rb.

The system of equations (2.1) is often referred to as balance laws and, in the case where the
source R = 0, it is called conservation laws, i.e.,

∂tu(x, t)+
D

∑
d=1

∂xd Fd(u(x, t)) = 0, ∀x ∈Ω⊂ RD, ∀t ∈ R+. (2.2)

For conservation laws we observe that the total quantity u is conserved in any subdomain and it
varies only through the flux on its boundary. Indeed, using the divergence theorem, we can prove
that for every Ω̃⊆Ω

d
dt

∫
Ω̃

u(x, t)dx+
∫

∂ Ω̃

F(u(x, t)) ·ndΓ = 0, (2.3)

where n is the normal to the border of the domain and F := (F1, . . . ,FD)
T .

Particular attention is reserved to the Jacobian of the flux JF(U) defined as

JFd(u) := ∂uFd(u) =
(

∂Fdi

∂u j
(u)
)

i, j=1,...,S
, ∀d = 1, . . . ,D. (2.4)
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2.1. EULER’S EQUATIONS

Definition 2.1 (Hyperbolic system). The system (2.1) is called hyperbolic if, for any u in the
state space and any ωωω = (ω1, . . . ,ωD) ∈ RD, the matrix

J(u,ωωω) :=
D

∑
d=1

ωdJFd(u) (2.5)

has S real eigenvalues and S corresponding linearly independent eigenvectors. If the eigenvalues
are all distinct, we call the system strictly hyperbolic.

When the Jacobian matrices can be simultaneously diagonalizable, the system is clearly
hyperbolic. This condition is really useful to rewrite the system into S uncoupled equations.
Given the matrix A0(u) such that A0(u)JFd(u)A0(u)−1 = Λd(u) is diagonal for all d = 1, . . . ,D,
and B(u) such that

∂uB(u) = A0(u), (2.6)

we can proceed from the quasi–linear form

∂tu+
D

∑
d=1

∂uFd(u)∂xd u = 0, (2.7a)

A0(u)∂tu+
D

∑
d=1

A0(u)∂uFd(u)A0(u)−1A0(u)∂xd u = 0, (2.7b)

∂tB(u)+
D

∑
d=1

Λd(u)∂xd B(u) = 0. (2.7c)

The new variables B(u) are uncoupled and each of them fulfills a scalar PDE. Given the matrix
A0, it is not always possible to integrate it and to obtain the change of variable B as prescribed in
eq. (2.6). When D = 1 and S = 1 one can always perform the integration, but in other cases we
cannot guarantee the existence of such a function B.

We will study only diagonalizable systems of equations, as many physical models are in this
form. We will present an example of diagonalizable system, Euler’s equations, and then, we will
procede the discussion of the solutions of scalar equations, since most of the systems of interest
can be put in diagonal form.

2.1 Euler’s Equations

Let us consider Euler’s equations in 1D in the conservative form ρ

ρv
E


t

+

 ρv
ρv2 + p
u(E + p)


x

= 0, (2.8)

where the energy E and the pressure p are coupled by the equation of state

p = (γ−1)
(

E− 1
2

ρv2
)
. (2.9)

This system of equations can be written in the diagonal form (2.7c) with the following change
of variables.

B(u) :=

 s
c

γ−1 +
v
2

c
γ−1 − v

2

 , with

s = p
ργ ,

c =
√

γ p
ρ
.

(2.10)
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2.2. METHOD OF CHARACTERISTICS

Here, s indicates the entropy of the system and c is the sound speed. The corresponding
eigenvalues of the three characteristic variables B(u) are, respectively, v, v− c and v+ c.

2.2 Method of Characteristics

To introduce the method of characteristics, we study the scalar linear equation in 1D

∂tu(x, t)+a(x, t)∂xu(x, t) = 0, x ∈ R, t ∈ R+, (2.11)

where u(x,0) = u0(x). The solution of this equation can be found supposing that there exists a
curve x(t), on which the solution u(x(t), t) is constant. This means that

0 =
d
dt

u(x(t), t) = ∂tu(x(t), t)+∂xu(x(t), t)∂tx(t). (2.12)

Hence, ∂tx(t) = a(x, t) is the ODE which gives us the lines where the solution is constant.
Given a point (x, t), we can find the curve x(t) that passes through this point and we will know
that u(x(t), t) = u0(x(0)) as in fig. 2.1(a).
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(a) Characteristic curves
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(b) Burgers’ curves for u0 = sin(2πx)

Figure 2.1: Characteristic curves

To find a unique exact solution at any point (x, t), we need the map x(0)→ (x(t), t) to be a
bijection for every time t ∈ R+. If a is Lipschitz continuous, one can prove that this condition is
fulfilled, but, if we consider a non linear equation, this will not hold anymore.

Consider the Burgers’ equation

∂tu(x, t)+u(x, t)∂xu(x, t) = 0. (2.13)

We can apply the previous argument and find curves x(t) on which u(x(t), t) is constant. Now,
the corresponding ODE to fulfill is ∂tx(t) = u(x(t), t). Knowing that u(x(t), t) is constant along
these curves, we know that x(t) will be lines with slope equal to u0(x(0)). Even if we start with
smooth initial conditions like u0(x) = sin(2πx), the characteristic curves meet in some points as
shown in fig. 2.1(b). This means that in the crossing points the solution would have 2 different
values, hence there is no classical solution for this kind of problem. Conversely, one may have
areas where no characteristic curves pass.
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2.3. WEAK SOLUTIONS

2.3 Weak Solutions

These considerations lead us to introduce the weak solutions of the problem (2.1). Let us
consider a smooth function ϕ ∈ C 1

0 (Ω×R+) with compact support. We can multiply the balance
law with the test function ϕ and integrate over the domain in space and time.

0 =
∫

Ω×R+
ϕ(x, t)

(
∂tu(x, t)+

D

∑
d=1

∂xd Fd(u(x, t))−R(u(x, t))

)
dxdt (2.14a)

=
∫

Ω×R+

(
∂tϕ(x, t)u(x, t)+

D

∑
d=1

Fd(u(x, t))∂xd ϕ(x, t)+ϕ(x, t)R(u(x, t))

)
dxdt

+
∫

Ω

ϕ(x,0)u(x,0)dx.

(2.14b)

Here, we have used the Green’s theorem and integration by parts to obtain (2.14b) and the term
of the boundary of Ω is equal to zero as ϕ vanishes on it. (2.14b) is called the weak formulation
of (2.1). With this setting we can relax the hypothesis on u.

Definition 2.2 (Weak solution). Let u0 ∈ L∞
loc(Ω)S. The weak solution of (2.1) is a function

u ∈ L∞
loc(Ω×R+)S if it satisfies (2.14b) for every ϕ ∈ C 1

0 (Ω×R+).

Therefore, discontinuous weak solutions are acceptable. We still need more information to
understand how the discontinuities move in time.

2.4 The Rankine–Hugoniot Condition

Let us suppose that there exists a solution u and a shock curve Γδ := {(δ (t), t) : t ∈ R+} ⊂
Ω×R+, where δ : R+→Ω is the characteristic of the shock, which divides the spacetime into
two open sets Ω− ⊂Ω×R+ and Ω+ ⊂Ω×R+, with Ω−∪Ω+ = Ω×R+. Let us suppose that
u|Ω+ ∈ C 1(Ω+)S and u|Ω− ∈ C 1(Ω−)S. Using the weak formulation (2.14b), we can prove that
the speed of the shock curve is given by the Rankine–Hugoniot conditions, i.e.,

δ
′(t)[u(t)](t) =

D

∑
d=1

nd [Fd(u(t))](t), (2.15)

where n is the unit vector of the direction of the discontinuity and [·] indicates the jump across it,
i.e.,

[ f ](t) = lim
x→δ (t)|x∈Ω+

f (x)− lim
x→δ (t)|x∈Ω−

f (x). (2.16)

Remark 2.4.1. It is important to notice that different equivalent forms of the strong conservation
laws, for example

∂tu+∂x
u2

2
= 0, ∂tu3 +∂x

3u4

4
= 0, (2.17)

may have different Rankine–Hugoniot conditions, for example

δ
′
1(t) =

u2
R−u2

L

2(uR−uL)
=

uR +uL

2
6= 3(u2

R +u2
L)(uR +uL)

4(u2
R +uLuR +u2

L)
=

3(u4
R−u4

L)

4(u3
R−u3

L)
= δ

′
2(t). (2.18)
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Figure 2.2: Characteristics for shock Riemann problem in Burgers’ equation

Let us consider again the Burgers’ equation (2.13) with the Riemann problems as initial
condition

u0(x) =

{
uL x≤ 0,
uR x > 0,

(2.19)

where uL = 1 and uR = 0. Here, the Rankine–Hugoniot condition reads

δ
′(t) =

uR +uL

2
=

1
2
. (2.20)

Hence, δ (t) = 1
2 t and the weak solution of the equation is

u(x, t) =

{
1, x < 1

2 t,
0, x > 1

2 t.
(2.21)

The characteristics of this problem behave like in fig. 2.2.
If we consider the opposite case, where uL = 0 and uR = 1, we can have a solution with one

discontinuity at δ (t) = 1
2 t. But we can also build a weak solution with three stages uL = 1, um = 2

3
and uR = 0, where two discontinuities δ1(t) = 1

3 t and δ2(t) = 5
6 t are separating the states. Both

are valid weak solutions verifying the Rankine–Hugoniot condition and we can build infinitely
many other solutions respecting the Rankine–Hugoniot conditions, see fig. 2.3.

Among all the non unique weak solutions, we want to find the physical one. A principle that
we can enforce is the fact that from a shock no characteristic is allowed to start, meaning that
we don’t want characteristics to start from a time t 6= 0 as in the first two pictures of fig. 2.3. If
we focus on 1D problems, this condition can be expressed through the Lax entropy condition for
scalar problems. Given a convex flux F , the speed of the shock must verify

F(u−(t))< δ
′(t)< F(u+(t)). (2.22)

One way of building a solution that verifies the Lax entropy condition is to notice that the
strong conservation law (2.2) is self similar, i.e., it can be rewritten in just one variable ξ = x

t .
Applying this ansatz, one finds a weak Lax entropy solution which contains a rarefaction wave as
shown in the last picture of fig. 2.3.
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2.5. ENTROPY SOLUTIONS
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Figure 2.3: Possible solutions to Riemann problem for Burgers’ equation verifying the
Rankine–Hugoniot condition

2.5 Entropy Solutions

An equivalent way of constructing solutions that verify the Lax entropy condition is given by
the entropy solutions. Let η : RS→ R be a convex function, the entropy, and let Qd : RD→ R,
the entropy fluxes, be sufficiently smooth functions verifying the relation

∂uη(u)∂uFd(u) = ∂uQd(u), d = 1, . . . ,D, (2.23)

where ∂uη(u) = {∂usη(u)}S
s=1 and ∂uQd(u) = {∂usQd(u)}S

s=1 are row vectors and ∂uFd(u) =
{∂uk Fdi(u)}S

i,k=1 are matrices.
If u is a strong solution of the conservation law (2.2), then

∂tη(u)+
D

∑
d=1

∂xd Qd(u) = 0. (2.24)

In order to select the physically relevant solution, we introduce the so–called vanishing
viscosity approximations. If we consider, for small ε > 0, the solutions uε of

∂tuε +
D

∑
d=1

∂xd Fd(uε) = ε∆uε , (2.25)

and if the weak limit of these solutions exists, u = limε→0 uε , it is called vanishing viscosity
solution. These are the solutions we are interested in. We can recast them through the entropy.

Theorem 2.5.1 (Entropy solutions). Let uε be a sequence of smooth solutions verifying (2.25)
and let, if it exists, u := limε→0 uε a.e. in Ω×R+. If uε are bounded uniformly in L∞ and there
exists an entropy pair (η ,Q) verifying (2.23), then u is a weak solution of (2.2) and satisfies the
entropy condition

∂tη(u)+
D

∑
d=1

∂xd Qd(u)≤ 0 (2.26)

in sense of distributions.

For scalar equations the entropy solution can be proven to be unique. For scalar 1D problems
we have also the following results, following [61, 94, 105].
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2.6. LINEARIZATION OF NONLINEAR SYSTEMS

Theorem 2.5.2. Let u ∈ L∞(Ω×R+) be a weak solution of (2.2) C 1 everywhere except in δ (t),
the shock location. Then, the following are equivalent

1. u is an entropy solution of (2.2), i.e., satisfies (2.26) in the weak sense for all the entropy
pairs (η ,Q);

2. at x = δ (t), u satisfies
[Q(u)]−δ

′(t)[η(u)]≤ 0, (2.27)

for every entropy pair (η ,Q);

3. for all real ν ∈ [u−(δ (t), t),u+(δ (t), t)] it holds that

F(ν)−F(u−)
ν−u−

≥ δ
′(t)≥ F(ν)−F(u+)

ν−u+
, (2.28)

also known as Oleinik’s condition E;

4. if F is convex or concave, then at x = δ (t)

F ′(u−)≥ δ
′(t)≥ F ′(u+). (2.29)

The proof of this theorem can be found on page 30 of [105].

Theorem 2.5.3. Assume that F ∈ C 1(R) and u0 ∈ L1(R)∩L∞(R). Then there exists a unique
entropy solutions u to (2.2), and u satisfy the following properties:

1. ‖u(·, t)‖L1 ≤ ‖u0‖L1 ,

2. ‖u(·, t)‖L∞ ≤ ‖u0‖L∞ ,

3. ‖u(·, t)‖TV ≤ ‖u0‖TV , where ‖·‖TV is the total variation of the function,

4. ‖u(·, t)−u(·,s)‖L1 ≤ |t− s|maxx∈R|F ′(u(x))|‖u0‖TV .

The proof of this theorem can be found at page 32 of [105].

Remark 2.5.4 (Extensions to systems and multi dimensional problems). The theory for systems
of conservation laws is not so developed. There exist results for one dimensional domain
problems, but it is unknown whether hyperbolic systems are well–posed for multiple dimensional
spaces [20, 23, 50, 59, 73, 93]. Indeed, it has been shown that verifying the entropy inequality
does not imply uniqueness of weak solutions in general [40, 41, 42, 56, 137]. Nevertheless, given
the existence of a classical solution, entropy inequalities can provide uniqueness of this solution,
even in the class of weak solutions [50].

2.6 Linearization of Nonlinear Systems

For nonlinear systems of hyperbolic equations we can try to perform a linearization of the
quasi–linear form as in (2.7c). Even if this is not always possible, there are many important
equations where this is true. If with linear fluxes, this will result in a system of uncoupled scalar
PDEs, in the nonlinear case, we have a system of equations where the variables are all coupled in

11



2.6. LINEARIZATION OF NONLINEAR SYSTEMS

the Jacobian of the fluxes Λd(u). One can perform an approximation of the flux in a certain state
ū and write the solution in terms of

u(x, t) = ū+ εu(1)(x, t)+ ε
2u(2)(x, t)+ . . . , (2.30)

and study the resulting equations in the different terms. We will study a similar approach in
chapter 5 for kinetic models.

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
u 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
2

u
L

u
R

u
m

(a) Linear system

-0.1 0 0.1 0.2 0.3 0.4
u 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

u
2

u
L

u
R

u
m

(b) Nonlinear system

Figure 2.4: Hugoniot loci for a Riemann problem for a 2×2 system

Another viable solution for 1D system of equations to this problem is the following. Given
two states uL and uR, we want to find in the space RS the characteristics connecting the two states.
These are given by the Hugoniot loci for a Riemann problem (2.19), one for each eigenvalue of
the system, as prescribed in [94]. For linear system, a Hugoniot locus is the line in the direction
of one eigenvector and passing through the state ũ, as in fig. 2.4(a). Following this prescription,
one can find up to S−1 intermediate states that connect the different Hugoniot loci. This tells us
how many different waves will develop for positive times and through which states.

For the nonlinear case, one can consider a similar approach, where the Hugoniot loci are
curves instead of lines, as in fig. 2.4(b). For strictly hyperbolic systems, the eigenvectors are
locally a set of basis for RS, but it is not straightforward to find the intersections and it can happen
that these loci are not even intersecting for ‖uL−uR‖ big enough. In those cases the system has
no weak solution.

This procedure is also slightly differently explained by Generalized Riemann invariants,
which are the constant quantities along the Hugoniot loci, see [146].

In few common examples, one can prove the existence of a weak solution and the development
of the different waves from a Riemann problem (2.19) in 1D. We provide the strategy of solution
for Euler’s equations.

Example 2.6.1 (Riemann Problem for Euler’s Equations). The solution of the Riemann problem
for Euler’s equation (2.8) is given by two intermediate states, in primitive variables, (ρ1,v1, p1)
and (ρ2,v2, p2). In order to obtain the exact solution of the Riemann problem, we have to proceed
by steps [94, 146]. First of all, we know that the second wave, associated to λ2 = v, is linearly
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2.6. LINEARIZATION OF NONLINEAR SYSTEMS

degenerate. This results in a contact discontinuity, where the entropy is discontinuous, and it
shows a discontinuity only in the density, while pressure and velocity stays constant, i. e., v1 = v2
and p1 = p2. The other two characteristic fields, λ1 = v− c and λ3 = v+ c, can generate a shock
or a rarefaction wave. One can determine the type of the waves associated to the these fields
according to the Lax entropy condition (2.22) for the two waves on the states uL and u1 or u2 and
uR, which result in a simple condition on the pressures, e. g. if p1 > pL we have a shock on the
first characteristic field, otherwise a rarefaction wave.
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Figure 2.5: Solution for a Riemann problem for Euler’s equation

The values of p1 and v1 can be found imposing the Rankine–Hugoniot conditions between
the states divided by a shock and with Hugoniot loci method for states divided by rarefaction
waves, which leads to the exploitation of isentropic relations. This leads to a nonlinear equation
that can be written in one variable, namely, p1. It can be solved with iterative methods and then v1
is given as a function of p1. One can resolve also for ρ1 and ρ2 imposing the different conditions,
given by the Rankine–Hugoniot conditions for shocks and contact discontinuities and by the
isentropic law for the rarefaction waves. Finally, the values of the solution can be found also
in the rarefaction fan using the Generalised Riemann invariant relation, the characteristic slope
given by λ1/3 = u∓ c and the isentropic law. All the details about this procedure and how the
different processes that can be carried out are well explained by Toro [146].

We can see in fig. 2.5 the behavior of the solution in time for a given configuration.

The study of the Riemann problem has an historical importance in the development of many
Finite Volume (FV) methods [95]. The main technique consists of approximating the solution
into piecewise constant (or polynomial) functions. It approximates the solutions of the Riemann
problems at discontinuities through the so–called Riemann solvers. We will see, more in detail,
how they are built in chapter 4. There, we will consider also different schemes that do not make
use of such solvers, but are based on space projection techniques, the Finite Element methods
(FEM). We will mainly use the residual distribution (RD) space discretization, which combines
the two approaches into a unique framework [2].
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3
HIGH ORDER TIME INTEGRATION

Before discussing the full discretization of the problem (2.1), we want to consider the
semidiscretized problem given by the system of ODEs

∂tci = Ei(c), ∀i = 1, . . . , I. (3.1)

Here, ci : R+→ R are the unknowns of the systems and they can represent, for example, the
discretized degrees of freedom of a variable in space, or just the entries of a system of ODEs such
as chemical constituents, biological populations and so on. The right–hand side Ei : RI → R can
represent an already discretized flux for a certain degree of freedom for hyperbolic problems, or
the reaction or forces inside the system acting between the particles. The discretization of the
spatial part of the hyperbolic equation (2.1) will be analyzed in chapter 4, when the method of
lines will be applied to use the time and spatial discretization independently.

In this chapter, we will study different high order accurate ODE solvers. Most of the time
integration methods consider a discretization of the time domain in time steps. If we define the
methods as P∆t and their numerical approximations are such that P∆t(c∆t), then the methods are
consistent if, as the time discretization scale ∆t goes to 0, the exact solution verify the method,
i. e., P∆t(cex)→ 0. High order methods help accelerating this process obtaining an error of
O(∆t p) or, more precisely, that can be bound by C∆t p, where p is the order of the scheme. This
means that to obtain a fixed error ε , we need to use a finer scale for low order methods while a
coarser mesh would suffice for a high order method, if the constant C is not too large.

In particular, we will study the different properties of these methods, such as stability, order
of convergence and computational costs. There are also some additional properties that one
would like to preserve from the physical model, such as the conservation of the quantities or
the positivity of variables. During our discussion, we will compose schemes which are able to
respect these properties without increasing the computational costs.

In section 3.1 we will study the Runge–Kutta methods, a very broad class of ODE solvers, in
section 3.2 we introduce the Deferred Correction (DeC) method, an iterative method that provides
arbitrarily high order solvers, and in section 3.3 we introduce a specific class of arbitrarily high
order methods for production–distruction systems that guarantee positivity and conservation of
the variables of the equations.

3.1 Runge–Kutta

In this section, we present classical time integration methods, following [31, 69, 70].
The first ODE solver was proposed by Euler in his Institutiones Calculi Integralis in 1768–

1770, where he explained the so–called explicit Euler method for the movement of a particle in a
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3.1. RUNGE–KUTTA

velocity field. Given a grid in time {t0, . . . , tN}, the method can be described as

cn+1
i = cn

i +∆tEi(cn), ∀n = 0, . . . ,N−1, (3.2)

where ∆t := tn+1− tn, omitting the index n. Moreover, from now on, we denote with cn the
approximation of c(tn) given by a numerical time integration method.

This method is first order accurate in space and it is stable under restrictions on ∆t. We will
prove them in section 3.1.1.2.

This method has inspired many other high order accurate methods of different kind. The
multistep methods use, for example, more than one previous iteration to estimate the following
state, i. e., cn+k = E (cn+k−1, . . . ,cn) with k > 2. On the contrary, Runge–Kutta (RK) methods
are one step methods that use only the previous time state cn and introduce more internal stages to
obtain high order methods, i. e., cn+1 = E (c(1), . . . ,c(K)), where c(k) depends only on the previous
stages and on cn. One of the disadvantages of the multistep methods is that they need peculiar
strategies for the initial steps. Because of this and the success of RK methods in the research
community, we will focus on this type of schemes.

The RK methods were introduced and developed first by Runge (1895), Heun (1900) and
Kutta (1901) until the fifth order of accuracy.

3.1.1 Explicit RK Methods

We first describe the explicit RK methods that do not depend on future stages, but only on
previous ones. Let K be an integer, the number of the stages, a RK method with K stages can be
described with a matrix A ∈ RK×RK and two vectors b,γ ∈ RK . For each time step it proceeds
defining for every timestep [tn, tn+1]

c(1) := cn, (3.3)

c(k) := cn +
k−1

∑
s=1

AksE
(

tn +bs∆t,c(s)
)
, for k = 2, . . . ,K, (3.4)

cn+1 :=
K

∑
k=1

γkc(k). (3.5)

Note that for RK stages we use the superscript index (k). Here, we have also highlighted the
dependency of the evolution operator E(t,c) on the time, adding an extra variable. Usually the
coefficients b are chosen as bk = ∑

k−1
s=1 Aks and the ∑

K
k=1 γk = 1. This scheme is explicit thanks to

the fact that the coefficients Aks = 0 for all k ≤ s and, hence, they do not contribute in the sum
(3.4). It is common to use the following Butcher tableau to indicate the scheme

b A

γT
. (3.6)

There are many schemes one can build following this instruction. For example, a two stage
second order scheme can be written with

0 0 0
θ θ 0

1− 1
2θ

1
2θ

=

0
θ θ

1− 1
2θ

1
2θ

(3.7)
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where θ is a parameter in (0,1). All these schemes are second order accurate and we show it
through a simple Taylor expansion in time for the method, where we check the error between the
approximations c(k) and the exact value c(tn +bk∆t). Here, we suppose that the stage at time tn is
exact in our approximation.

c(1) =c(tn) (3.8)

c(tn+θ∆t)− c(2) = c(tn)+θ∆t∂tc(tn)+
θ 2∆t2

2
∂ttc(tn)

− c(1)−θ∆tE(c(1))+O(∆t3) = O(∆t2),

(3.9)

c(tn+1)− cn+1 = c(tn)+∆t∂tc(tn)+
∆t2

2
∂ttc(tn)

− c(1)− 2θ −1
2θ

∆tE(c(1))− ∆t
2θ

E(c(1)+θ∆t∂tc(1))+O(∆t3)

=
∆t2

2
∂ttc(tn)− ∆t

2θ
θ∆t∂tc(1)E′(c(1))

=
∆t2

2
∂ttc(tn)− ∆t

2θ
θ∆t∂tc(1)E′(c(1))+O(∆t3) = O(∆t3).

(3.10)

3.1.1.1 Order Conditions

The conditions that we check, to have second order of convergence, can be written as

K

∑
k=1

γk = 1,
K

∑
k=1

bkγk =
1
2
, (3.11)

matching the Taylor expansion terms. If for second order, they are not so complicated, for a
fourth order scheme they become already involved. Here, we present the conditions for a type of
explicit RK method with 4 stages of fourth order.

∑
K
k=1 γk = 1,

∑
K
k=1 γkbk =

1
2 ,

∑
K
k=1 γkb2

k =
1
3 ,

γ3a32b2 + γ4a42b2 + γ4a43b3 =
1
6 ,

∑
K
k=1 γkb3

k =
1
4 ,

γ3b3a32b2 + γ4b4a42b2 + γ4b4a43b3 =
1
8 ,

γ3a32b2
2 + γ4a42b2

2 + γ4a43b2
3 =

1
12 ,

γ4a43a32b2 =
1

24 .

(3.12)

There is, anyway, a practical way of systematically defining the different types of schemes
and of finding the related conditions. This is done with the tree notation in many works [31, 69].

These conditions tell us that only methods of order smaller than 5 can have the number of
stages equal to the order of accuracy. From fifth order methods on the number of stages grows
faster than the order, e.g. a RK5 has at least 6 stages. This bound is called Butcher barrier.
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Figure 3.1: Behavior of explicit RK methods

3.1.1.2 Stability Characteristics

The explicit RK methods are often restricted by stability conditions of the type

∆t ≤Cρ(JE), (3.13)

where J indicates the Jacobian and ρ is the spectral radius of the matrix JE. This condition can
be explained studying a linear ODE

∂tc(t) = qc(t), (3.14)

where q ∈ C and c is a scalar. Every one–step method can be written as cn+1 = R(ζ )cn, where
R(ζ ) does not depend on cn and ζ = q∆t.

Definition 3.1. R is called the stability function and the set of complex points defined as Z :=
{ζ ∈ C : |R(ζ )| ≤ 1} is the stability region.

Inside the stability region, we are sure that the ‖cn‖ ≤ ‖c0‖ for every n→ ∞. It is of great
interest to know the stability region of a scheme, because this allows us to choose ∆t as the
maximum possible inside the stability region such that q∆t ∈Z . We can see in fig. 3.1(b) how
the choice of ∆t influence the quality of the solution. For RK methods the stability function can
be written as

R(ζ ) = 1+ζ γ
T (I−ζ A)−1

1, (3.15)

where I ∈ RK×K is the identity matrix and 1 ∈ RK is a vector of ones.
We show some stability regions in fig. 3.1(a) for different RK schemes with orders p =

1,2,3,4, respectively explicit Euler, (3.7) with θ = 1, Heun’s third-order method and “the” RK4
method.
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3.1. RUNGE–KUTTA

Sometimes, the restrictions that the stability conditions give us are too strict to obtain a
simulation in reasonable times. This is the case when E has a large Lipschitz constant CL for its
Jacobian, or, in the scalar case, when |q| is large. The corresponding value of ∆t should scale like
a O

(
1
q

)
, resulting in many timesteps, see fig. 3.1(b).

3.1.2 Implicit RK

To overcome the previously expressed difficulties in resolving the fine scales of stiff problems
and the fact that one needs more stages than the order of accuracy expected, we introduce implicit
RK methods. Implicit RK methods are simply RK methods where the matrix A is not strictly
lower triangular. The advantage of these methods is that their stability region is, usually, wider,
often the whole real negative semiaxis is included in this region, so they can be safely used for
stiff problems. They are easily generalizable to very high order, without the need of satisfying all
the previously discussed order conditions. On the other side, the solution of these methods is not
trivial, since, for every timestep, we have to face a system of K possibly nonlinear equations. The
implicit RK methods read

c(1) := cn, (3.16)

Solve the system c(k) = cn +
K

∑
s=1

AksE
(

tn +bs∆t,c(s)
)
, for k = 2, . . . ,K, (3.17)

cn+1 :=
K

∑
k=1

γkc(k). (3.18)

There are situations where it is easy to solve this system, inter alia when E is linear, and there
are methods to solve nonlinear systems that provably converge to the sought solution, but we
have to provide some hypotheses on the evolution operator E and the initial conditions c0 [31].

We recall a very efficient way of building high order implicit RK schemes through Gauss–
Legendre quadrature [31,78]. Given K nodes {tk}K

k=1 ⊂ [0,1] of the Gauss–Legendre polynomials
{ϕk(t)}K

k=1, the nodes and the weights {wk :=
∫ 1

0 ϕk(t)dt}K
k=1 define a quadrature formula with

degree of exactness 2K. We can use these collocation methods to create an implicit RK method,
where

bk := tk, Aks :=
∫ tk

0
ϕs(t)dt, γk := wk, for s,k = 1, . . . ,K. (3.19)

These schemes have the maximum order one can get with K stages. Moreover, their stability
regions contain the half plane C− := {ζ ∈ C : Re(ζ )< 0}, hence, they are A–stable. Moreover,
these schemes are positivity–preserving when dealing with production–destruction systems, that
we will introduce in section 3.3.1. This property is really important in order to guarantee stable
and reliable results.

Obtaining the solution of an implicit RK method is not trivial and there are many techniques
to obtain it. Mainly, nonlinear iterative solvers like the Newton–Raphson method are used, but
they require a good guess as starting point and some conditions on the flux E.

In the next section we introduce an explicit ODE solver that perform an iterative method that
converges to the solution of an implicit RK method with a fixed number of iterations.
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3.2. DEFERRED CORRECTION METHODS

3.2 Deferred Correction Methods

In this section, we study the Deferred Correction (DeC) method introduced in [54]. In
its original formulation, it is an explicit, arbitrarily high order method for ODEs. Further
extensions of DeC can be found in the literature, including semi-implicit approaches as in [104].
Here, we will focus on the explicit DeC approach used by Abgrall in [5]. With his notation,
we are able to describe the DeC in a more compact way than in previous works [44, 54, 99].
Nevertheless, the main idea is always the same and it is based on the Picard-Lindelöf theorem in
the continuous setting. The theorem states the existence and uniqueness of solutions for ODEs.
The classical proof makes use of the so–called Picard iterations to minimize the error and to
prove the convergence. The foundation of DeC relies on mimicking the Picard iterations at the
discrete level. The approximation error decreases with several iteration steps. In this framework,
we introduce two numerical discretizations: L 1 and L 2.
Here, the L 1 operator represents a low order easy–to–solve numerical scheme, e. g. the explicit
Euler method, and its solution can be found by solving the system L 1(·) = 0. L 2 is a high order
operator that can present difficulties in its practical resolution, e. g. an implicit RK scheme.

The DeC method aims to approximate the solution of the L 2 high order operator. This is
not always directly accessible since it may be the solution of a nonlinear system of equations, in
particular when E is nonlinear. In order to have an explicit or, at least, easy–to–solve scheme,
the DeC combine the two operators L 1 and L 2. The goal is to have a global method with the
simplicity of the L 1 operator and the accuracy of the L 2 operator. This can be achieved through
an iterative procedure.
Given a time interval [tn, tn+1] we subdivide it into M subintervals {[tn,m−1, tn,m]}M

m=1, where
tn,0 = tn and tn,M = tn+1 and we mimic for every subinterval [t0, tm] the Picard iterations of the
Picarl–Lindelöf theorem for both operators L 1 and L 2. We drop the dependency on the timestep
n for subtimesteps tn,m and substates cn,m as denoted in Figure 3.2.

tn = tn,0 = t0

c0

tn,1 = t1

c1

tn,m = tm

cm

tn,M = tM = tn+1

cM

Figure 3.2: Divided time interval

Then, the L 2 operator is given by

L 2(c0, . . . ,cM) :=


cM− c0− ∫ tM

t0 IM(E(c0), . . . ,E(cM)),
...

c1− c0− ∫ t1

t0 IM(E(c0), . . . ,E(cM)).

(3.20)

Here, the term IM denotes an interpolation polynomial of order M evaluated at the points {tr}M
r=0.

In particular, we use Lagrange polynomials {ϕr}M
r=0, which are the only polynomials of degree M,

such that ϕr(tm) = δr,m. They even satisfy the property ∑
M
r=0 ϕr(s)≡ 1 for any s ∈ [t0, tM]. Using

these properties, we can actually compute the integral of the interpolants, thanks to a quadrature
rule in the same points {tm}M

m=0 with weights

θ
m
r :=

1
∆t

∫ tm

t0
ϕr(s)ds.
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3.2. DEFERRED CORRECTION METHODS

We can rewrite

L 2(c0, . . . ,cM) =


cM− c0−∆t ∑

M
r=0 θ M

r E(cr),
...
c1− c0−∆t ∑

M
r=0 θ 1

r E(cr).

(3.21)

It is easy to see that the solution of the L 2 operator is the solution of an implicit RK method
like (3.19), defined by the previously described polynomials. The L 2 operator represents a
numerical scheme of order (M+1) if set equal to zero, i. e., L 2(c0, . . . ,cM) = 0. Unfortunately,
the resulting scheme is implicit and, further, the terms E may be nonlinear. What we would like
to have is a scheme which is at most linearly implicit, to avoid nonlinear solvers.

For this purpose, we introduce a simplification of the L 2 operator. Instead of using a
quadrature formula at the points {tm}M

m=0 we evaluate the integral in equation (3.20) applying the
left Riemann sum. The resulting operator L 1 is given by the forward Euler discretization for
each state cm in the time interval, i. e.,

L 1(c0, . . . ,cM) :=


cM− c0−β M∆tE(c0),
...
c1− c0−β 1∆tE(c0),

(3.22)

with coefficients β m := tm−t0

tM−t0 . This choice is not unique and one can consider other low order
approximations.
To simplify the notation and to describe DeC, we introduce the matrix of states for the variable c
at all subtimesteps

c := (c0, . . . ,cM) ∈ RM×I, such that (3.23a)

L 1(c) := L 1(c0, . . . ,cM) and L 2(c) := L 2(c0, . . . ,cM). (3.23b)

Now, the DeC algorithm uses a combination of the L 1 and L 2 operators in an iterative procedure.
Let us define the solution of the L 2 operator as c∗, i. e., L 2(c∗) = 0. The aim of the DeC

is to recursively approximate c∗ similarly to the Picard iterations in the continuous setting. The
successive states of the iteration process will be denoted by the superscript (k), where k is the
iteration index, e. g. c(k) ∈ RM×I . The total number of iterations (also called correction steps
in the following) is denoted by K. To describe the procedure, we have to refer to both the
m-th subtimestep and the k-th iteration of the DeC algorithm. We will indicate the variable by
cm,(k) ∈ RI . Finally, the DeC method can be written as

DeC Algorithm

c0,(k) := c(tn), k = 0, . . . ,K, (3.24a)

cm,(0) := c(tn), m = 1, . . . ,M, (3.24b)

L 1(c(k)) = L 1(c(k−1))−L 2(c(k−1)), with k = 1, . . . ,K. (3.24c)

Using the procedure (3.24), we want to control on the number of iterations K. We will show in
proposition 3.2.1 that K = d, where d is the order of accuracy of the operator L 2, suffices to
obtain the required accuracy.

Notice that, in every step, we solve the equations in the unknown variables c(k) which appear
only in the L 1 formulation, the operator that can be easily inverted. Conversely, L 2 is only
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3.2. DEFERRED CORRECTION METHODS

applied to already computed predictions of the solution c(k−1). Therefore, the scheme (3.24) is
completely explicit and of arbitrarily high order as stated in [5] with the following proposition.

Proposition 3.2.1. Let L 1
∆t and L 2

∆t be two operators defined on RM, which depend on the
discretization scale ∆t. We highlight the dependence on ∆t with the subscript. Moreover, we
suppose that

• L 1
∆t is coercive with respect to a norm, i. e., ∃α1 > 0 independent of ∆t, such that for any

c,d we have that
α1||c−d|| ≤ ||L 1

∆t(c)−L 1
∆t(d)||,

• L 1
∆t −L 2

∆t is Lipschitz with constant α2 > 0 uniformly with respect to ∆t, i. e., for any c,d

||(L 1
∆t(c)−L 2

∆t(c))− (L 1
∆t(d)−L 2

∆t(d))|| ≤ α2∆t||c−d||.

We also assume that there exists a unique c∗
∆t such that L 2

∆t(c
∗
∆t) = 0. Then, if η := α2

α1
∆t < 1,

the DeC is converging to c∗
∆t and, after k iterations, the error ||c(k) − c∗

∆t || is smaller than
ηk||c(0)− c∗

∆t ||.

Here, the coefficient η depends linearly on ∆t and, as soon as the discretization scale is
decreasing, it is guaranteed the convergence to the solution c∗

∆t of L 2
∆t(c

∗
∆t) = 0. For bigger values

of ∆t, η may be bigger than 1 and this does not imply the convergence of c(k)
∆t to the solution c∗

∆t
as k→ ∞. Anyway, in those situations (∆t big), the solution of the L 2 operator c∗

∆t can be far
away from the exact solution of the system cex.

Remark 3.2.2. Any DeC scheme can be interpreted as a RK scheme [44], in particular if L 1 is
explicit we have an explicit RK scheme and if L 1 is implicit the RK scheme will be implicit.
The main difference between RK and DeC is that the latter gives a general approach to the time
discretization and does not require a specification of the coefficients for every order of accuracy.
In case L 1 is defined by (3.22), then the DeC algorithm can be rewritten in the following Butcher
tableau

β 0

β Θ 0

β 0 Θ 0
...

...
...

. . .

β 0 0 . . . Θ 0

c(K),M 0 0 . . . 0 Θ
M

(3.25)

where Θ∈R(M+1)×(M+1) is the matrix given by the coefficients θ m
r and β ∈R(M+1) is respectively

the vector given by the entries β m. Θ
M indicates the Mth line of the matrix. The number of stages

is equal to K×(M+1) = d2, which is bigger than classical RK stages of low order. However, one
can notice that every subtimestep is independent of one another, so one can compute sequentially
the corrections and in parallel the subtimesteps, obtaining a computational cost of just K = d
corrections for any order of accuracy. One can also notice that many lines and columns in the
Butcher tableau can be omitted to be rewritten in a more compact form where the number of
stages is (K−1)M+1.
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3.2. DEFERRED CORRECTION METHODS

Example 3.2.3. For clarity, we provide here an example of a second order DeC scheme. To get
this order of accuracy, we need K = 2 DeC iterations and one subtimestep [tn = tn,0, tn,1 = tn+1].
Reminding that c0,(k) = c(tn)∀k and that θ 1

0 = θ 1
1 = 1

2 , the method (3.24) for the first step reads

L 1(c(1)) !
=L 1(c(0))−L 2(c(0))

c1,(1)
i − c0,(1)

i −∆tβ 1Ei(c0,(1)) =c1,(0)
i − c0,(0)

i −∆tβ 1Ei(c0,(0))− c1,(0)
i + c0,(0)

i +∆t
M

∑
r=0

θ
1
r Ei(cr,(0))

c1,(1)
i = c0,(0)

i +∆tEi(c0,(0)) =c0,(0)
i +∆t

I

∑
j=1

(
pi, j(c0,(0))−di, j(c0,(0))

)
.

Substituting this term into the first correction steps leads finally to

L 1(c(2)) =L 1(c(1))−L 2(c(1))

c1,(2)
i − c0,(2)

i −∆tEi(c0,(2)) =c1,(1)
i − c0,(1)

i −∆tEi(c0,(1))− c1,(1)
i + c0,(1)

i +
1

∑
r=0

θ
1
r ∆tEi(cr,(1)).

The correction step is not modifying the initial subtimestep. Therefore, with c0,(1) = c0,(2), we
get

cn+1
i = c1,(2)

i = c0,(0)
i +

1

∑
r=0

θ
1
r ∆t

I

∑
j=1

(
pi, j(cr,(1))−di, j(cr,(1))

)
.

This scheme coincides with the second order strong stability preserving Runge–Kutta method [65].

Remark 3.2.4. The presented DeC approach is not the most general version. In our description
we always include both endpoints in the point distribution of the subtimesteps, i. e., t0 = tn

and tM = tn+1. However, this is not necessary, as it is already described in [54], where also
Gauss–Legendre nodes are applied. There, the approximation at the endpoint must be done via
extrapolation. Nevertheless, we do not consider in this work this class of point distribution.
Secondly, instead of using the explicit Euler method in L 1, explicit high order RK methods can
also be applied. In principle, this yields a faster increase of the order of accuracy in the iterative
procedure, but it has been shown that it leads also to some problems of smoothness of the error
behavior as described in [44], which results in a drop of the accuracy order.

3.2.1 Stability and Convergence

In order to compare the DeC method with the explicit RK ones, we test the stability with
(3.14) and plotting the stability regions defined in definition 3.1. For the convergence, we test the
method it on the nonlinear scalar equation

ct = qc|c|, (3.26)

with q= 10. We can see for equispaced points in fig. 3.3(a) and Gauss–Lobatto points in fig. 3.3(b)
how the DeC method is converging, for order of accuracy p = 2, . . . ,9. We have used in all
the simulations K = p and for equispaced points M = p− 1, while for Gauss–Lobatto points
M = d p

2 e .
We can also study the stability of this classes of explicit methods as for the RK schemes. We

plot in fig. 3.4 the stability regions for equispaced and Gauss–Lobatto points.
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Figure 3.3: Convergence of DeC method
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Figure 3.4: Stability of DeC method
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3.3 Modified Patankar Deferred Correction

The modeling of chemical, biological processes or ecosystems leads often to systems of
ordinary differential equations (ODEs) which can be formulated in the so-called production–
destruction systems (PDS), as described in [29, 71] for example. The quantities have to fulfill
several conditions like positivity and conservation.

The applied numerical method should not violate these conditions and big efforts have been
devoted to designing unconditionally conservative and positivity–preserving schemes, since
classical approaches like explicit Runge Kutta (RK) schemes guarantee the positivity property
only if the time step is small enough. This can lead to high computational costs and should be
avoided.

In [116] Patankar proposed to weight the destruction coefficients to obtain an implicit–explicit
scheme, which guarantees the positivity of the quantities. Unfortunately, this method was not
conserving the integrals of the variables. In [28] the authors suggest modified Patankar-type
methods of first and second order which verify the desired properties, i. e., conservation and
positivity. As the name suggests, all these schemes use, as a basic procedure, the Runge–Kutta
method, which has been modified by weighting both production and destruction terms. Thanks to
these weighting coefficients, the schemes are forced to maintain the positivity of the variables
and to conserve some quantities of interest. Recently, further extensions were done to construct
modified Patankar Runge–Kutta (MPRK) schemes of second and third order [74, 75, 85, 86, 87].
However, the described and constructed schemes are, to our knowledge, at most third order
accurate.

Here, we present a way to construct arbitrarily high order, positivity–preserving, numerically
robust and conservative schemes for PDS. Differently from previous schemes, we do not start
building our schemes on RK methods, but on the DeC procedure instead. We modify it, in order
to obtain a positivity–preserving, conservative and arbitrarily high order scheme. Moreover, we
provide a proof of the desired properties.

The majority of what will be discussed in this section can be found also in [112].

3.3.1 Production–Destruction Systems

Let us consider production-destruction systems (PDS) of the form{
c′i(t) = Pi(c(t))−Di(c(t)), i = 1, . . . , I,
c(t = 0) = c0,

(3.27)

where c = (c1, . . . ,cI)
T ∈ RI represents the vectors of I constituents, t denotes the time and c0

the initial condition. Here, c represents the concentration, molar fraction or mass of different
substances. Moreover, Pi(c) and Di(c) represent the production and destruction rates of the i-th
constituent and both terms are assumed to be non-negative, i. e., Pi, Di ≥ 0 for i = 1, . . . , I. These
systems arise naturally to describe geochemical processes as it is described in [28, 29] and we
recapitulate their notations and definitions in this section.
The production and destruction terms can also be written in a matrix form as follows

Pi(c) =
I

∑
j=1

pi, j(c), Di(c) =
I

∑
j=1

di, j(c), (3.28)
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where each term pi, j ≥ 0 and di, j ≥ 0 is a Lipschitz continuous function and may depend linearly
or nonlinearly on c. Furthermore, the term di, j describes the rate of change from the i-th to the
j-th constituent while pi, j is the rate at which the j-th constituent is transformed into the i-th.
We are interested in (fully) conservative and positive production–destruction systems. To clarify
these expressions we repeat the definitions from [85].

Definition 3.2. The PDS (3.27) is called positive if positive initial values ci(0)> 0 for i= 1, . . . , I
imply positive solutions ci(t)> 0 for i = 1, . . . , I for all times t > 0.
The PDS (3.27) is called conservative if, at any time t ≥ 0, we have that

I

∑
i=1

ci(t) =
I

∑
i=1

ci(0) (3.29)

is fulfilled. In the analytic form (3.27), the conservation property (3.29) is equivalent to the
following relation for the matrix representation (3.28)

pi, j(c) = d j,i(c), ∀i, j = 1, . . . , I. (3.30)

Moreover, the system is called fully conservative if additionally pi,i(c) = di,i(c) = 0 holds for
all c≥ 0 and i = 1, . . . , I.

As it is described in [85], every conservative PDS can be written in a fully conservative
formulation. We can rewrite the two terms of (3.30) into one matrix of exchanging quantities e(c)
defined as

ei, j(c) := pi, j(c)−di, j(c). (3.31)

Clearly, from property (3.30), we have that ei,i = 0. With this notation, let us define the total
exchange rate for the i-th constituent as

Ei(c) := Pi(c)−Di(c). (3.32)

A numerical method suited to solve a conservative and positive PDS (3.27) should mimic, at
the discrete level, the continuous setting properties. For a one-step method, we can introduce the
discrete analogues of definition 3.2.

Definition 3.3. Let cn denote the approximation of c(tn) at the time level tn. A one-step method

cn+1 = cn +∆tΦ(tn,cn,cn+1,∆t), (3.33)

with process function Φ, is called

• unconditionally conservative if for all n ∈ N and ∆t > 0

I

∑
i=1

cn+1
i =

I

∑
i=1

cn
i (3.34)

holds;

• unconditionally positive if for all ∆t > 0 and cn > 0, we have that cn+1 > 0.
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Example 3.3.1. Let us consider as an example the explicit Euler method. The method is defined
by

cn+1
i = cn

i +∆tEi(cn). (3.35)

It is conservative since

I

∑
i=1

(
cn+1

i − cn
i
)
=

I

∑
i=1

(
cn

i +∆t
I

∑
j=1

(pi, j(cn)−di, j(cn))− cn
i

)
= ∆t

I

∑
i, j=1

(pi, j(cn)−di, j(cn)) = 0

(3.36)
holds. Conversely, the explicit Euler method is not unconditionally positive. Consider a conserva-
tive and positive PDS (3.27) where we assume that the right hand side is not identical zero. Then,
there exists a cn ≥ 0 such that P(cn)−D(cn) 6= 0. Since the PDS is conservative, we can at least
find one constituent i ∈ {1, . . . , I}, where Di(cn)> Pi(cn)≥ 0. Choosing

∆t >
cn

i
Di(cn)−Pi(cn)

> 0, (3.37)

we obtain

cn+1
i = cn

i +∆t (Pi(cn)−Di(cn))< cn
i +

cn
i

Di(cn)−Pi(cn)
(Pi(cn)−Di(cn)) = cn

i −cn
i = 0. (3.38)

This demonstrates the violation of the positivity for the explicit Euler method for unbounded
timesteps ∆t.

Remark 3.3.2 (Conservation and positivity). The DeC procedure (3.24) is naturally conservative
if L 1 and L 2 are conservative, but it is not positivity–preserving if L 1 is positivity–preserving.
Indeed, the coefficients θ m

r of the operator L 2 can be negative and spoil the positivity of the
scheme. In section 3.3 we modify the classical DeC into a scheme that preserves the positivity of
the variables.

To build an unconditionally positive numerical scheme, Patankar had the idea in [116] of
weighting the destruction terms in the original explicit Euler method with the following coefficient

cn+1
i = cn

i +∆t

(
I

∑
j=1

pi, j(cn)−
I

∑
j=1

di, j(cn)
cn+1

i
cn

i

)
, i = 1, . . . , I. (3.39)

Hence, the scheme (3.39) is unconditionally positive, but the conservation relation is violated.
In [28] a modification of the Patankar scheme (3.39) was presented, resulting in an unconditionally
positive and conservative method. It is defined as follows.

cn+1
i := cn

i +∆t

(
I

∑
j=1

pi, j(cn)
cn+1

j

cn
j
−

I

∑
j=1

di, j(cn)
cn+1

i
cn

i

)
, i = 1, . . . , I. (3.40)

The scheme is linearly implicit and can be solved inverting the mass matrix M in the system
Mcn+1 = cn where M is

mi, j(cn) =

1+∆t ∑
I
l=1

di,l(cn)
cn

i
, if i = j,

−∆t pi, j(cn)
cn

j
, if i 6= j.

(3.41)
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The construction of the mass matrix M must satisfy substantial prescriptions in order to preserve
the positivity of the scheme, as suggested in [86]. In practice, the additional coefficients are
put in order to add positive values to the diagonal terms whereas the negative values are on the
off–diagonal terms. Thanks to this expedient, the mass matrix M will be diagonal dominant and,
using the theory of M-matrices, one obtains the positivity of the inverse. See details in section
3.3.2 or in [86].

Remark 3.3.3. Extensions of the modified Patankar scheme (3.40) to Runge-Kutta schemes were
proposed in [85, 86] and further developed in [74, 75]. Special focus lies in the weighting of the
production and destruction terms as it is investigated for example in [87] and references therein.
Families of second and third order modified Patankar-Runge-Kutta (MPRK) schemes can be
found in the mentioned literature. We do not provide the definition of MPRK because the modified
Patankar scheme (3.40) already gives us the basic idea for the new methods we want to propose.
We will prove that these methods are positivity–preserving, conservative and arbitrarily high order.

3.3.2 Modified Patankar Deferred Correction Scheme

In this section, we are going to propose a positivity–preserving, conservative and arbitrarily
high order scheme, that will be denoted as modified Patankar Deferred Correction (mPDeC).
The DeC procedure (3.24) serves us as a starting point to construct this scheme, and, thanks to
its structure, we will be able to prove the hypotheses of Proposition 3.2.1. This leads directly to
the desired order condition for our modified DeC scheme without performing a specific Taylor
expansion for every order of accuracy. We will adapt DeC in such a way to obtain all the
properties we are interested in.
The conservation can be easily guaranteed by the conservation of the two operators L 1 and L 2.
Conversely, more effort is required to produce a positivity–preserving scheme. For this purpose,
we follow the ideas of Patankar [116] and Burchard et al. [28] of weighting the destruction and
production terms in the scheme. Their aim is to obtain a mass matrix shaped as in the modified
Patankar scheme (3.40) where all of the positive terms are collected on the diagonal, while
the negative terms are put in the off–diagonal entries. This guarantees that the mass matrix is
diagonally dominant by columns, with positive diagonal values, and, thus, its inverse will be
positive. Therefore, we introduce some coefficients similar to the ones proposed in (3.40).
Finally, as we have seen in the Example (3.3.1), an explicit scheme is not positivity–preserving
and the investigations in [28, 74, 87] support our decision to modify the DeC scheme in order to
get a linearly implicit method.
Because of all the above mentioned considerations, we came to the conclusion of modifying the
L 2 operator, to make it implicit. In particular, it has to depend on both the previous and the
current corrections of the DeC procedure. We redefine it as follows.

L 2(c0,(k−1), . . . ,cM,(k−1),c0,(k), . . . ,cM,(k)) = L 2(c(k−1),c(k)) :=

cM,(k−1)
i − c0,(k−1)

i −
M
∑

r=0
θ M

r ∆t
I
∑
j=1

(
pi, j(cr,(k−1))

cM,(k)
γ( j,i,θMr )

cM,(k−1)
γ( j,i,θMr )

−di, j(cr,(k−1))
cM,(k)

γ(i, j,θMr )

cM,(k−1)
γ(i, j,θMr )

)
,∀i,

...

c1,(k−1)
i − c0,(k−1)

i −
M
∑

r=0
θ 1

r ∆t
I
∑
j=1

(
pi, j(cr,(k−1))

c1,(k)
γ( j,i,θ1r )

c1,(k−1)
γ( j,i,θ1r )

−di, j(cr,(k−1))
c1,(k)

γ(i, j,θ1r )

c1,(k−1)
γ(i, j,θ1r )

)
,∀i,

(3.42)
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where γ(a,b,θ) = a if θ ≥ 0 and γ(a,b,θ) = b if θ < 0.

Remark 3.3.4. The modification of the scheme is done only through the coefficients
cm,(k)

j

cm,(k−1)
j

on

both the production and the destruction terms. The fact that these coefficients depend on the new
correction (k) means that we are modifying the mass matrix of the whole DeC correction step.
These coefficients allow to choose in which term of the mass matrix we want to put each term
θ m

r pi, j and θ m
r di, j, according to the sign of the θ coefficient. The pseudo-algorithm 1 provides

the construction steps of the mass matrix. There, it is straightforward to see that the diagonal
terms are all positive and the off–diagonal are all negative.

Algorithm 1 Mass

Input: Production-destruction functions pi, j(·), di, j(·), previous correction variables c(k−1), current subtimestep m.
1: M := II
2: for i = 1 to I do
3: for j = 1 to I do
4: for r = 0 to M do
5: if θ m

r ≥ 0 then
6: Mi, j = Mi, j−∆tθ m

r
pi, j(cr,(k−1))

cm,(k−1)
j

7: Mi,i = Mi,i +∆tθ m
r

di, j(cr,(k−1))

cm,(k−1)
i

8: else
9: Mi, j = Mi, j +∆tθ m

r
di, j(cr,(k−1))

cm,(k−1)
j

10: Mi,i = Mi,i−∆tθ m
r

pi, j(cr,(k−1))

cm,(k−1)
i

11: end if
12: end for
13: end for
14: end for

The index γ takes care of the sign of the destruction and production terms which are added
in the mass matrix. It is inspired by the explanation given in [85, Remark 2.5], that states that,
when negative entries in the Butcher Tableau of the RK scheme appear, one has to interchange
the destruction terms with the production ones to guarantee the positivity–preserving property.
With the γ function we are taking this into account. In our opinion, it is complicated and unclear
to investigate higher order (> 3) RK schemes properties because of these exchanges depending
on the Butcher Tableau. While, with this DeC approach, we can in few lines generalize every
order scheme.
Moreover, it is helpful to notice that the coefficients that we are using to modify the contributions,

namely
cm,(k)

j

cm,(k−1)
j

, are converging to 1 as the iteration index of the DeC increases. In subsection 3.3.4

we will make this statement more precise and we will study how fast these coefficients converge
to 1.

Most of the terms in the L 1 operator will cancel out through the iteration process, therefore
we keep the L 1 operator as presented in the original DeC (3.22).
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L 1(c0,(k), . . . ,cM,(k)) =

cM,(k)
i − c0,(k)

i −β M∆t

(
I
∑
j=1

pi, j(c0,(k))−
I
∑
j=1

di, j(c0,(k))

)
,∀i = 1, . . . , I,

...

c1,(k)
i − c0,(k)

i −β 1∆t

(
I
∑
j=1

pi, j(c0,(k))−
I
∑
j=1

di, j(c0,(k))

)
,∀i = 1, . . . , I.

(3.43)

Now, we propose the modified Patankar DeC scheme as follows.

mPDeC Algorithm

c0,(k) := c(tn), k = 0, . . . ,K, (3.44a)

cm,(0) := c(tn), m = 1, . . . ,M, (3.44b)

L 1(c(k)) = L 1(c(k−1))−L 2(c(k−1),c(k)), with k = 1, . . . ,K. (3.44c)

One can notice that, using the fact that initial states c0,(k)
i are identical for any correction (k),

the DeC correction steps (3.44) can be rewritten for k = 1, . . . ,K, m = 1, . . . ,M and i = 1, . . . , I
into

cm,(k)
i − c0

i −
M

∑
r=0

θ
m
r ∆t

I

∑
j=1

pi, j(cr,(k−1))
cm,(k)

γ( j,i,θ m
r )

cm,(k−1)
γ( j,i,θ m

r )

−di, j(cr,(k−1))
cm,(k)

γ(i, j,θ m
r )

cm,(k−1)
γ(i, j,θ m

r )

= 0. (3.45)

We keep both formulations (3.44) and (3.45) to prove different properties. The DeC formulation
(3.44) will help us to demonstrate the accuracy order of the scheme whereas formulation (3.45)
will be used to prove conservation and positivity. Before we start to prove these properties, we
give a small example to get used to the formulation (3.44). Furthermore, we like to mention that
although the Algorithm (3.44) seems quite complex, it is actually easy to implement as one can
see in algorithm 2 and we refer to the repository1 for a Julia version of the code.

Algorithm 2 mPDeC
Input: Production-destruction functions pi, j(·), di, j(·), timesteps {tn}N

n=0, initial condition c0.
1: for n = 1 to N do
2: for k = 0 to K do
3: Set c0,(k) := cn

4: end for
5: for m = 1 to M do
6: Set cm,(0) := cn

7: end for
8: for k = 1 to K do
9: for m = 1 to M do

10: Compute the mass matrix M(cm,(k−1)) :=Mass(c(k−1),m) using Algorithm 1
11: Compute cm,(k) solving the linear system M(cm,(k−1))cm,(k) = cn given by (3.45)
12: end for
13: end for
14: Set cn+1 := cM,(K)

15: end for

1https://git.math.uzh.ch/abgrall_group/deferred-correction-patankar-scheme
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Example 3.3.5. We give a small example of the constructed method, applying the DeC approach
at second order of accuracy (mPDeC2), as already considered in Example 3.2.3, i. e., K = 2 DeC
iterations and one subtimestep [tn = tn,0, tn,1 = tn+1]. In this case, we recall that θ 1

0 = θ 1
1 = 1

2 and
that c0,(0) = c1,(0).

The method (3.44) for the first step reads

L 1(c(1)) !
=L 1(c(0))−L 2(c(0),c(1))

⇐⇒ c1,(1)
i − c0,(1)

i −∆t
I

∑
j=1

(
pi, j(c0,(1))−di, j(c0,(1))

)
=

c1,(0)
i − c0,(0)

i −∆t
I

∑
j=1

(
pi, j(c0,(0))−di, j(c0,(0))

)
−c1,(0)

i + c0,(0)
i +∆t

1

∑
r=0

θ
1
r

I

∑
j=1

(
pi, j(cr,(0))

c1,(1)
j

c1,(0)
j

−di, j(cr,(0))
c1,(1)

i

c1,(0)
i

)

⇐⇒ c1,(1)
i = c0,(0)

i +∆t
I

∑
j=1

(
pi, j(c0,(0))

c1,(1)
j

c1,(0)
j

−di, j(c0,(0))
c1,(1)

i

c1,(0)
i

)
,

where the last step is obtained considering, again, the fact that for the iteration (0) all the states
coincide. Collecting the mass matrix terms as in (3.41), one can solve the previous equation for
c1,(1). Substituting this term into the second iteration step leads finally to

L 1(c(2)) = L 1(c(1))−L 2(c(1),c(2))

⇐⇒ c1,(2)
i − c0,(2)

i −∆t

(
I

∑
j=1

pi, j(c0,(2))+
I

∑
j=1

di, j(c0,(2))

)
=

c1,(1)
i − c0,(1)

i −∆t

(
I

∑
j=1

pi, j(c0,(1))+
I

∑
j=1

di, j(c0,(1))

)

− c1,(1)
i + c0,(1)

i +
1

∑
r=0

θ
1
r ∆t

(
I

∑
j=1

pi, j(cr,(1))
c1,(2)

j

c1,(1)
j

−
I

∑
j=1

di, j(cr,(1))
c1,(2)

i

c1,(1)
i

)
.

The correction step has no effect on the initial subtimestep. Therefore, we get with c0,(1) = c0,(2):

cn+1
i = c1,(2)

i = c0,(0)
i +

1

∑
r=0

θ
1
r ∆t

(
I

∑
j=1

pi, j(cr,(1))
c1,(2)

j

c1,(1)
j

−
I

∑
j=1

di, j(cr,(1))
c1,(2)

i

c1,(1)
i

)

where θ 1
0 = θ 1

1 = 1
2 . This scheme coincides with the modified Patankar RK scheme of second

order (MPRK22) as it is presented in [28]. Up to now, this is the only intersection between the
MPRK schemes and the mPDeC methods due to the close relation between RK2 method and the
second order DeC method.

Remark 3.3.6 (Computational costs). One can always rewrite the DeC method as a RK method
with number of stages s = K ·M. The mPDeC scheme for p-th order of accuracy, can be obtained
with K = p corrections and M = p−1 subtimesteps. The number of stages in a RK framework are
s = M ·K, but the subtimesteps can be performed in parallel, obtaining an effective computational
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cost of just K corrections stages. As proven in [87], MPRK needs more stages than just p for
orders higher than 3. This says that, with the parallel computation of the subtimesteps, the
mPDeC algorithms require less or equal computational costs than the MPRK ones.

One can estimate more carefully the computational costs of the mPDeC with respect to the
cost e of an evaluation of any of the production or destruction functions pi, j,di, j. Building the
mass matrix requires MI2 evaluations and its inversion can be estimates as an I3. Overall, the
mPDeC requires for every time step, if performed serially, an O(MK(MI2e+ I3)), if performed
with parallel subtimesteps, an O(K(MI2e+ I3)).

Remark 3.3.7 (A-stability). The stability is still an open question in the theory of modified
Patankar schemes, since they are built to solve PDS. It is still not clear what kind of PDS one
should analyze and how. One can try to mimic the Dahlquist’s equation as for A-stability analysis,
considering the scalar ODE c′1 = ac1, with Re(a) < 0 and an additional equation c′2 = −ac1,
where d1,2 = p2,1 =−ac1. With this setting, the modified Patankar Euler scheme (3.40) for the
first constituent will reduce to the implicit Euler method which is A-stable. For the mPDeC2
case, we can also study analytically the A-stability of the scheme. In this context, we can apply
the mPDeC scheme. For the second order scheme, we get only lower triangular mass matrices
during the procedure, hence, we can solve the system only for c1 and see the behavior of the first
constituent. If we denote with ζ := a∆t, we getc1,(1)

1 =
c0

1
1−ζ

,

c1,(2)
1 =

c0
1

1− ζ

2−
ζ (1−ζ )

2

.
(3.46)

Denoting with R(ζ ) the stability function such that cn+1
1 = R(ζ )cn

1, the stability region S :=
{ζ : |R(ζ )| < 1} contains the complex left semiplane C− := {z ∈ C : Re(z) < 0}. Indeed, if
Re(ζ ) < 0, then the real part of the denominator of the second equation of (3.46) is bigger
than 1. So, its inverse |R(ζ )| < 1. For the other methods, the mass matrix M depends also on
the c1, c2 states at the previous iterations M = M(ζ ,c(k−1)) and so does the stability function
R(ζ ,cn

1,c
n
2), hence we cannot perform the classical analysis for A–stability. Nevertheless, we

compute numerically the stability functions, considering c1 and c2 as parameters and setting
them to c0

1 = 1 and c0
2 ∈ {1,0.1}. First of all, we validate the theoretical result for K = 1 in the

mPDeC of second order in fig. 3.5(a), where we see that the whole left semiplane of C is stable
and φ(a)< 1. As the order increases, we can see two instability regions developing close to the
imaginary axis, away from the real numbers, as in Figure 3.5(b). For higher order methods the
instability regions develop in more complicated ways, see fig. 3.5(c) and fig. 3.5(e). Moreover,
they depend on the chosen parameter c0

2 and we can see the difference for c0
2 = 0.1 in fig. 3.5(d)

and fig. 3.5(f). Nevertheless, all the schemes keep in the stability region the negative real axis.
In addition, one can see that even with A–stable schemes can produce oscillatory solutions

for very stiff problems, hence, new types of stability are under investigation. We are in contact
with several other groups to discuss and develop a stability theory for modified Patankar schemes.
These studies will be the topic of future works.

3.3.3 Conservation and Positivity of Modified Patankar DeC

In this section, we are proving that the proposed scheme is unconditionally conservative and
positivity–preserving.
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Figure 3.5: Stability functions and regions for different orders and different starting coefficients
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Theorem 3.3.8. Consider the PDS in (3.27), where the production and destruction terms verify
the relation di, j = p j,i for all i, j = 1, . . . , I. The mPDeC scheme in (3.45) is unconditionally
conservative for all substages, i. e.,

I

∑
i=1

cm,(k)
i =

I

∑
i=1

c0
i ,

for all k = 1, . . . ,K and m = 0, . . . ,M.

Proof. Using formulation (3.45), we can easily see that ∀k,m

∑
i∈I

cm,(k)
i −∑

i∈I
c0

i (3.47)

=∆t
I

∑
i, j=1

M

∑
r=0

θ
m
r

pi, j(cr,(k−1))
cm,(k)

γ( j,i,θ m
r )

cm,(k−1)
γ( j,i,θ m

r )

−di, j(cr,(k−1))
cm,(k)

γ(i, j,θ m
r )

cm,(k−1)
γ(i, j,θ m

r )

 (3.48)

=∆t
I

∑
i, j=1

M

∑
r=0

θ
m
r

d j,i(cr,(k−1))
cm,(k)

γ( j,i,θ m
r )

cm,(k−1)
γ( j,i,θ m

r )

−di, j(cr,(k−1))
cm,(k)

γ(i, j,θ m
r )

cm,(k−1)
γ(i, j,θ m

r )

 (3.49)

=∆t
M

∑
r=0

θ
m
r

 I

∑
i, j=1

d j,i(cr,(k−1))
cm,(k)

γ( j,i,θ m
r )

cm,(k−1)
γ( j,i,θ m

r )

−
I

∑
i, j=1

di, j(cr,(k−1))
cm,(k)

γ(i, j,θ m
r )

cm,(k−1)
γ(i, j,θ m

r )

= 0. (3.50)

To get this result, we have just used the definition of the scheme (3.45) in (3.48) and the property
(3.30) of the production and destruction operators di, j = p j,i in (3.49). In the last step, we have
exchanged the sums over j and i.

To demonstrate the positivity of the scheme, we introduce some preliminary results.

Lemma 3.3.9. The mass matrix of every correction step of the mPDeC scheme described in
(3.45) is diagonal dominant by columns, i. e.,

|Mi,i|>
I

∑
j=1
|M ji|. (3.51)

Proof. At each step (m,k) we are solving an implicit linear system where the mass matrix is
given by

M(cm,(k−1))i j =


1+∆t

M
∑

r=0

I
∑

l=1

θ m
r

cm,(k−1)
i

(
di,l(cr,(k−1))1{θ m

r >0}− pi,l(cr,(k−1))1{θ m
r <0}

)
, for i = j,

−∆t
M
∑

r=0

θ m
r

cm,(k−1)
j

(
pi, j(cr,(k−1))1{θ m

r >0}−di, j(cr,(k−1))1{θ m
r <0}

)
, for i 6= j.

(3.52)
Under the assumption that pi, j and di, j are always positive, it is straightforward to see that all the
terms of the sum of M(cm,(k−1))ii are positive by construction and that all the terms of the sum of
the non–diagonal terms M(cm,(k−1))i j for i 6= j are negative. Moreover, we can demonstrate that

|M(cm,(k−1))ii|= M(cm,(k−1))ii >
I

∑
j=1, j 6=i

−M(cm,(k−1)) ji =
I

∑
j=1, j 6=i

|M(cm,(k−1)) ji|, (3.53)
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by showing

M(cm,(k−1))ii = 1+∆t
M

∑
r=0

I

∑
j=1

θ m
r

cm,(k−1)
i

(
di, j(cr,(k−1))1{θ m

r >0}− pi, j(cr,(k−1))1{θ m
r <0}

)
> ∆t

M

∑
r=0

I

∑
j=1

θ m
r

cm,(k−1)
i

(
p j,i(cr,(k−1))1{θ m

r >0}−d j,i(cr,(k−1))1{θ m
r <0}

)
=−

I

∑
j=1, j 6=i

M(cm,(k−1)) ji =
I

∑
j=1, j 6=i

|M(cm,(k−1)) ji|,

(3.54)

where we have used the property (3.30) of the p and d matrices to obtain the previous computation.
Finally, this proves that the mass matrix is diagonally dominant by columns.

Using Lemma 3.3.9 we prove the following theorem.

Theorem 3.3.10. The mPDeC scheme defined in (3.45) is positivity–preserving, i. e., if c0 > 0
then cm,(k) > 0, for all m = 1, . . . ,M and k = 1, . . . ,K.

Proof. Using Lemma 3.3.9, we can prove that the inverse of any mass matrix obtained from
the DeC iterations is positive, i. e., (M−1)i j ≥ 0, ∀i, j. The proof follows the path of what was
proposed in [85]. Using the Jacobi method, we can converge to M−1 with iterative matrices Z(s)

for s ∈ N, where
Z(s+1) := (II−D−1M)Z(s)+D−1, with Z(0) = II. (3.55)

Here, II is the identity of dimension I and D is the diagonal of M. If we denote the iteration
matrix as B := II −D−1M, we can see that it has spectral radius smaller than one, since M is
diagonally dominant. This means that the Jacobi method is convergent to M−1. Now, since
B≥ 0 and D−1 ≥ 0 from previous Lemma 3.3.9 and, by induction, also Z(s) ≥ 0, we can say that
M−1 = lim

s→∞
Z(s) will be nonnegative.

3.3.4 Convergence Order

To prove that the solution of the mPDeC procedure is high order accurate, we mimic the
proof of the original DeC convergence as in [5]. We denote by c∗ the solution of the L 2 operator,
i. e., L 2(c∗,c∗) = 0. This solution c∗ coincides with the solution of the classical L 2(c∗) = 0
operator defined in (3.20), which can be seen as a nonlinear implicit high order RK discretization.
We want to prove that for each iteration step the following inequalities are fulfilled:

‖c(k)− c∗‖ ≤C0‖L 1(c(k))−L 1(c∗)‖ (3.56)

=C0‖L 1(c(k−1))−L 2(c(k−1),c(k))−L 1(c∗)+L 2(c∗,c∗)‖ (3.57)

≤C∆t‖c(k−1)− c∗‖, (3.58)

which implies that for each iteration step we obtain one order of accuracy more than the previous
iteration. After K iterations we, finally, get

‖c(K)− c∗‖ ≤CK
∆tK‖c0− c∗‖. (3.59)

To prove that the inequalities (3.56) and (3.58) are valid, we have to demonstrate the following
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1. the coercivity of the operator L 1 (as in the inequality (3.56))

2. the Lipschitz inequality for operator L 1−L 2 used in (3.58)

3. the high order accuracy of the operator L 2, i. e., ||c∗− cexact || ≤Cd∆t p.

Let us start with the coercivity lemma.

Lemma 3.3.11 (Coercivity of L 1). Given any c(k),c∗ ∈ RM×I , there exists a positive C0, such
that, the operator L 1 fulfills

‖L 1(c(k))−L 1(c∗)‖ ≥C0‖c(k)− c∗‖. (3.60)

Proof. We remind that the beginning states coincide for all the variables, i. e., c0,(k) = c0,∗ = c0.
The two operators simplify and we get the following relation

L 1(c(k))−L 1(c∗) = (c(k)− c∗). (3.61)

This proves that with constant C0 = 1 the equation (3.60) holds.

Before proving Lipschitz continuity, we need two lemmas. The first one proves that each
stage of the scheme is a first order approximation of the previous timestep.

Lemma 3.3.12. For every subtimestep m = 1, . . . ,M and correction k = 1, . . . ,K, there exists a
matrix G, such that

cm,(k) = c0 +∆tG(cm,(k−1))c0 (3.62)

holds. Moreover, G(cm,(k−1)) =W (cm,(k−1))+O(∆t), where W := 1
∆t (M− II) is an O(1).

Proof. For any m = 1, . . . ,M and k = 1, . . . ,K, the equation (3.45) tells us that the mass ma-
trix M(cm,(k−1)) can be written as M(cm,(k−1)) = II−∆tW (cm,(k−1)) where W does not depend
explicitly on ∆t, but only on cm,(k−1) and the production–destruction functions. It is defined as

W (cm,(k−1))i j =


−

M
∑

r=0

I
∑

l=1

θ m
r

cm,(k−1)
i

(
di,l(cr,(k−1))1{θ m

r >0}− pi,l(cr,(k−1))1{θ m
r <0}

)
, for i = j,

+
M
∑

r=0

θ m
r

cm,(k−1)
j

(
pi, j(cr,(k−1))1{θ m

r >0}−di, j(cr,(k−1))1{θ m
r <0}

)
, for i 6= j.

(3.63)
Using Taylor expansion leads to the following formulation of the inverse of M,

(M(cm,(k−1)))−1 = II +∆tW (cm,(k−1))+O(∆t2).

Now, we can define G by

G(cm,(k−1)) :=
1
∆t

(
(M(cm,(k−1)))−1− II

)
=W (cm,(k−1))+O(∆t).

So, we can write
cm,(k) = (M(cm,(k−1)))−1c0 = c0 +∆tG(cm,(k−1))c0. (3.64)

Now, we want to prove that W (cm,(k−1)) is an O(1). We prove the statement by induction on the
corrections k. For k = 1 the matrix W (cm,(0)) does not depend on ∆t, since cm,(0) = c(tn) for all
m = 0, . . . ,M. Supposing that the statement holds for k, i.e.,

cm,(k) = c0 +∆tW (cm,(k−1))c0 +O(∆t2), (3.65)
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where W (cm,(k−1)) = O(1), we can see that∥∥∥W (cm,(k))
∥∥∥= ∥∥∥W (

c0 +∆tW (cm,(k−1))c0
)∥∥∥≤ ∥∥W (c0)

∥∥+CL

∥∥∥∆tW (cm,(k−1))c0
∥∥∥ . (3.66)

Here, we have used the Lipschitz continuity of W (·), with coefficient CL, which holds when
there is a positive lower bound on the variable cm,(k). This is true when, for example, ∆t is
small enough to have cm,(k)

i >
c0

i
2 > 0 for all i = 1, . . . , I. Then, we use the induction hypothesis

W (cm,(k−1)) = O(1) and W (c0) = O(1) to obtain

W (cm,(k)) =W
(

c0 +∆tW (cm,(k−1))c0
)
=W (c0)+O(∆t) = O(1). (3.67)

Therefore, the Lemma is proven.

With the following lemma, we prove that the mPDeC process generates a Cauchy sequence
similar to the continuous Picard iterations. The Lemma 3.3.13 gives us also an estimation of the
successive truncations between consecutive corrections. We will drop the dependency on the
subtimestep m, as all the relations hold for all of them.

Lemma 3.3.13. Let c(k) and c(k−1) ∈ RI verifying Lemma 3.3.12, then

c(k)i

c(k−1)
i

= 1+∆tk−1g(k−1)
i +O(∆tk) (3.68)

holds where g(k−1)
i is an O(1).

Proof. We prove the lemma by induction.

For k = 1, equation (3.68) follows directly from Lemma 3.3.12, i. e., c(1)i

c(0)i

= 1+∆tg(0)i = 1+O(∆t),

where g(0)i = Gi(c(0)) c(0)

c(0)i

and Gi denotes the ith row of the matrix G. This term is clearly not

depending of ∆t and, given positive initial data, it will be bounded.
Given k ∈ N, as induction hypothesis, (3.68) holds for k, i. e.,

c(k)i = c(k−1)
i

(
1+∆tk−1g(k−1)

i

)
+O(∆tk), (3.69)

where g(k−1)
i is an O(1). We can prove that (3.68) is verified also for k+1. Using Lemma 3.3.12,

we obtain
c(k+1)

i

c(k)i

=
c(0)i +∆tGi(c(k))c(0)

c(0)i +∆tGi(c(k−1))c(0)

=

(
c(0)i +∆tGi(c(k))c(0)

)(
c(0)i −∆tGi(c(k−1))c(0)

)
(

c(0)i +∆tGi(c(k−1))c(0)
)(

c(0)i −∆tGi(c(k−1))c(0)
)

=

(
c(0)i

)2
+∆tc(0)i Gi(c(k))c(0)−∆tc(0)i Gi(c(k−1))c(0)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

−
(
∆tGi(c(k−1))c(0)

)(
∆tGi(c(k))c(0)

)(
c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2
.
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Inserting the induction step (3.69) we get

c(k+1)
i

c(k)i

=

(
c(0)i

)2
+∆tc(0)i

(
Gi
(
c(k−1) •

(
111+∆tk−1g(k−1))+O(∆tk)

)
−Gi(c(k−1))

)
c(0)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

−
(
∆tGi(c(k−1))c(0)

)(
∆tGi

(
c(k−1) •

(
111+∆tk−1g(k−1))+O(∆tk)

)
c(0)
)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

Here, • denotes the Hadamard product and 111 := (1, . . . ,1)T ∈ RI . The induction step is evaluated
for every entry i. Using the regularity2 of Gi, we expand its Taylor series in c(k−1) for every
constituent i. Thanks again to the result of Lemma 3.3.12, we can write

c(k+1)
i

c(k)i

=

(
c(0)i

)2
+∆tc(0)i Gi

(
c(k−1)

)
c(0)+∆tkc(0)i (c(k−1) •g(k−1))

T
∇Gi(c)c(0)−∆tc(0)i Gi(c(k−1))c(0)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

−

(
∆tGi(c(k−1))c(0)

)(
∆tGi

(
c(k−1)

)
c(0)+∆tk(c(k−1) •g(k−1))

T
∇Gi(c)c(0)+O(∆tk)

)
(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

where c is the point of the Lagrange form of the remainder of the Taylor expansion. Hence, we
can proceed as follows

c(k+1)
i

c(k)i

=

(
c(0)i

)2
+∆tc(0)i Gi

(
c(k−1)

)
c(0)+∆tkc(0)i (c(k−1) •g(k−1))

T
∇Gi(c)c(0)−∆tc(0)i Gi(c(k−1))c(0)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

−

(
∆tGi(c(k−1))c(0)

)2
+O(∆tk+1)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

=

(
c(0)i

)2
−
(

∆tGi(c(k−1))c(0)
)2

+∆tkc(0)i (c(k−1) •g(k−1))
T

∇Gi(c)c(0)+O(∆tk+1)(
c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2

=1+∆tkg(k)i +O(∆tk+1),

where we denote

g(k)i =
c(0)i (c(k−1) •g(k−1))

T
∇Gi(c)c(0)(

c(0)i

)2
−
(
∆tGi(c(k−1))c(0)

)2
.

Thanks to the Lipschitz continuity of pi, j and di, j, we can state that ĝi is bounded, since at the nu-
merator ∇Gi(c) is bounded and, at the denominator, ∆tGi(c(k−1))c(0) is bounded by ∆tCL‖c(k−1)‖,
so that, multiplied by c(0), does not let the denominator go to zero. Moreover, as we can see from
the definition, ĝi = O(1). This finally proves equation (3.68) for k+1.

Now, let us prove the Lipschitz continuity of the operator L 1−L 2.

2See section 3.3.4.1 for more details.
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Lemma 3.3.14 (Lipschitz continuity of L 1−L 2). Let c(k),c(k−1) ∈ RM×I
+ fulfill Lemma 3.3.12.

Then, the operator L 1−L 2 is Lipschitz continuous with constant ∆tCL, i. e.,

‖L 1(c(k−1))−L 2(c(k−1),c(k))−L 1(c∗)+L 2(c∗,c∗)‖ ≤CL∆t‖c(k−1)− c∗‖. (3.70)

Proof. Now, applying Lemma 3.3.13 to substitute the new L 2 operator (3.42) with the original
one of the classical DeC (3.21), we add an error of order ∆tk−1 to the operator. We get another
order from the time integration, such that

L 2(c(k−1),c(k)) = L 2(c(k−1))+O(∆tk)

and, trivially, L 2(c∗,c∗) = L 2(c∗) holds. Together, we obtain∥∥∥L 1(c(k−1))−L 2(c(k−1),c(k))−L 1(c∗)+L 2(c∗,c∗)
∥∥∥ (3.71)

≤
∥∥∥L 1(c(k−1))−L 2(c(k−1))−L 1(c∗)+L 2(c∗)

∥∥∥+O(∆tk). (3.72)

Now, we have to take care about the different variables in the operators. Let us start studying the
operator L 1−L 2. We consider the difference for a fixed subtimestep m and a single equation
of the system i ∈ {1, . . . , I} with the notation and L 2,m

i . The difference is given by

L 2,m
i (c(k−1))−L 1,m

i (c(k−1))

=

∫ tm

t0

M

∑
r=0

θ
m
r Ei(cr,(k−1))−

M

∑
r=0

β
m
r Ei(cr,(k−1))dt

=

∫ tm

t0

M

∑
r=0

(θ m
r −β

m
r )Ei(cr,(k−1))dt.

(3.73)

Here, we have used the coefficients β m
r , which are an extension of the previously defined β m

coefficients and they are defined for every m as

β
m
r :=

{
β m for r = 0,
0 for r = 1, . . . ,M.

(3.74)

Now, we can compute the difference of the two terms

|L 1,m
i (c(k−1))−L 2,m

i (c(k−1))−L 1,m
i (c∗)+L 2,m

i (c∗)| (3.75)

=

∣∣∣∣∣
∫ tm

t0

M

∑
r=0

(θ m
r −β

m
r )
(

Ei(cr,(k−1))−Ei(cr,∗)
)

dt

∣∣∣∣∣ (3.76)

≤∆tC1‖Ei(c(k−1))−Ei(c∗)‖ (3.77)

≤∆tCL‖c(k−1)− c∗‖. (3.78)

In (3.76), we can bound the difference of the two time integrators writing a matrix Q ∈RM×(M+1)

where the coefficients are Qm,r = ∆tθ m
r −β m

r and each of the terms is bounded by |Qm,r| ≤ ∆t. In
(3.77), with an abuse of notation we have uses Ei : RM×I → RM, which is the component–wise
application of Ei : RI → R and we have used the triangular inequality for the norm. In the last
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step (3.78), we have used the Lipschitz continuity of the operators Ei.
Overall, the constant CL depends on the operators p and d and the degree of the polynomial used.
One can, finally, extend this result to (3.70) according to the norm, e.g. summing up the constants
or taking the maximum of the constants. Hence, the Lemma is proven.

Finally, we need to show that the solution c∗ of the operator L 2(c∗,c∗) = 0 is an (M+1)-
order accurate solution. This is given directly by the definition of the operator (3.42), since it
is an (M+1)-order accurate approximation of the original problem (3.27) when the two input
coincide and, thus, the modification coefficients become 1 and the operator becomes the original
one (3.21).

Theorem 3.3.15 (Convergence of mPDeC). Let L 1(·) and L 2(·, ·) be the operators defined in
(3.43) and (3.42) respectively. The mPDeC procedure (3.44) gives an approximate solution with
order of accuracy equal to min(M+1,K).

Proof. With Lemma 3.3.11 we proved the coercivity of the operator L 1, which verifies the
inequality in (3.56). The definition of the mPDeC scheme (3.44) gives us the equality (3.57) and
the Lipschitz continuity Lemma 3.3.14 proves the inequality (3.58). Moreover, we know that c∗
is an approximation of order (M+1) of the exact solution cex.

So, overall, we have

‖c(K)− cex‖ ≤ ‖c∗− cex‖+(C∆t)K‖c∗− c(0)‖ ≤C∗∆tM+1 +(C∆t)K , (3.79)

which proves the statement of the theorem.

All the desired properties (unconditional positivity, unconditional conservation and high order
accuracy) are fulfilled by the proposed scheme.

We want to remark that the convergence of the mPDeC procedure is towards the solution
c∗

∆t of the nonlinearly implicit scheme L 2
∆t(c

∗
∆t ,c

∗
∆t) = L 2

∆t(c
∗
∆t), which can be reinterpreted as a

nonlinearly implicit RK. The convergence is observed when η = α2
α1

∆t < 1. Even if the limits c∗
∆t

for corrections K→ ∞ of the original DeC of Section 3.2 and of the new mPDeC coincide, they
strongly differ in the practical application, where K� ∞. The original DeC is a conservative
explicit method, without unconditional positivity properties. The mPDeC is a linearly implicit
scheme, that is conservative and positivity–preserving.

3.3.4.1 Regularity

In the proof of Lemma 3.3.13 we apply the regularity of the function G and use the Taylor
series expansion.
Here, we want to explain more precisely what we meant in this context and why we can follow
this approach. Therefore, we just remind that G is defined in the proof of 3.3.12 and, up to an
O(∆t), its behavior is given by W in (3.63) as a combination of pi, j and di, j divided by ci and c j.
From Rademacher’s theorem, it is known that both p and d are almost everywhere differentiable
since they are Lipschitz continuous, and such that their weak derivatives are bounded. Since
c 6= 0, a Taylor series expansion in terms of c can be applied almost everywhere to express W
and consequently G. Through the multiplication with c(0), the term ∇Gi(c)c(0) is bounded by the
maximum of the Lipschitz constants of pi, j as ∆t goes to 0 and it is a O(1).
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3.3.5 Numerics

In this section, we validate our theoretical investigation of section 3.3.2 considering some test
cases from [28,85]. We focus here only on systems of ordinary differential equations (ODE) (stiff
and non-stiff). However, the mPDeC schemes can be in general used as time-integration methods
for a semidiscrete formulation of partial differential equations, where the spatial discretization is
already provided by RD, DG, FR, (c.f. [11, 14, 126]) or your favorite space discretization method.

As part of future research, we will consider these schemes in real applications like non-
equilibrium flows or shallow water equations as it was already done, for example, for MPRK
together with a WENO approach in [74] or a DG one in [102]. In this work we focus on systems
of ODEs. In all the numerical tests, we applied the mPDeC approach on equidistant subtimestep
points distributions.

In all the simulations, the number of subtimesteps and the number of corrections of the
mPDeC procedure are chosen according to the aimed order of accuracy p, in the following way
K = M+1 = p, as the Theorem 3.3.15 prescribes.

3.3.5.1 Linear Model

We start by considering a simple linear test case proposed in [28, 102]. The initial value
problem for the PDS is given by

c′1(t) = c2(t)−5c1(t), c′2(t) = 5c1(t)− c2(t),

c1(0) = c0
1 = 0.9, c2(0) = c0

2 = 0.1 .
(3.80)

The initial values of (3.80) are positive and we can rewrite the right hand side of the ODE system
in a PDS format as follows

p1,2(c) = d2,1(c) = c2, p2,1(c) = d1,2(c) = 5c1

and pi,i(c) = di,i(c) = 0 for i = 1,2. The system describes the exchange of mass between two
constituents. The analytical solution is given by

c1(t) =
1
6

(
1+

13
5

e−6t
)

and c2(t) = 1− c1(t). (3.81)

The problem is considered on the time interval [0,1.75] and, analogously to [28], for tests
in Figure 3.6 we use ∆t = 0.25 in the simulations. In Figure 3.6 we plot the analytical solution
(dotted, black line) and the approximated solutions using 2-nd (solid line, green) and 5-th (dash-
dotted line, green) order mPDeC methods. We see that the conservation property is fulfilled in
the purple lines, constantly equal to 1. Moreover, the maximum difference between ∑i ci(t0)
and ∑i ci(tn) in absolute value for all timesteps n = 1, . . . ,N and any order p = 1, . . . ,6 and any
number of timesteps {2k : k = 1, . . . ,12} is 1.51 ·10−14, very close to machine precision. The
positivity is respect as the minimum value for any variable for all the tests run is 0.1. Qualitatively,
we see that the 5-th order method approximates better the analytical solutions. Furthermore,
to verify the order of convergence of the methods, we consider also the error behavior of the
different order schemes. Differently from Kopecz and Meister [85, 86] instead of calculating the
relative errors, we compute the absolute discrete L2 errors taken over all the timesteps {tn}N

n=0
and all the constituents:

eN =
1
N

N

∑
n=1

(
1
I

I

∑
i=1

(ci(tn)− cn
i )

2

) 1
2

. (3.82)
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Figure 3.6: Second and fifth order methods together with the reference solution (3.81)

After a comparison between the final time error and the one proposed (3.82), we do not observe
much discrepancy. Therefore, we will provide only results obtained with (3.82).

In Figure 3.7, the left picture shows the error decay for mPDeC schemes at different dis-
cretization scales ∆t. In the right picture, we plot the slope of the error decay for different
orders of accuracy as a function of ∆t. These graphs demonstrate the high order accuracy of the
proposed methods and the expected convergence rates, validating the theoretical results, indeed,
all the schemes converge to the expected order of accuracy as ∆t → 0. It is also possible to
test the scheme with higher order of accuracy. However, we noticed that the observed order of
convergence is lower than the theoretical one when we tested orders higher than 10. This behavior
is probably due to Runge phenomena. These are well known issues that arise also with the usual
DeC methods [54] using equidistant points distribution in the subtimesteps. A possible solution
of this problem can be the usage of Gauss-Lobatto nodes as point distributions. This and stability
investigations will be part of future research.
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Figure 3.7: Second to sixth order error decay and slope of the errors
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3.3.5.2 Nonlinear Test Problem

In this next subsection, we consider the nonlinear test problem

c′1(t) =−
c1(t)c2(t)
c1(t)+1

,

c′2(t) =
c1(t)c2(t)
c1(t)+1

−0.3c2(t),

c′3(t) = 0.3c2(t)

(3.83)

with initial condition c0 = (9.98,0.01,0.01)T . As before, this problem was proposed in [85]. The
PDS system in the matrix formulation can be expressed by

p2,1(c) = d1,2(c) =
c1(t)c2(t)
c1(t)+1

, p3,2(c) = d2,3(c) = 0.3c2(t)

and pi, j(c) = di, j(c) = 0 for all other combinations of i and j. This system (3.83) is used to
describe an algal bloom, that transforms nutrients c1 via phytoplankton c2 into detritus c3. In our
tests, we consider the time interval [0,30] and, in Figure 3.8, ∆t = 0.5. We calculate the reference
solution (black, dashed line) with the strong stability preserving Runge-Kutta method 10 stages
4th order introduced by Ketcheson [84], further investigated in [125] and implemented in Julia,
see [124] for details.
In Figure 3.8, the 6-th order mPDeC (orange, dash-dotted lines) approximates very precisely the
reference solution. The 2-nd order method (solid line, green) shows the same structure as the
reference solution but it exhibits a severe error. However, the approximated second order solution
is comparable with the results obtained in [85]. We see again that the conservation property is
fulfilled in the purple lines, moreover, the maximum difference between ∑i ci(t0) and ∑i ci(tn)
in absolute value for all timesteps n = 1, . . . ,N and any order of accuracy p = 1, . . . ,6 and any
number of timesteps N ∈ {2k : k = 1, . . . ,12} is 8.38 · 10−13, very close to machine precision.
The positivity is respect as the minimum value for any variable for all the run tests is 7.99 ·10−10.

Since we lack of an analytical solution, in the error plots, we compare successive errors
between two refinements of the time mesh

eN =
1
N

N

∑
n=1

(
1
I

I

∑
i=1

(
cn

i,N− c2n
i,2N
)2
) 1

2

. (3.84)

Here, the subscript N indicates the number of equispaced timesteps used to subdivide the total
time interval. The results are presented in Figure 3.9. As for the linear case, we can see that the
error decay fulfils the expected behavior and that the order of accuracy tends to the correct one.
The slight decrease of the slope function in the right picture using sixth order can be explained
by the fact that the error values are close to machine precision in that area and this causes the
deprecation of the slope.

These plots verify our theoretical investigations from section 3.3.2.

3.3.5.3 Robertson Test Case

In the last test case, we prove the robustness of the mPDeC schemes in presence of stiff
problems. The proposed test is the Robertson problem for a chemical reaction system. It consists

42



3.3. MODIFIED PATANKAR DEFERRED CORRECTION

0 10 20 30
0.0

2.5

5.0

7.5

10.0

Nonlinear test case

Time

C
on

ce
nt

ra
tio

n

c1 order 2
c2 order 2
c3 order 2
c1+c2+c3 order 2
c1 order 6
c2 order 6
c3 order 6
c1+c2+c3 order 6
Ref c1
Ref c2
Ref c3

Figure 3.8: Second order and sixth order methods together with the reference solution
(SSPRK104)
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of
c′1(t) = 104c2(t)c3(t)−0.04c1(t),

c′2(t) = 0.04c1(t)−104c2(t)c3(t)−3 ·107c2(t)2,

c′3(t) = 3 ·107c2(t)2

(3.85)

with initial conditions c0 = (1,0,0).3 The time interval of interest is [10−6,1010]. The PDS for
(3.85) reads

p1,2(c) = d2,1(c) = 104c2c3, p2,1(c) = d1,2(c) = 0.04c1, p3,2(c) = d2,3(c) = 3 ·107c2

and zero for the other combinations.
In the Robertson test case, the numerical scheme has to deal with several time scales. Therefore,
a constant time step size is not suitable for this purpose. Following again the literature [85], we
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Figure 3.10: Second and fifth order solutions and references

use increasing time steps ∆tn = 2n−1∆t0 with ∆t0 = 10−6, where n indicates the n-th timestep. To
make the small c2 values visible on the plot, we multiply it by 104. As a comparison, we calculate
the reference solution (dotted, black line) using the function Rodas44 from Julia, where we split
the time-interval into 55 subdomains and we solve it on every subdomain with relative tolerance
10−20 and absolute tolerance 10−20. We plot again a second order (green, solid lines) and fifth
order (orange, dashed-dotted lines) approximations generated by the mPDeC methods and, as it
can be seen in Figure 3.10, the designed methods produce reliable and robust results for this kind
of stiff problems.

We see again that the conservation property is fulfilled in the purple lines, equal to 1,
up to machine precision. Indeed, the maximum difference between ∑i ci(t0) and ∑i ci(tn) in
absolute value for all timesteps n = 1, . . . ,N and any order p = 1, . . . ,6 and number of timesteps

3To avoid the division by zero in the mPDeC scheme, we slightly modify the initial condition in the practical
implementation, i. e., c0 = (1−2eps,eps,eps) with eps = 2.22 ·10−16.

4 A 4-th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant.
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N ∈ {2k : k = 1, . . . ,12} is 1.44 ·10−14. The positivity is respect as the minimum value for any
variable for all the run tests is 2.22 ·10−16, which is the initial value we impose for the variables
c2, c3. These very challenging problems prove that the scheme is robust and positive for any
order and discretization scale.

Finally, we can say that the simulations run in this section express the quality of the mPDeC
schemes. Moreover, they show that all the targeted properties are obtained even for very problem-
atic test cases.
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4
HIGH ORDER IN SPACE AND TIME
SCHEMES

In this section we review different schemes used to solve hyperbolic PDEs, having already
studied the time discretization in chapter 3. Here, we consider only the spatial discretization
problem. This results in the method of lines, which, applied to the hyperbolic equation (2.1),
decouples the space discretization from the time discretization. Each of the following methods
uses a discrete representation uh ∈ RNh×S of the function u, and solves a system of ODEs of the
type

∂tuσ

h (t)+Φ
σ

F,h(uh(t)) = Φ
σ

R,h(uh(t)), (4.1)

where σ is the index of the spatial discretization, ΦF,h(·) represents a finite dimensional discrete
approximation of ∑d ∂xd F(·) and ΦR,h(·) is the discrete analogous of R(·). The role of the
following schemes is to provide a suitable discretization of the variables and the operators, in
order to apply a time solver on the resulting system of ODEs (4.1).

In the first section we focus on the classical methods used in the field: Finite Difference, Finite
Volume and Finite Element methods. They vary in the basic discretization process, even if there
are many analogies between these schemes. In section 4.2 we present the Residual Distribution
scheme, which is a less classical discretization technique that joins the different point of views of
Finite Element and Finite Volume methods. It is based on Finite Element discretization, but it
uses the Finite Volume principles to construct the discrete flux operators.

4.1 Classical Methods

We have just shown that any discretization method will provide a solution uh to the discretized
problem (4.1) and we denote it by Ph. We can write the solution of this problem as Ph(uh,dh) =
0, where dh are the data needed by the problem. As in [122], we can define the following properties
for a numerical method on a well–posed problem, i. e., there is a continuous dependency of the
solution u on the data d.

Definition 4.1 (Stability). A numerical method Ph is said stable or well–posed iff there exists a
unique solution uh for any data dh to the problem Ph(uh,dh) = 0 and the solution uh(d) depends
continuously with respect to the data dh.

Definition 4.2 (Consistency). Given a problem P with solution to data d given by u, i. e.,
P(d,u) = 0, and an approximating numerical scheme depending on the discretization scale h
given by Ph(dh,uh) = 0, the method is said to be consistent if

Ph(d,u) = Ph(d,u)−P(d,u)→ 0, for h→ 0. (4.2)
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Definition 4.3 (Convergence). Let dh and d be data such that ‖dh−d‖→ 0 as h→ 0, a numerical
method Ph is convergent iff

lim
h→0
‖uh(dh)−u(d)‖= 0, (4.3)

where ‖·‖ is a suitable norm. Moreover, we define the order of convergence p ∈ R+ the real
positive number for which

‖uh(dh)−u(d)‖= O(hp) (4.4)

holds.

Furthermore, there is a close relation between convergence and stability. Indeed, if the
original problem P is well posed, stability is a necessary condition to the convergence, because,
as the method converges, the approximations should stay stable as the original problem.

If a method is consistent with the original well–posed problem, then stability and convergence
are equivalent conditions [51].

These properties are always sought in a method in order to have a reliable and provably good
approximation to the solution.

4.1.1 Finite Difference

4.1.1.1 Discretization in 1D

The Finite Difference (FD) method relies on a very simple strategy, yet very powerful [96].
We consider a 1D domain Ω = [a,b], we subdivide it into subintervals with equal width h (it can
be generalized to regular not uniform grids) {[xσ ,xσ+1]}Σ−1

σ=1 and we approximate the solution at
each point xσ with the notation uh = {uσ}Σ

σ=1 for these nodal values. The FD method derives the
discretization from the strong form of the conservation law (2.2). It consists of a discretization of
the differential operator into a linear combination of the nodal values of the type

∂xF(u) =
r

∑
l=−r

qlF(uσ+l), σ = 1, . . . ,Σ, (4.5)

where 2r+1 is the footprint of the used stencil.
A simple example can be the right sided FD

∂xF(uh(xσ )) = D+(F(uh))σ =
F(uσ+1)−F(uσ )

h
, σ = 1, . . . ,Σ. (4.6)

To assemble the whole time–space scheme we add our favorite time discretization and we get
the full method. For example, if we consider the explicit and implicit Euler method we get for the
conservation law (2.2) respectively

un+1
σ = un

σ −∆t
F(un

σ+1)−F(un
σ )

h
, (4.7)

un+1
σ = un

σ −∆t
F(un+1

σ+1)−F(un+1
σ )

h
. (4.8)

The final formulation of the scheme is useful to study the stability of the method, as we will
see in section 4.1.1.3.
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4.1.1.2 Convergence

In order to understand if this example is converging to the exact solution, we have to perform
a Taylor expansion on the discrete operator, choosing, for example, a Taylor expansion in uσ as
follows

D+(F(uh))σ =
h
h

∂xF(uσ )+
h2

2h
∂xxF(uσ )+O(h2), (4.9)

where we see that
∂xF(uh(xσ ))−D+(F(uh))σ = O(h). (4.10)

Hence, D+ is a first order approximation of the spatial derivative.
To obtain high order approximations, we can proceed systematically checking the Taylor

expansion coefficients and the FD ones in order to match as many conditions as possible. This is
a valid approach also for higher derivatives and can be written as a system of equations to find
the coefficients {ql}r

l=−r.
Although this approach seems perfect to find any high order discretization method, we

incur into troubles already with a second order scheme. We consider a footprint of the 3 nodes
uσ−1,uσ ,uσ+1 and explicit Euler as time integration method. We obtain the following second
order method with central FD space discretization

un+1
σ = un

σ −∆t
F(un

σ+1)−F(un
σ−1)

2h
, σ = 1, . . . ,Σ. (4.11)

This method is well–known to be unstable, as we will see in section 4.1.1.3, and thus must be
modified, for example into the Lax–Friedrichs method

un+1
σ =

un
σ+1 +un

σ−1

2
−∆t

F(un
σ+1)−F(un

σ−1)

2h
= un

σ −∆t
F(un

σ+1)−F(un
σ−1)

2h
+

un
σ+1−2un

σ +un
σ−1

2
,

(4.12)
where the term un

σ+1−2un
σ+un

σ−1
2 ≈ h∂xxu. This simple correction guarantees the stability of the

scheme, but it drops the accuracy of the scheme to first order introducing a diffusion, which is an
O(h).

Another way to achieve high order accurate FD method is the Lax–Wendroff method. It
consists of sequential substitutions of the partial derivatives of the equation (2.2) into the Taylor
expansion in time, given the FD discretization in space. For example, consider a special case of
the conservation law (2.2), the scalar linear transport equation

∂tu(x, t)+a∂xu(x, t) = 0, x ∈ R, t ∈ R+, (4.13)

where the FD discretized differential operator is given by D, the central difference operator. Then
the second order Lax–Wendroff method reads

un+1
σ =un

σ +∆t∂tun +
∆t2

2
∂ttun = un

σ −a∆tDun
σ +

∆t2

2
a2D2un

σ

=un
σ −a∆t

un
σ+1−un

σ−1

2h
+

∆t2

2
a2

4
un

σ+2−2un
σ +un

σ−2

h2 ,

(4.14)

which is, again, a stable second order scheme. In practice, in both schemes, we have taken
the central difference scheme and we have added a bit of dispersion to make it stable. The
Lax–Wendroff method has the drawback of a larger stencil with a footprint of 5 and this may lead
to troubles on the boundaries. One can avoid this changing the operator D2

σ to obtain a scheme
with a smaller stencil.
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4.1.1.3 Von Neumann Stability Analysis

In order to know if a scheme is stable, a very powerful tool for FD schemes, and not only, is
the von Neumann stability analysis [96]. It is based on Fourier analysis and it is generally limited
to constant coefficients linear PDE with periodic boundary conditions. The main goal of this
analysis is to check that the 2–norm of the solution does not increase in time. To do so, we test
the transport linear equation (4.13) with a = 1. If we write the Fourier series for the function

u(xσ ) =
∫

π/h

−π/h
û(ξ )eiξ xσ dξ , (4.15)

and we make use of the Parseval’s relation

‖u‖2 = ‖û‖2, (4.16)

we can check the norm of the Fourier transform coefficients, instead of the function itself. The
advantage is that the derivative in space on u is transformed into a coefficient multiplication in
the Fourier space. Hence, it is easier to study the amplification of every Fourier mode.

Let us consider the mode un(ξ ) = eiξ x, which, for every discretization point σ can be
expressed as un

σ (ξ ) = eiξ σh. We can apply on this mode a FD scheme and we obtain

un+1
σ (ξ ) = g(ξ )un

σ (ξ ). (4.17)

If |g(ξ )| ≤ 1 for every ξ we have that the scheme is called von Neumann stable.

Example 4.1.1 (Stability of central finite differences). We consider the scheme (4.11) and we
apply it on the ξ th Fourier mode, obtaining

un+1
σ (ξ ) = un

σ (ξ )−
∆t
2h

(
un

σ+1−un
σ−1
)
= eiξ σh− ∆t

2h

(
eiξ (σ+1)h− eiξ (σ−1)h

)
=

(
1− ∆t

2h

(
eiξ h− e−iξ h

))
eiξ σh =

(
1− i

∆t
h

sin(ξ h)
)

eiξ σh = g(ξ )un
σ (ξ ).

(4.18)

We notice that |g(ξ )|= |1− i ∆t
h sin(ξ h)|> 1 independently on the mode, h and ∆t. Hence, it is

not von Neumann stable.

Example 4.1.2 (Stability of Lax–Friedrichs). Now, we consider the scheme (4.12) and we apply
it on the ξ th Fourier mode, obtaining

un+1
σ (ξ ) =

un
σ+1(ξ )+un

σ−1(ξ )

2
− ∆t

2h

(
un

σ+1−un
σ−1
)

=
1
2

(
eiξ (σ+1)h + eiξ (σ−1)h

)
− ∆t

2h

(
eiξ (σ+1)h− eiξ (σ−1)h

)
=

(
eiξ h + e−iξ h

2
− ∆t

2h

(
eiξ h− e−iξ h

))
eiξ σh

=

(
cos(ξ h)− i

∆t
h

sin(ξ h)
)

eiξ σh = g(ξ )un
σ (ξ ).

(4.19)

Computing the amplification factor |g(ξ )|2 = |cos(ξ h)− i ∆t
h sin(ξ h)|2 = cos2(ξ h)+ ∆t2

h2 sin2(ξ h),
we see that it is clearly smaller than 1 and, hence, the scheme is von Neumann stable if ∆t

h < 1,
while it is bigger than 1 and the scheme is von Neumann unstable if ∆t

h > 1.
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Definition 4.4 (Courant–Friedrichs–Lewy Condition). In order to obtain stability, most of the
schemes have to verify a condition on the discretization scale of the type

∆tn ≤ CFL
∆x

maxx ρ(JF(u(x, tn)))
, (4.20)

where ρ(JF(u)) is the spectral radius of the Jacobian of the flux of u. The CFL is a constant
usually smaller than 1 and the bigger it is, the bigger the range of applicability of the scheme is.

Remark 4.1.3 (Extension of von Neumann Analysis). Even though the von Neumann Analysis is
constructed on the discretization of the FD method, since it uses the property that uσ+r = eirhξ uσ ,
it is possible to extend it also for other discretization methods. In particular, we try to perform a
similar analysis in section 4.2.6 for residual distribution methods, transforming that method into
a FD type scheme.
Remark 4.1.4 (Extension to 2D). The extension to more dimensions of the FD schemes and of the
von Neumann stability analysis is possible in a straightforward manner only for structured grids
which are tensor products of 1D grids. For unstructured grids the generalization does not exist.

4.1.2 Finite Volume

4.1.2.1 Discretization

The Finite Volume (FV) method is based on the integral form of the conservation laws
(2.3) [95, 105]. Knowing a priori that the solution might be discontinuous or not defined in some
points, the FV method takes as discretized values uσ the average of the solution in the cells.
More precisely, we first define a grid with nodes {x

σ+ 1
2
}Σ

σ=0, then we consider the average of the
reconstruction of the solution on the cells {[x

σ− 1
2
,x

σ+ 1
2
)}Σ

σ=1, i. e.,

uσ =
1

∆xσ

∫ x
σ+ 1

2

x
σ− 1

2

uh(x)dx, (4.21)

where ∆xσ = x
σ+ 1

2
− x

σ− 1
2
. This definition provides a natural piecewise constant reconstruction

uh(x) =
Σ

∑
σ=1

uσ1[x
σ− 1

2
,x

σ+ 1
2
)(x). (4.22)

A problem arises when we consider the conservation equation for the cell average uσ , i. e.,∫ tn+1

tn

∫ x
σ+ 1

2

x
σ− 1

2

∂tuhdxdt +
∫ tn+1

tn

∫ x
σ+ 1

2

x
σ− 1

2

∂xF(uh)dxdt = (4.23)

un+1
σ −un

σ +
∫ tn+1

tn
F(uh(xσ+ 1

2
))dt−

∫ tn+1

tn
F(uh(xσ− 1

2
))dt, (4.24)

where the definition of F(uh(xσ+ 1
2
)) does not exist. The specification of this definition in a

numerical scheme gives the definition of a FV scheme. The quantity

F̃n
σ+ 1

2
= F̃(un

σ ,u
n
σ+1)≈

1
∆t

∫ tn+1

tn
F(uh(xσ+ 1

2
))dt (4.25)

is called numerical flux and the FV scheme reads

un+1
σ = un

σ −
∆t
∆x

(
F̃n

σ+ 1
2
− F̃n

σ− 1
2

)
= un

σ −
∆t
∆x

(
F̃(un

σ ,u
n
σ+1)− F̃(un

σ−1,u
n
σ )
)
. (4.26)
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Remark 4.1.5 (More dimensions). Extension of the FV schemes to higher dimensional domain
are more natural than with FD schemes. Indeed, it can be extended, for example, to triangular
meshes. One must define uσ as the average over the control volumes of the dual mesh. Then, the
FV scheme can be defined by the numerical fluxes that pass through a cell of the dual mesh to
another. This operation is not straightforward, as we have to integrate on edges and in time the
fluxes.

4.1.2.2 Riemann Solvers

To provide a definition of the numerical fluxes, we can notice that we are facing, at each time
iteration and at each interface point x

σ+ 1
2
, a Riemann problem [62], where

un
h(x)

∣∣
[x

σ− 1
2
,x

σ+ 3
2
)
=

{
uσ if x < x

σ+ 1
2
,

uσ+1 if x≥ x
σ+ 1

2
.

(4.27)

Using the notions of chapter 2, we can compute the characteristics of the problem and the
exact solution of the Riemann problem for tn+1, then we update the averages un+1

σ using as the
found values, i. e., we take the unknown value at the interface to b the one provided by the exact
Riemann problem.

This is possible if the characteristics of the Riemann problem in one cell interface do not cross
the characteristics of the neighboring cell interfaces. This condition is easily controlled knowing
that the characteristics travel at the maximum speed of the spectral radius of the Jacobian of the
flux. Again, using the CFL condition

∆tn ≤max
x

∆x
ρ(JF(uh(x, tn)))

, (4.28)

we are sure that the characteristics do not cross each other. More precisely, if we consider
the conservation laws (2.2) and, hence, F depends only u, the characteristics are lines in the
space–time graph and we can compute exactly the numerical flux as the constant state according
to the sign of the speeds of the characteristics. In scalar 1D cases it can be expressed as

F̃n
σ+ 1

2
= F̃(un

σ ,u
n
σ+1) =

{
minun

σ≤v≤un
σ+1

F(v) if un
σ ≤ un

σ+1,

maxun
σ≥v≥un

σ+1
F(v) if un

σ ≥ un
σ+1.

(4.29)

This is called Godunov flux. The scheme (4.26) with the Godunov flux (4.29) is called Godunov
scheme.

The solution of the Riemann problem is not always accessible or, if it is, it may be long to be
computed and may involve the use of nonlinear solvers. Moreover, it seems unnecessary to solve
the whole Riemann problem just to obtain the one value for the evolution in time.

Many schemes can be designed in order to approximate the Riemann solver. The linearized
Roe’s solver, for example, linearizes the flux into its quasi–linear form and averages it, for 1D
scalar problems, as ∂xF(u) = JuF(u)∂xu≈ Â

σ+ 1
2
∂xu. Here, Â

σ+ 1
2

can be defined with the Roe
average

Â
σ+ 1

2
=

{F(un
σ+1)−F(un

σ )

un
σ+1−un

σ
if un

σ+1 6= un
σ

JuF(un
σ ) if un

σ+1 = un
σ .

(4.30)
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Also FD schemes can be rewritten into FV schemes. For example, the Lax–Friedrichs scheme
(4.12) can be defined through the numerical flux

F̃n
σ+ 1

2
=

F(un
σ )+F(un

σ+1)

2
− ∆x

2∆t
(un

σ+1−un
σ ), (4.31)

or the less–dissipative Rusanov (or local Lax–Friedrichs) scheme defined by

F̃n
σ+ 1

2
=

F(un
σ )+F(un

σ+1)

2
− max(ρ(JF(uσ )),ρ(JF(uσ+1)))

2
(un

σ+1−un
σ ). (4.32)

4.1.2.3 Properties

We introduce some desired properties for methods solving the conservation laws (2.2).

Definition 4.5 (Conservation). A numerical scheme is conservative if

∑
σ

un+1
σ = ∑

σ

un
σ , ∀n. (4.33)

Proposition 4.1.6. All the FV schemes are conservative by definition.

Proof. It can be easily proven that a FV scheme defined as (4.26) is conservative. Supposing
periodic boundary conditions, we see that

∑
σ

un+1
σ = ∑

σ

un
σ −

∆t
∆x ∑

σ

(
F̃n

σ+ 1
2
− F̃n

σ− 1
2

)
= ∑

σ

un
σ , (4.34)

since the sum of the numerical fluxes is telescopic.

Moreover, it can be proven that every conservative scheme can be written into the FV
framework, maybe including more variable into the definition of the numerical flux, e.g. F̃

σ+ 1
2
=

F̃(uσ−p+1, . . . ,uσ+p).
The consistency of a FV scheme can be reformulated into the following property.

Definition 4.6 (Consistency for a FV scheme). A FV scheme is consistent if its numerical flux
verify

F̃(u, . . . ,u) = F(u), ∀u. (4.35)

This property must be verified if we want the FV scheme to converge, but it is not sufficient.
One can build convergent FV schemes checking their stability and this can be done with the
monotonicity.

Definition 4.7 (Monotone scheme). A FV scheme is monotone if the numerical flux is non–
decreasing in each entry, i. e.,

(uz− vz)
(
F̃(u1, . . . ,uz, . . . ,u2p+1)− F̃(u1, . . . ,vz, . . . ,u2p+1)

)
≥ 0, ∀uz,vz ∈ R. (4.36)

The Rusanov and the Lax–Friedrichs schemes are monotone. As shown in [95,105], monotone
conservative and consistent schemes are convergent.

Another important result on the convergence to the weak solution of the conservation law
(2.2) has been shown by Lax and Wendroff in [91].
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Theorem 4.1.7 (Lax–Wendroff theorem). Consider a system of conservation laws in 1D with
one weak solution uex. Let uh be the numerical solution of a conservative and consistent scheme,
with a Lipschitz numerical flux F̃. Assume also that u0 ∈ L∞(R) and that the approximations uh
converge almost everywhere to a function ulim. Then ulim is the weak solution of the conservation
laws (2.2).

There exist also extensions of this theorem to multi dimensional problems. For example,
in [89] they state the following result.

Theorem 4.1.8 (2D Lax–Wendroff theorem). Consider a conformal 2D triangular mesh and a
FV conservative scheme. If the approximate solutions uh are such that ‖uh‖L∞ ≤C uniformly
with respect to h and ‖uh−ulim‖L2 → 0, then ulim is the entropy solution of the system (2.2).

4.1.2.4 High Order FV Schemes

There are many ways of extending the FV schemes to (very) high order accuracy. Again,
one can use the Taylor series and discretize the extra terms of the expansion in time, using the
relations given by the equation itself.

Another way to obtain high order schemes is to increase the number degrees of freedom
inside a cell and to consider a high order reconstruction of the function uh. This is typically done
in two steps. In the first one, the information of the neighboring cells is used to approximate a
high order polynomial inside the cell. Then, the numerical flux is computed on these polynomials
and consequently the cell average values are updated. This often leads to oscillatory results,
in particular close to discontinuities, and may not converge to the exact solution. To obviate
this problem, limiters are used to bound the oscillations and to obtain total variational bounded
solutions.

The Essentially Non Oscillatory (ENO) schemes are arbitrary high order methods defined with
a similar strategy. The reconstruction of a high order polynomial inside a cell is done comparing
different possible polynomial reconstructions obtained by different stencils and choosing the less
oscillatory one. The Weighted ENO (WENO) methods are an extension of these schemes, where
the usage of all the information of the stencil of the neighboring cells is optimized through the
choice of weights in front of the different reconstruction polynomials.

The time integration for these methods is often performed by a RK method.

4.1.3 Finite Element

Another approach to perform the space discretization of (2.2) is the Finite Element (FE)
method. Even if it is more used in the parabolic and elliptic community, there are many research
groups that are using it for hyperbolic problems. We base this discussion on [123]. The FE
method is based on the weak formulation of the problem (2.14b). Given a triangulation Ωh of the
space Ω, we seek the approximation uh ∈ VΣ, where

VΣ :=
{

ϕ ∈ C0(Ωh) : ϕ|e ∈ Pp(K), ∀e ∈Ωh
}
. (4.37)

A basis for the space VΣ will be denoted by {ϕσ}Σ
σ=1 and the solution will be sought as uh(x, t) =

∑
Σ
σ=1 uσ (t)ϕσ (x).
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Performing a Galerkin projection of the weak solution onto the finite dimensional space VΣ,
one obtains the following system

∑
e

∫
e×R+

ϕξ (x)
Σ

∑
σ=1

∂tuσ (t)ϕσ (x)+
D

∑
d=1

Fd

(
Σ

∑
σ=1

uσ (t)ϕσ (x)

)
∂xd ϕξ (x)+ϕξ R

(
Σ

∑
σ=1

uσ (t)ϕσ (x)

)
dxdt

+
∫
R+

∫
∂e

ϕξ (x)F

(
Σ

∑
σ=1

uσ (t)ϕσ (x)

)
·ndxdt, ξ = 1, . . . ,Σ.

(4.38)

Chosen a time discretization, this can be a linear or nonlinear system of equations to be solved
in the coefficients un

σ , for each time step. Estimations on the error are done by the usual tools
of the finite elements, even if the coercive bilinear form is not available to give lower and upper
bounds of the errors, and the coefficients are less easy to be computed. We refer to [123] for
more details. We just show the final estimation for homogeneous boundary conditions for the
semidiscretization in space, supposing that u(·, t)∈H p+1(Ω) for all t ∈ [0, t f ], u0 ∈H p(Ω) and
∂tu(·, t) ∈H p(Ω). Here, we denote with H the Sobolev spaces defined, for instance, in [24].
The final estimation is the following:

max
t∈[0,t f ]

‖u(·, t)−uh(·, t)‖L2 +

(∫ t f

0
|u(·, t)−uh(t)|2F,∂Ω

)1/2

=O(‖u0−uh(·,0)‖L2 +hp), (4.39)

where |·|2F,∂Ω
is a seminorm on the boundary of the domain depending on the flux and p is the

degree of the chosen polynomial.

4.1.3.1 Stabilization

This type of approach is unstable for advection dominated problems, hence, for almost
all the hyperbolic problems. Classical stabilization terms can be added to this formulation.
One widely used stabilization technique is the Streamline Upwind Petrov–Galerkin (SUPG) by
Hughes [25, 123].

It can be rewritten in the following way with new test functions. Defining the residual
equation

rh(u) := ∂tuh(x, t)+
D

∑
d=1

∂xd Fd(uh(x, t))+R(uh(x, t)), (4.40)

we can rewrite the classical FE method as∫
Ω

∫ t f

0
rh(uh)ϕξ dxdt = 0, ∀ξ = 1, . . . ,Σ. (4.41)

The SUPG method can be written changing the basis functions ϕσ into

ϕ̃σ = ϕσ + ∑
e∈Ωh

τe

D

∑
d=1

∂uFd(u) ·∂xd ϕσ |e, (4.42)

where τ is a coefficient proportional to the size of the cell e, that we defined as

τe :=

(
∑
σ∈e

∣∣∣∣∣ D

∑
d=1

∂uFd∂xd ϕσ

∣∣∣∣∣
)−1

. (4.43)
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Here, ∂xd ϕσ are proportional to he and the absolute value is computed in characteristic coordinates.
The inverse of the matrix does always makes sense in the context of (4.42), see [1, 8, 25]. We
want to remark that in this case the test functions differ for the different equations of the system
of PDE, indeed ∂uFd are matrices, and we meant the definition of the test functions (4.42) as a
vector for the whole system, with an abuse of notation. The final method can be described as∫

Ω

∫ t f

0
rh(uh)ϕ̃ξ dxdt = 0, ∀ξ = 1, . . . ,Σ. (4.44)

In general this method is stable for many types of problems and we can easily see that if uh is
such that rh(uh) = 0, then it is a solution of both (4.41) and (4.44).

Remark 4.1.9 (Courant–Friedrichs–Lax conditions). Also for the finite element method it holds
that the time discretization is bounded by some CFL conditions as in (4.20).

4.1.3.2 Discontinuous Galerkin

A very successful more recent variation of the Finite Element method is the Discontinuous
Galerkin (DG) method. It was originally introduced by Reed [128], but it was brought in the
hyperbolic community by Cockburn and Shu with several papers at the end of the ’80s and in the
’90s in [45, 46, 47]. Following [13] we provide a summary of the method.

The setting is very similar to the one of the FE, but the considered basis functions are different.
It is still based on the weak formulation of the problem (2.14b). Given a triangulation Ωh of the
space Ω, we seek the approximation uh ∈ VΣ, where

VΣ := {ϕ ∈ L∞(Ωh) : ϕ|e ∈ Pp(K), ∀e ∈Ωh} . (4.45)

A basis for the space VΣ will be denoted by {ϕσ}Σ
σ=1 and the solution will be sought as uh(x, t) =

∑e∈Ωh ∑σ∈e uσ (t)ϕσ (x). We remark that the continuity of the elements is not anymore required
on the element interfaces. This leads to multiple defined values at the border of the cells. When
talking about an element e, we will use u+ to refer to the value of the function in the neighboring
cells. This will lead also to the definition of jump and average

[u(x)] := u(x)−u+(x), 〈u(x)〉 :=
u(x)+u+(x)

2
, ∀x ∈ ∂e. (4.46)

Moreover, basis functions with support inside just one element are the typical choice of bases.
This will lead to sparse block mass matrices, which allow to compute local inverses that do not
propagate all around the domain.

As a side effect, we have to rewrite the previous formulation and reconsider the derivatives
that were present in the weak formulation. Consider one element e and a basis function ϕξ with
support in it.

∫
e×R+

ϕξ

(
∂tuh(x, t)+

D

∑
d=1

∂xd Fd(uh(x, t))−R(uh)

)
dxdt =

∫
e×R+

ϕξ (∂tuh(x, t)−R(uh))dxdt−
∫

∂e×R+

D

∑
d=1

Fd(uh(x, t))∂xd ϕξ dxdt +
∫

∂e
ϕξ F(uh(x, t)) ·n.

(4.47)

Thanks to the Gauss theorem we can move the derivative in space on the test functions, which
are easier to treat in the boundary of the element e. More important, we can now handle the
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communication of the flux between the cells with the term∫
∂e×R+

D

∑
d=1

Fd(uh(x, t))∂xd ϕσ ξ dxdt =
∫

∂e×R+

D

∑
d=1

F̃d(uh(x, t),u+
h (x, t))∂xd ϕσ ξ dxdt, (4.48)

where the ambiguity of the definition of the function uh can be overcome with a numerical flux
F̃ similar to the one seen in the FV methods. A classical choice of a numerical DG flux is the
Lax–Friedrichs flux, i.e.,

F̃d(uh,u+
h ) :=

1
2

(
〈F(uh)〉−max

uh,u+
h

ρ(JuFd)[uh]

)
. (4.49)

These schemes have been demonstrated to be particularly flexible and robust. The choice of
the numerical flux is, clearly, crucial according to the type of simulation one is interested in.

Error estimations on the obtained solutions are available [123,150] and they are similar to the
finite element ones.

Again, for a full discretization, the time discretization scale must respect some CFL condi-
tions.

4.2 Residual Distribution Schemes

In this section we discuss another space discretization technique called Residual Distribution
(RD).

4.2.1 Origin of the Method

This method has been developed by different researchers from 1990s on. We must mention
the work on these schemes done by R. Abgrall, T. J. Barth, D. Careni, H. Deconinck, M. Hubbard,
M. Ricchiuto, P. L. Roe and C.–W. Shu. In particular, there was a technological push towards
parallel computing and the residual distribution scheme was an answer to this type of architectures.
The original idea was introduced by P. L. Roe [133], where the integral of the divergence was
proposed as an error measure, i.e., a fluctuation, and, with the evolution in time, the aim was to
decrease the error measure.

More precisely it was thought into the FV setting. If we consider again the notation of
section 4.1.2 in 1D, we have that a FV scheme can be rewritten in the following way

un+1
σ = un

σ −
∆t
∆x

(
F̃

σ+ 1
2
− F̃

σ− 1
2

)
= un

σ −
∆t
∆x

(
F̃

σ+ 1
2
−F(un

σ )+F(un
σ )− F̃

σ− 1
2

)
. (4.50)

Defining the nodal residuals with

φ
σ+ 1

2
σ (un

h) := F̃
σ+ 1

2
−F(un

σ ), φ
σ− 1

2
σ (un

h) := F(un
σ )− F̃

σ− 1
2
, (4.51)

we can introduce the residual distribution scheme

un+1
σ = un

σ −
∆t
∆x

(
φ

σ+ 1
2

σ +φ
σ− 1

2
σ

)
, ∀σ . (4.52)
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These nodal residuals verify another important property, which guarantees the conservation
of the scheme. Indeed, the sum of the residuals for one cell (not a control volume) sum up to the
total residual φ σ+ 1

2 , i.e., for a conservation law (2.2),

φ
σ+ 1

2
σ +φ

σ+ 1
2

σ+1 = φ
σ+ 1

2 :=
∫ xσ+1

xσ

∂xF(un
h)dx = F(un

σ+1)−F(un
σ ). (4.53)

This method can be generalized in many ways, but, in particular, it can be written in a FE
way, which allows to make it reshapable into FV, FE or DG methods.

4.2.2 Notation

We follow the notation of [1, 52]. We always refer to the balance law of equation (2.1). The
RD framework can be written in the FEM discretization, so we proceed defining a triangulation
Ωh on our domain Ω, denoting by e the generic element of the mesh and by h the characteristic
mesh size (implicitly supposing some regularity on the mesh).

Following the ideas of the Galerkin FEM, we use an approximation space VΣ for the solutions
given by globally continuous piecewise polynomials of degree p:

VΣ := {uh ∈ C 0(Ωh), uh|e ∈ Pp, ∀e ∈Ωh}. (4.54)

Now we can rewrite the numerical solution uh(x) as a linear combination of compactly supported
basis functions ϕσ ∈ VΣ through the coefficients uσ for every degree of freedom σ = 1, . . . ,Σ.
This can be written as

uh(x) =
Σ

∑
σ=1

uσ ϕσ (x) = ∑
e∈Ωh

∑
σ∈e

uσ ϕσ |e (x), ∀x ∈Ω (4.55)

where Σ is the number of all the degrees of freedom of Ωh, so that {ϕσ : σ = 1, . . . ,Σ} is a basis
for VΣ, and the coefficients uσ must be found with a numerical method.

4.2.3 Residual Distribution Algorithm for Steady Problems

RD schemes for steady problems of type

D

∑
d=1

∂xd Fd(u) = R(u) (4.56)

can be summarized as follows and as sketched in fig. 4.1. This is the formulation that was
originally used in many works [1, 2, 3].

1. Define ∀e ∈Ωh a fluctuation term (total residual)1

φ
e :=

∫
e

(
D

∑
d=1

∂xd Fd(uh)−R(uh)

)
dx =

∫
∂e

D

∑
d=1

Fd(uh) ·ndΓ−
∫

e
R(uh)dx. (4.57)

1The second formulation of (4.57) can be used to rewrite the DG or FV numerical flux into the RD framework as
in [6].
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Figure 4.1: Defining total residual, nodal residuals and building the RD scheme

2. Split the total residual φ e into nodal residuals φ e
σ for every degree of freedom σ not

vanishing in the cell e, i.e.,
φ

e = ∑
σ∈e

φ
e
σ , ∀e ∈Ωh. (4.58)

The distribution strategy, i.e., how to split the total residual into each nodal residual, is often
done by computing some coefficients ϒe

σ and assigning φ e
σ = ϒe

σ φ e, where the following
relation must hold

∑
σ∈e

ϒ
e
σ = 1. (4.59)

More possibilities to choose the splitting will be discussed in the following.

3. The resulting scheme is obtained for each degree of freedom σ by summing all the nodal
residual contributions from different elements e, that is

∑
e|σ∈e

φ
e
σ = 0, ∀σ = 1, . . . ,Σ. (4.60)

The key of the scheme is the definition of nodal residuals. This choice is the actual definition
of the spatial discretization. The equation (4.58) is guaranteeing the conservation of the scheme.
The high order accuracy in space can be achieved choosing high degree polynomial basis functions
and consistent nodal residuals with high order artificial diffusion. The stability must be reached
with some stabilization terms that must be appropriately integrated into the nodal residuals,
always maintaining (4.58). In [1, 5, 6] it has been shown that well known FEM or finite volume
schemes (such as SUPG, DG, FV-WENO, etc.) can be rewritten in terms of RD, just choosing
the proper nodal residuals.

In particular, reaching the solution of (4.60) is not immediate, the formula (4.60) describes a
nonlinear system of equations in Σ×S unknowns and rarely it is easy to compute directly the
solution. Often, it is sought through an iterative process until the residuals are smaller than a
tolerance, i.e.,

un+1
σ = un

σ −Wσ ∑
e|σ∈e

φ
e
σ , ∀σ = 1, . . . ,Σ, (4.61)

where Wσ are some relaxation coefficients.
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4.2.3.1 On the Choice of the Nodal Residuals

The definition of a RD scheme (4.60) relies on stable and accurate definition of the nodal
residuals. They can be interpreted as the contribution of the total residual that influences
each node/degree of freedom σ . If we think to an upwind scheme, for example, this would
correspond to moving the whole contribution towards the direction of the flow. This should be
done maintaining the conservation law (4.58). Many well known schemes can be rewritten in this
formulation [6]. We present here, as an example, the SUPG scheme [76] in the RD framework.
As introduced before, we have to define the nodal residuals as

φ
e
σ (uh)=

∫
e

(
ϕσ + τe

D

∑
d=1

∂uF(u) ·∂xd ϕσ

)(
D

∑
d=1

∂xd Fd(uh)−R(u)

)
dx, (4.62)

where τe is defined in (4.43). The clou property we are using in this definition is that ∑σ ϕσ (x)≡ 1
everywhere in the domain. So, if we sum all the contributions of a cell e, we get that the sum
over the DoFs of the derivative of the basis functions in the stabilization terms is equal to zero.
Hence, we obtain (4.58).

During our tests and the simulations, we will use two types of residual distribution schemes.
One is suited for smooth solutions and it adds only a bit of artificial dissipation through some
penalty terms. The second one is more robust and can deal with discontinuous solutions using a
more elaborated limiter and it is provably positivity preserving.

4.2.3.2 Smooth solutions residuals

When we are dealing with smooth tests and we know a priori that we do not need the extra
diffusion to dump oscillations brought by discontinuities, we can use a pure Galerkin discretization
with a stabilization term that penalizes the jump of the gradient (or higher derivatives) of the
solution across cells edges [5,30]. These terms can also serve to filter out the spurious oscillations
from the solution. It was, indeed, firstly used in the RD context for steady problems, in order to
remove the spurious modes that were introduced by nonlinear stabilizations. Those techniques
guarantee only a local maximum property in time, without respecting the upwinding principle,
see [2].

For the hyperbolic system (2.1), the scheme proceeds as follows ∀σ = 1, . . . ,Σ

φ
e,1
σ (uh) =

∫
e
ϕσ

(
D

∑
d=1

∂xd Fd(uh)−R(uh)

)
dx, (4.63)

φ
e
σ (uh) = φ

e,1
σ (uh)+

p

∑
z=1

∑
γ|edge of e

τzh2z
γ

∫
γ

[∇zuh] · [∇z
ϕσ ]dΓ. (4.64)

Here p is the degree of the polynomial of the basis functions we use, τz are positive coefficients,
with the same physical dimension of a speed, and [·] is the jump across the edge γ , namely, if
γ separates e and e+, [uh] = uh|e−uh|e+ . All the derivatives are meant in the direction of the
normal to the edge γ and hγ is the length of a 1D element of the mesh (the edge γ in 2D, the size
of a cell |e| in 1D). The schemes just presented are naturally of order p+1. The parameters τp

must be chosen carefully if we want the scheme to be stable. The stability analysis of this scheme
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in [15] and in section 4.2.6 suggest some optimal values for these parameters in case of 1D linear
fluxes, where the relations τ1CFL ≤C1 and τ1 ≥C2 CFL must hold. The two coefficients C1 and
C2 are hard to determine even for simple linear 1D scalar test cases. So, in our simulations for
nonlinear and multi dimensional problems we perform a hyperanalysis on these parameters for
small times and we choose the one that better performs for a specific polynomial degree.

4.2.3.3 Shock Solutions Residuals

If, a priori, we know that the solution of the test presents discontinuities, we use the following
scheme. More details on the choice of these schemes can be found in [8]. The procedure starts
defining a local Galerkin Lax–Friedrichs type nodal residual on the steady conservation laws
(4.56):

φ
e,LxF
σ (uh) :=

∫
e
ϕσ

(
D

∑
d=1

∂xd Fd(uh)−R(uh)

)
dx+αe(uσ −uh

e), (4.65)

αe := he max
σ∈e

max
d

(ρS (∂uFd)) , (4.66)

where uh
e is the average of uh over the cell e, he is the characteristic lenght of the cell e and ρS is

the function returning the spectral radius of the input matrix. Then, to guarantee monotonicity of
the solution near strong discontinuities, we proceed as follows,

ϒ
e
σ (uh) := max

(
φ

e,LxF
σ

φ e ,0

)(
∑
j∈e

max

(
φ

e,LxF
j

φ e ,0

))−1

, φ
∗,e
σ := ϒ

e
σ φ

e. (4.67)

The divisions between vectors are meant component–wise in characteristic coordinates. Then,
we apply a convex combination between the new residual and Lax–Friedrichs’s one, where the
blending coefficient is Θ,

Θ :=
|φ e|

∑ j∈e |φ e,LxF
j |

, φ
·,e
σ := (1−Θ)φ ∗,eσ +Θφ

e,LxF
σ . (4.68)

This scheme guarantees the monotonicity principle [3]. After that, to define the final scheme, we
add to the scheme the jump filtering terms

φ
e
σ := φ

·,e
σ +

p

∑
z=1

∑
γ|edge of e

τzh2z
γ

∫
γ

[∇zuh] · [∇z
ϕσ ]dΓ, (4.69)

which has a filtering effect on the spurious modes [2]. In the next sections we will often omit the
filtering terms for the ease of notation. Anyway, all the computations can be carried out including
these terms, without changing the main statements.

This scheme will be used for shock tests or simulations where discontinuities or steep
gradients are present.

4.2.4 Residual Distribution for Unsteady Problems

In order to extend the RD formulation to unsteady balance laws (2.1)

∂tu+∇x ·F(u) = R(u), (4.70)
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Figure 4.2: A spacetime cell e := [tn, tn+1]× e

where the notation ∇x = (∂x1 , . . . ,∂xD)
T , we proceed with a natural consideration. If we define

y := (t,x) ∈ RD+1 to be the space–time variable, ∇y = (∂t ,∂x1 , . . . ,∂xD)
T to be the gradient and

we define an extension of the flux F as

F(u) :=
(

u
F(u)

)
∈ R(D+1)×S, (4.71)

we can rewrite the system (4.70) as

∇y ·F(u(y)) = R(u(y)), (4.72)

similarly to the steady equation (4.56). We can now extend the FE setting to the space time
Ω := [0, t f ]×Ω. To do so, we start from the triangulation of the space domain Ωh. We consider
time steps [tn, tn+1] for n = 0, . . . ,N − 1, where t0 = 0 and tN = t f . Then, we consider the
triangulation of the space time Ω given by the tensor product of the two discretized spaces, as in
fig. 4.2, i.e.,

Ωh := {e = [tn, tn+1]× e | for n = 1, . . . ,N−1, e ∈Ωh}. (4.73)

We can define basis functions as the tensor product of the basis functions in time and space. For
the purpose we define a set of basis functions {ψm(t)}M

m=0 with compact support on [tn, tn+1].
Usually, we use Lagrangian basis functions in equispaced points tn,0, . . . , tn,M where tn,0 = tn and
tn,M = tn+1. Here, the degree of freedom related to m = 0 is actually known from the previous
time step. This choice is analogue to the one done in the DeC formulation in section 3.2. Other
choices that do not include boundary points or with different distributions are possible.

Now, we can define the finite dimensional functional space where we search the solution in
space and time, for each cell e:

VΞ(e) := span
{

ϕξ (y) = ϕ(m,σ)(t,x) := ψ
m(t)ϕσ (x) | for ξ ∈ {0, . . . ,M}×{σ ∈ e}

}
. (4.74)

Considering uh ∈ VΞ(Ω), we can proceed exactly as in the steady case, extending the
definitions to total residuals

φ
e :=

∫
e
∇y ·F(uh)−R(uh) (4.75)

and the nodal residuals
φ

e
ξ such that ∑

ξ∈e

φ
e
ξ = φ

e
. (4.76)
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In particular, valid choices are still the Galerkin nodal residuals

φ
e
ξ :=

∫
e
ϕξ (y)

(
∇y ·F(uh)−R(uh)

)
dy

=
∫ tn+1

tn

∫
e
ψ

m(t)ϕσ (x)(∂tuh(t,x)+∇x ·F(uh(t,x))−R(uh(t,x)))dxdt,
(4.77)

where one could also add the stabilization terms as in (4.64), or the ones given by the coefficients
ϒe

ξ
, for example in (4.69).

Finally, one obtains the system of equations of the method

∑
e|ξ∈e

φ
e
ξ (uh) = 0, ∀ξ = 1, . . . ,Ξ. (4.78)

Example 4.2.1 (Second order residual distribution in spacetime). In order to better understand the
discretization strategy, we provide an example for M = 1, i.e., two basis functions in time, that
we will redefine as ψn(t) := ψ0(t) = ∆t−1(tn+1− t) and ψn+1(t) := ψ1(t) = ∆t−1(t− tn). Let us
write the reconstruction solution making explicit the dependence on the basis functions in time:

uh(t,x) = ψ
n(t)uh(tn,x)+ψ

n+1(t)uh(tn+1,x) = ψ
n(t)un

h(x)+ψ
n+1(t)un+1

h (x). (4.79)

We can easily see that the total residuals become

φ
e
=
∫

e

un+1
h (x)−un

h(x)
∆t

dx+
φ e(un

h)+φ e(un+1
h )

2
, (4.80)

and the final scheme with the coefficient formulation of (4.59) becomes for each σ = 1, . . . ,Σ

0 = ∑
e|σ∈e

φ
e
σ = ∑

e|σ∈e
ϒ

e
σ φ

e
= ∑

e|σ∈e
ϒ

e
σ

∫
e

(
un+1

h (x)−un
h(x)

∆t
dx+

φ e(un
h)+φ e(un+1

h )

2

)
. (4.81)

This is a Crank–Nicolson–like method, but it is easily extensible to arbitrarily high order accuracy
in space and time. As for Crank–Nicolson, we notice that the systems of equations (4.81) is
highly nonlinearly implicit in the residuals, according to their definitions and to the definition of
the fluxes F, hence, the system is not directly solvable.

In the next section we combine the DeC method with the RD framework, in order to ap-
proximate with high order of accuracy the solution of the system (4.78) using a fully explicit
scheme.

4.2.5 DeC and Residual Distribution: an Explicit Scheme

The RD method was originally presented for steady problems and iterative algorithms were
used to reach the solution ∑e|σ∈e φ e

σ σ(uh) = 0 [1, 2]. Then, the first high order approaches
to solve time–dependent problems made use of Runge–Kutta time integration methods with
corrections of the mass matrix to have an explicit matrix–free algorithm [130]. In this section, we
will introduce the explicit DeC algorithm applied to the residual distribution schemes as presented
in [5, 8]. This technique allow to get rid of the mass matrix, still obtaining an arbitrary high order
formulation in space and time. This strategy was introduced by Abgrall in his work [5] to have a
matrix–free version of the FE schemes.
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As done in section 3.2, we have to follow a particular discretization of the variables in time.
Following the idea of many one–step time integration schemes, such as Runge-Kutta (RK),
Arbitrary high order using Derivatives (ADER) and so on, we build a high order approximation of
the time evolution through stages in the time interval. For a comparison between DeC and ADER
as time integration schemes we refer to [149]. To do so, we discretize the timestep [tn, tn+1] into
M subtimesteps [tn,0, tn,1], . . . , [tn,M−1, tn,M] and the variable uh in time at each subtimestep un,m

h
as in fig. 4.3.

tn = tn,0

un,0
h

tn,1

un,1
h

tn,m

un,m
h

tn,M = tn+1

un,M
h

Figure 4.3: Subtimesteps

The Picard–Lindelöf theorem proves the existence and uniqueness of the solution of an ODE,
making use of the so-called Picard iterations. We follow the statement result of the theorem
writing for m = 1, . . . ,M

un,m
h = un

h−
∫ tn,m

tn
(∇ ·F(uh(x,s))−R(uh(x,s)))ds. (4.82)

This formulation can be achieved also with the spacetime approach of the Galerkin nodal residuals
(4.77), choosing the test functions in time as ψ̃m(t) = 1[tn,0,tn,m](t) for m = 1, . . . ,M, differently
from the basis functions of uh. If we substitute this choice in (4.77), keeping the ϒ notation (4.59)
for the space distribution, we obtain

∑
e|(m,σ)∈e

φ
e
m,σ (uh) := ∑

e|σ∈e
ϒ

e
σ

∫ tn+1

tn

∫
e
ψ̃

m(t)(∂tuh(t,x)+∇x ·F(uh(t,x))−R(uh(t,x)))dxdt (4.83)

= ∑
e|σ∈e

ϒ
e
σ

∫ tn,m

tn,0

∫
e
(∂tuh(t,x)+∇x ·F(uh(t,x))−R(uh(t,x)))dxdt (4.84)

= ∑
e|σ∈e

ϒ
e
σ

(∫
e

(
un,m

h (x)−un,0
h (x)

)
dx+

∫ tn,m

tn,0
φ

e(uh(t))dt
)
. (4.85)

The definition of the nodal residuals through the coefficients ϒ is not restrictive, one can rewrite
the same computations for different types of definitions of nodal residuals as in (4.64) with
Galerkin residuals and stabilization terms or as in (4.69) with the ϒ coefficients and the filtering
terms.

More precisely, the scheme that we want to solve is a system of equations, where each entry
is the discretization of (4.82) for a different m = 1, . . . ,M. For the flux and source terms, we use
the discretization produced with the residual distribution method, while the finite difference of the
time derivative is simply approached with a Galerkin residual. Let us define u := (un,0

h , . . . ,un,M
h )

the vector of variables for all the subtimesteps. In practice, for all the degrees of freedom
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σ = 1, . . . ,Σ, we can write the operator L 2 that we are interested in as

L 2
σ (u) :=


∑

e|σ∈e
ϒ

e
σ

∫
e
(un,1

h −un,0
h )dx+

tn,1∫
tn,0

IM(φ e(un,0
h ), . . . ,φ e(un,M

h ),s)ds


. . .

∑
e|σ∈e

ϒ
e
σ

∫
e
(un,M

h −un,0
h )dx+

tn,M∫
tn,0

IM(φ e(un,0
h ), . . . ,φ e(un,M

h ),s)ds




. (4.86)

The L 2 operator is composed of M equations with M unknowns un,1
h , . . . ,un,M

h ∈ RΣ×S, the
function IM is an interpolation polynomial {ψm}M

m=0 in nodes {tn,m}M
m=0 and the time integration

is computed using quadrature formulas in the same interpolation points. After applying the
quadrature rule, the time integration of the flux and source can be rewritten as∫ tn,m

tn,0
IM(φ e(un,0

h ), . . . ,φ e(un,M
h ),s)ds = ∆t

M

∑
r=0

θ
m
r φ

e(un,r
h ). (4.87)

What we aim to is the solution of the system L 2(u∗) = 0, assuming that a unique solution u∗
exists. This is a system containing many implicit, in general, nonlinear terms, and it can be
interpreted as an implicit RK method. We do not want to make use of nonlinear solvers to find
the solution of this system of M×Σ equations. Nevertheless, the solution u∗ is an approximation
of the exact solution with an accuracy of order M+1 in time and p+1 in space, where p is the
degree of the utilized polynomials, that we want to achieve.

The core of the DeC algorithm, as presented in [5], is an iterative procedure that uses two
operators, one high order and one low order and explicit or easy to solve. So, we introduce a first
order approximation of the scheme L 2 presented in [5, 8], that we will call L 1.

L 1
σ (u) :=



(un,1
σ −un,0

σ ) ∑
e|σ∈e

∫
e
ϕσ dx+ ∑

e|σ∈e

tn,1∫
tn,0

I0(φ
e
σ (u

n,0
h ), . . . ,φ e

σ (u
n,M
h ),s)ds

. . .

(un,M
σ −un,0

σ ) ∑
e|σ∈e

∫
e
ϕσ dx+ ∑

e|σ∈e

tn,M∫
tn,0

I0(φ
e
σ (u

n,0
h ), . . . ,φ e

σ (u
n,M
h ),s)ds


. (4.88)

The first simplification applied is a mass lumping on the derivative in time, where we pass
from the integral of the L 2 operator of ϒe

σ

∫
e un,m

h ≈ ∑ j
∫

e ϕσ ϕ jun,m
j to

∫
e ϕσ un,m

σ , that produces a
diagonal mass matrix. The inversion of this mass matrix is only possible if

|eσ | := ∑
e

∫
e
ϕσ (x)dx > 0

for all the degrees of freedom. For this reason, we will always consider in the space discretization
Bernstein polynomials Bp, which are nonnegative on the cells of interest, instead of Lagrange
polynomial Pp, as basis functions for every cell e. The Lagrange polynomials Pp show negative
values in 1D starting from order 9, but in multi dimensional domains, negative coefficients are
present already for second order polynomials. This choice and its practical implementation are
explained in details in [8]. In particular, the usage of barycentric coordinates and a map to a
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reference element are crucial in this procedure. The mass lumping introduces an error with
respect to the previous method of the order O(h).

The second simplification is in the residual part, where we substituted the high order inter-
polant IM with the left Riemann sum, that consists of the constant interpolant I0 in the beginning
stage un,0

h , resulting in an explicit right hand side, i.e., the forward Euler time discretization.
The final first order scheme L 1(u) = 0 is, hence, explicit and easy to solve. The considered
interpolant polynomial can be rewritten as∫ tn,m

tn,0
I0(φ

e
σ (u

n,0
h ), . . . ,φ e

σ (u
n,M
h ),s) = ∆tβ m

φ
e
σ (u

n,0
h ), (4.89)

where β m := tn,m−tn,0

tn+1−tn . This approximation in time is a first order approximation and brings an
error of order O(∆t2) with respect to the L 2 formulation, if the solution is regular enough.

Applying the DeC algorithm (3.24), we adopt the notation of the iteration superscript index
(k) for k = 0, . . . ,K. Hence, we will omit the timestep index n for brevity. We obtain a high order
method, given by the iterative procedure of the DeC, i.e.,

um,(0) := un
h, m = 1, . . . ,M, (4.90a)

u0,(k) := un
h, k = 0, . . . ,K, (4.90b)

L 1(u(k)) = L 1(u(k−1))−L 2(u(k−1)). (4.90c)

As said in section 3.2, we remark that it is known how many iterations we need to obtain a high
order accurate approximations. Indeed, K iterations guarantee an approximation of order K to the
solution u∗, hence, we usually choose K = M+1 = p+1, were p is the degree of the polynomials
of the basis functions in space to obtain a uniform order of accuracy in space and time.

Example 4.2.2 (Second order DeC RD scheme). In order to better catch the meaning of the DeC
procedure, we explain the steps for the second order case, where M = 1 and K = 2. As said
before, we have only 1 equation for m = 1 in the L 1 and L 2 operators and β 1 = 1. The first
step reads

u1,(0)
h = u0,(1)

h = u0,(0)
h = un

h, (4.91)

u1,(1)
σ = u0,(1)

σ +
∆t
|eσ | ∑

e|σ∈e
φ

e
σ (u

0,(0)
h ) = u0,(1)

σ +
∆t
|eσ | ∑

e|σ∈e
φ

e
σ (u

0,(0)
h ). (4.92)

The second and final step reads

un+1
σ = u1,(2)

σ = u1,(1)
σ +

1
|eσ | ∑

e|σ∈e

φ
e
σ (u

0,(1)
h )+φ

e
σ (u

1,(1)
h )

2
. (4.93)

This method resemble a simple RK2 method and, indeed, it was originally thought in this way
in [130]. The difference is that, with the DeC formulation, we can obtain any order of accuracy,
just changing the number of corrections and the used basis functions.

4.2.6 Stability Analysis

In this section, we want to study the stability analysis of the Galerkin discretization with
stabilization of the jumps of the derivatives [30] as in (4.64), in the context of residual distribution
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schemes [1]. The schemes of interest are written in a deferred correction manner, see section 3.2
and [5, 54], to reach high order convergence in time. In particular, we will apply the method to
a linear advection equation (2.11) in 1D to perform a von Neumann analysis in the FD setting.
Doing this, we will compute the amplification factors of the Fourier modes of the solution. We
will show that the parameter, leading the jump stabilization, is highly correlated with respect to
the CFL number. In particular we have to require that their product is smaller than a constant and
their ratio is bigger than another constant. The computation is carried out in an analytical way
to compute the evolution matrices at each step, then it makes use of symbolical and numerical
computations to determine the amplification factor for the total time step for all modes.

This study will be submitted with a comparison of other time integration methods, other basis
functions and other stabilization techniques in [103].

4.2.6.1 Tools for the von Neumann Analysis

We want to study the stability of the scheme. For the whole scheme (4.64) to be stable we
have to check that ∀n ∈ N and every initial conditions u0, the norm of the the solution un at time
tn is bounded by a constant C independent on n and on mesh refinements:

‖Un‖2 ≤C‖U0‖2,∀n.
This can not always be done directly. So, instead of checking the norm of the solution itself, we
will check the Fourier transform of the solution. Thanks to the Parseval theorem, we know that∫ 1

0
u2(x)dx = ∑

k∈Z
|û(k)|2, û(k) =

∫ 1

0
u(x)e−2iπkxdx,

for any periodic smooth function. The von Neumann analysis [36] performs the study of the
amplification factor of the Fourier modes of the solution. In practice, we have to check that
every mode of the solution is not growing in time. This analysis leads to the study of an
amplification factor c such that u(ξ ,x, tn+1) = c(ξ ,∆x,∆t)u(ξ ,x, tn). Classically, one checks that
|c(ξ ,∆t,∆x)| ≤ 1 and one finds the CFL conditions on ∆t and ∆x.

A first problem that we meet doing this study is that instead of having a scalar factor of
amplification, we deal with a matrix of amplification, due to the fact that different degrees of
freedom behave differently in our scheme. To overcome this problem, we use the Kreiss’ theorem,
which can tell if a family of matrices is stable.

Theorem 4.2.3 (Kreiss’ Theorem). The family of matrices {Gn
p}n∈N, p∈{−N,...,N} is stable if and

only if there exists C > 0, the Kreiss’ constant, that for |z|> 1 verifies

||
(
Gp− zI

)−1||2 ≤
C
|z|−1

,

or, equivalently, for |z|< 1 it verifies

||
(
zGp− I

)−1||2 ≤
C

1−|z| . (4.94)

Secondly, we have to turn our scheme into a finite difference scheme. This implies to convert
all the operations that we have to compute into finite difference operators. To do so, we will use
the MATLAB software to compute symbolical operations and to assemble the final operators.

Finally, all the computations to get the amplification matrices for all the modes are done
numerically, sampling on grid of modes and on the unit circle for Kreiss’ theorem.
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4.2.6.2 Results

The scheme depends on the coefficients τ of the jump stabilization terms and CFL = ∆t
∆x .

What we can observe is that, for the scheme to be stable, these two quantities must be related by
the following inequalities

τ > r1CFL,

τ <
r2

CFL
.

(4.95)

The two coefficients r1 and r2 depend on the polynomial basis functions chosen. From the
numerical analysis, we can determine the optimal values for τ to maximize the CFL condition
∆t
∆x ≤ CFL in table 4.1. This should guarantee stability and the largest possible timestep. These
results apply only for 1D examples and extensions to multiple dimensions are not straightforward.

VΣ CFL τ

B1 0.8 0.79
B2 0.19 0.017
B3 0.28 0.0071
P2 0.75 0.019
P3 0.0001 0.01

.

Table 4.1: Stable values for CFL and τ .

We compare Bernstein and Lagrange polynomials. This is possible because in 1D the
coefficients |eσ |> 0 even with Lagrange polynomials, hence, the RD DeC procedure is applicable.
What we observe is a peculiar behavior. The second order Lagrange polynomials do not require
strong restriction, while for the third order we can not find the same relations we had for other
basis functions and, moreover, the conditions are much stricter. For Bernstein polynomials,
incredibly, we have more restrictive conditions on second order than third order.

We remark that, when the original equation has a different advection coefficient, as

∂tu+a∂xu = 0, (4.96)

we should adjust the optimal value in this way:

CFL(a) =
∆t
∆x

=
CFL(1)
|a| , τ(a) = |a|τ(1). (4.97)

4.2.6.3 Computation of Finite Difference Operator

To compute the von Neumann analysis of the scheme, we have to convert the scheme into
finite difference notation. Now, we will show the computations for Bernstein polynomials of
degree 2. First of all, we remark that the coefficients of the Bernstein polynomials of degree
higher than one do not correspond to physical values. For B2 we have

f (x)|x∈[x j,x j+1] ≈ f j ϕ0

(
x− x j

∆x

)
+ f j+1/2 ϕ1/2

(
x− x j

∆x

)
+ f j+1 ϕ1

(
x− x j

∆x

)
(4.98)
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where
ϕ0(s) = (1− s)2, ϕ1/2(s) = 2s(1− s), ϕ1(s) = s2.

Note that

f (x j) = f j, f (x j+1) = f j+1, f (x j+1/2) =
f j + f j+1

4
+

f j+1/2

2
(4.99)

implies f j = f (x j), f j+1 = f (x j+1), f j+1/2 = 2 f (x j+1/2)−
f (x j)+ f (x j+1)

2
. (4.100)

We can write this change of variable as a matrix multiplication, as

f(xσ ) = Rfσ . (4.101)

For B1 and Lagrange polynomials P we do not need to convert coefficients into evaluations
of function and for higher degree of polynomials we have similar computations. In those cases
the matrix R is the identity matrix.

Then, we want to convert the DeC method into a finite difference one. So, we compute ΦK
σ ,

the jumps and mass matrices for B2 and P2 approximations. In tables 4.2 and 4.3 we give the
various numerical values that are needed to evaluate the scheme.

ψ
∫ 1

0 ψϕ0
∫ 1

0 ψϕ1/2
∫ 1

0 ψϕ1
∫ 1

0 ψ ′ϕ0
∫ 1

0 ψ ′ϕ1/2
∫ 1

0 ψ ′ϕ1

ϕ0 1/5 1/10 1/30 −1/2 −1/3 −1/6
ϕ1/2 1/10 2/15 1/10 1/3 0 −1/3
ϕ1 1/30 1/10 1/5 1/6 1/3 1/2

Table 4.2: List of integrals that are needed for B2.

ψ
∫ 1

0 ψϕ0
∫ 1

0 ψϕ1/2
∫ 1

0 ψϕ1
∫ 1

0 ψ ′ϕ0
∫ 1

0 ψ ′ϕ1/2
∫ 1

0 ψ ′ϕ1

ϕ0 2/15 1/15 −1/30 −1/2 −2/3 1/6
ϕ1/2 1/15 8/15 1/15 2/3 0 −2/3
ϕ1 −1/30 1/15 2/15 −1/6 2/3 1/2

Table 4.3: List of integrals that are needed for P2.

Then, for every basis function we have to write in terms of coefficients uσ ′ the following
expressions

−
∫
R

ϕ
′
σ (x)u(x)dx = ∑

σ ′
dσ ,σ ′uσ ′ , (4.102a)∫

R
ϕσ (x)u(x)dx = ∑

σ ′
mσ ,σ ′uσ ′ , (4.102b)

h2
γ ∑

γ

∫
γ

[∇u] [∇ϕσ ] = ∑
σ ′

gσ ,σ ′uσ ′ , (4.102c)

where the coefficients dσ ,σ ′ ,mσ ,σ ′ ,gσ ,σ ′ for different polynomials can be found in tables 4.4 and
4.5.
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dσ ,σ ′ σ ′ = j−1 j−1/2 j j+1/2 j+1
σ = j −1/6 −1/3 0 1/3 1/6

σ = j+1/2 0 0 −1/3 0 1/3
mσ ,σ ′ σ ′ = j−1 j−1/2 j j+1/2 j+1

j 1/30 1/10 2/5 1/10 1/30
j+1/2 0 0 1/10 2/15 1/10

gσ ,σ ′ σ ′ = j−1 j−1/2 j j+1/2 j+1 j+3/2
j 0 −8 16 −8 0 0

j+1/2 0 4 −8 8 −8 4

Table 4.4: Coefficients of mass, derivative and jump matrices for B2.

dσ ,σ ′ σ ′ = j−1 j− 1
2 j j+ 1

2 j+1
σ = j −1/6 −1/3 0 1/3 1/6

σ = j+1/2 0 0 −2/3 0 2/3
mσ ,σ ′ σ ′ = j−1 j− 1

2 j j+ 1
2 j+1

j −1/30 1/15 4/15 1/15 −1/30
j+1/2 0 0 1/15 8/15 1/15

gσ ,σ ′ σ ′ = j−2 j− 3
2 j−1 j− 1

2 j j+ 1
2 j+1 j+ 3

2 j+2
σ = j −1 −4 12 −28 38 −28 12 −4 −1

σ = j+1/2 0 0 −4 16 −28 32 −28 16 −4

Table 4.5: Coefficients of mass, derivative and jump matrices for P2.

Through these coefficients, we can build the propagation operator of L 1 and the high order
operator L 2 in sense of finite difference. We have to simply put the coefficients into matrices
and multiply them according to the DeC scheme.

4.2.6.4 Fourier Analysis

Our aim is to see how the L2 norm of the solution evolves over time. From Parseval theorem,
we have that

||u||22 :=
∫ 1

0
u2(x)dx = ∑

p∈Z
|ûp|2, ûp =

∫ 1

0
u(x)e−2iπ pxdx, (4.103)

for any periodic function of period 1. Moreover, we can rewrite the function u as

u(x) = ∑
k∈Z

ûpei2πxp. (4.104)

What we want to check is the stability of the numerical method. More precisely, we consider the
Lax–Richtmyer stability, i.e.

||un||2 ≤C||u0||2, (4.105)
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where the C constant does not depend on mesh refinements in time and space. Thanks to Parseval
theorem, we can search this bound in the Fourier space and try to prove that

||ûn||2 ≤C||û0||2. (4.106)

In particular, we want to check the amplification coefficients of every mode ei2πxk and bound
them. This can be done, because the equation that we want to solve is linear and each mode is an
eigensolution of the original equation. So, in finite difference one would write something like

un+1
j = a(k,∆x,∆t)un

j (4.107)

where un
j = ei2πx jk and a(k,∆x,∆t) ∈ C. Finally, we would check which conditions must be

applied to ∆x,∆t in a way that ∀k |a| ≤ 1.
Here, the non standard thing is that the solution u is approximated by Bernstein basis functions

or Lagrange basis functions, i.e., in each cell

u(x) =
d

∑
j=0

uiϕ j(x) (4.108)

and we need to take into account that each coefficient may evolve differently. So, we may end up
with an amplification matrix instead of an amplification coefficient

Un+1 =

uσ1
...

uσd


n+1

=C(k,∆x,∆t)Un. (4.109)

Secondly, we have to take care about the transformation between different nodes. In finite
difference, one has that the nodal values can be expressed as a factor to the power of the shift
times the original nodal value, i.e.,

u(xl) = ei2πxlk = (ei2π∆xk)l− ju(x j). (4.110)

In our case, we have a more complicated situation. Each nodal coefficient is, indeed, a
combination of nodal values and the transformation rule is a bit different.

An example with B2 can be the following. If we define ξ = 2π∆xk and ω := eiξ ,

u j = u(x j), (4.111)

u j+1/2 = 2u(x j+1/2)−
u(x j)+u(x j+1)

2
= u j

(
2ω− 1+ω2

2

)
= (4.112)

= ω(2− cos(ξ ))u j, (4.113)

u j =
ω−1

2− cos(ξ )
u j+1/2. (4.114)

These transformation coefficients will be stored in the transformation matrix T such that
uσ = Tσσ ′uσ ′ . Of course for Pd polynomials the matrix Tσσ ′ = ωσ−σ ′ . While, for B2 it is in
table 4.6.
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Tσ ,σ ′ for B2 σ ′ = j j+1/2
σ = j 1 ω−1

2−cos(ξ )
σ = j+1/2 ω(2− cos(ξ )) 1

Table 4.6: Transformation matrix for B2.

4.2.6.5 Von Neumann Analysis of the Scheme

To study the stability of the method, we consider the Fourier transform of the initial condition.
Of course, we will impose periodic boundary conditions to study the behavior of the modes.
We can write u = ∑p∈Z upe2iπ px and consider each mode up(x) = e2iπ px separately. Getting
advance of the linearity of the equation, the scheme and the interpolation from points to degrees
of freedom, we can always express the solution at timestep n+1 as a multiplication of a matrix
times the solution at time n. In particular, let us write the degrees of freedom of a single cell for
B2 at the beginning of a time step as

U (0),0 =

U (0),0
0
2

U (0),0
1
2

 .

We distinguish between different degrees of freedom r
2 , because the scheme is different for every

type of node in the cell. In this section, for simplicity, we will consider ∆x to be ∆x
2 and we will

multiply all the indexes by 2. This leads to consider the notation for j–th cell [2 j∆x,2( j+1)∆x]
with j = 0, . . . ,N and for middle points node 2 j+ r with r = 1 for every cell j = 0, . . . ,N−1. In
particular, we can use the transformation matrix in table 4.6, to compute the initial conditions
for the degrees of freedom. This generates a definition of all the degrees of freedom, given the
reference one. For example, in B2, if the reference is an even degree of freedom, e.g. 2 j, then, all
the other degrees of freedom, for a fixed phase p, will be defined as

U2k = ei2πk∆x = ω
2k−2 jU2 j

U2k+1 = e2iπ p(2k+1)∆x (2− cos(2π p∆x)) = ω
2k+1−2 j (2− cos(2π p∆x))U2 j.

(4.115)

Vice versa, for an odd DoF 2 j+1, we have that

U2k = ei2πk∆x =
ω2k−2 j−1

2− cos(ξ )
U2 j+1

U2k+1 = e2iπ p(2k+1)∆x (2− cos(2π p∆x)) = ω
2k−2 jU2 j+1.

(4.116)

While for P elements it is much simpler and Uk = ωk− jU j. Extension to higher degree of
polynomials can be similarly generalized.

Now, we can evolve the solution in time, with the DeC procedure. This will create some
evolution matrices for every subtimestep m, correction (k) and degree of freedom j, such that the
transformation matrix P(k),m

j will act on the degrees of freedom as U (k),m
j = P(k),m

j U (0),0
j .

Let us start subdividing the different operators. First of all, we compute the flux operators. In B2
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we have to take care about the different nodes. So we have, from (4.102), for one even node:

C2 j =
a
3

(
U2 j+1−U2 j−1 +

U2 j+2−U2 j−2

2

)
−8τ

(
(U2 j+1−2U2 j +U2 j−1)

)
=

a
3

U2 j

(
(2− cos(ξ ))(ω p−ω

−p)+
ω2p−ω−2p

2
−8τ(2− cos(ξ ))(ω p +ω

−p)+16τ

)
=

(
a

ω2p−ω−2p

6
+16τ

)
U2 j +

(
a

ω p−ω−p

3
−8τ(ω p +ω

−p)

)
U2 j(2− cos(ξ )).

(4.117)

And for one odd node:

C2 j+1 =
a
3

(
U2 j+2−U2 j

)
+4τ

(
U2 j+3−2U2 j+2 +2U2 j+1−2U2 j +U2 j−1

)
=

=
a
3

U2 j+1
ω p−ω−p

(2− cos(ξ ))
+4τU2 j+1

(
−2

ω p +ω−p

(2− cos(ξ ))
+(ω2p +2+ω

−2p)

)
=

(
a

ω p−ω−p

3
−8τ(ω p +ω

−p)

)
U2 j+1

(2− cos(ξ ))
+4τ(ω2p +2+ω

−2p)U2 j+1.

(4.118)

This leads to the flux matrix

C =

(
a ω2p−ω−2p

6 +16τ a ω p−ω−p

3 −8τ(ω p +ω−p)

a ω p−ω−p

3 −8τ(ω p +ω−p) 4τ(ω2p +2+ω−2p)

)
. (4.119)

For P2

C(p)(1 : 2,1) =

(
36τ +4τ cos(4π∆xp)2 +24τ cos(4π∆xp)− isin(4π∆xp)

3
32τ cos(2π∆xp)3−32τ cos(2π∆xp)+ 4isin(2π∆xp)

3

)
,

C(p)(1 : 2,2) =
(

32τ cos(2π∆xp)3−32τ cos(2π∆xp)+ 4isin(2π∆xp)
3

64τ cos(2π∆xp)2

)
.

(4.120)

Similar computations can be carried out for higher degree polynomials .
Then we can proceed with the mass matrix of the L 2 operator, obtaining similar matrices.

For B2 we obtain the mass matrix

∆xM = ∆x

(
ω−2p+12+ω2p

30
ω−p+ω p

10
ω−p+ω p

10
2

15

)
, (4.121)

while for P2 we have

∆xM = ∆x

(
4
15 −

cos(4π∆xp)
15

2cos(2π∆xp)
15

2cos(2π∆xp)
15

8
15

)
. (4.122)

Now, we can start evolving the scheme for initial conditions up. We first have P(k),0 = I for
any k and P(0),m = I for every m. Then from (3.24c) we have that

U (k+1),m =U (k),m−CFLW−1M(U (k),m−U (k),0)−CFLW−1
∑

M
l=0 θ m

l CU (k),l,

where W−1 is the inverse of the lumped matrix of the L 1 operator of the DeC,

Wii :=
1

∆x

∫ 1

−1
ϕi(x)dx,
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and CFL = ∆t
∆x . This leads to the recursively defined amplification matrices

P(k+1),m = P(k),m−W M(P(k),m−P(k),0)−CFLW C

(
M

∑
l=0

θ
l
kP(k),l

)
, (4.123)

that, we remind, depends on the phase p.
We know from Parseval theorem that ‖U‖2

2 = ‖Û‖2
2, hence, if we want the stability of the

solution, we can check that each single phase verifies

‖Ûn+1
p ‖= ‖Ûn+1

p ‖ ≤ ‖Ûn
p‖

for all p =−N, . . . ,N.
This can be done directly through the matrices P(K),M that are transforming the phases Ûn+1

p =

P(K),MÛn
p . So we can just consider the matrices

Gp = PK,M, ∀p =−N, . . . ,N, (4.124)

and their powers Gn
p, ∀n ∈ N.

For the whole scheme to be stable we have to check that ∀n ∈ N and every modus p ∈
{−N, . . . ,N}, the norm of the solution Un is bounded by a constant C:

||Un||2 ≤C,∀n, p.

This means that all the family {Gn
p}n∈N, p∈{−N,...,N} must be stable.

Definition 4.8 (Stable family of matrices). A family of matrices F = {Ar}r∈R is stable if
∃C1 <+∞ such that

||Ar||2 ≤C1,∀r ∈ R.

A necessary condition for this to be true is that

ρ(Gp)≤ 1 (4.125)

for every p ∈ {−N, . . . ,N} and that the matrices are non defective. It would be a sufficient
condition only in case the matrices Gp are normal. Unfortunately, this is not our case, at least
not in general. If we want to study the stability of the matrices, we have to recur to the Kreiss’
theorem 4.2.3.

For this purpose, let us define the Kreiss’ constant

κ(G) = sup
|z|<1

(1−|z|) ||(zG− Id)−1||2. (4.126)

4.2.7 Numerical Results for Kreiss’ Theorem

We preliminary compute the spectral radius ρ(Gp) of the matrices and we check that they are
non defective, to exclude a priori some of them. Then, we can apply the condition of the Kreiss’
theorem to check if they are bounded. The symbolic matrices, that the algorithm produces, are
too complicated to be solved symbolically. So, we need to use some numerical tools. We set
∆x = 0.01. Then we let CFL ∈ [10−6,10] and τ ∈ [10−6,10] vary. In primis, we will loop over
the modes p = {−N, . . . ,N} and we will compute the spectral radius of the matrix Gp. Then,
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if the condition (4.125) is met, to check the condition (4.94), we will loop also on some points
in the unit disc, which approach the border |z|= 1. Indeed, we expect to find critical values of
Kreiss’ constants (4.126) in the proximity of eigenvalues with absolute value equal to 1, namely
we will take points Z = {z j,k = (1−10− j)ei2πk/16 : j = 5, . . . ,12, k = 1, . . . ,16}.

We will plot for B1 = P1, B2, B3, P2 and P3 the maxp∈{−N,...,N}ρ(Gp) and points where the
norm is bigger than 1+ ε just to take in consideration numerical errors.

(a) max
p∈{−N,...,N}

ρ(Gp) (b) max
p∈{−N,...,N}

ρ(Gp)> 1+10−12 (c) zoom of max
p

ρ(Gp)> 1+10−12

Figure 4.4: Stability analysis for B1 Bernstein basis functions

(a) max
p∈{−N,...,N}

ρ(Gp) (b) max
p∈{−N,...,N}

ρ(Gp)> 1+10−12 (c) zoom of max
p

ρ(Gp)> 1+10−12

Figure 4.5: Stability analysis for B2 Bernstein basis functions

In figs. 4.4 to 4.8 we can see a clear pattern: if we want the maxp∈{−N,...,N}ρ(Gp)≤ 1, we
need to have two linear conditions on log(τ) and log(CFL). In particular, we have to determine
two constants r1, r2, such that

log(τ)> log(CFL)+ log(r1), log(τ)<− log(CFL)+ log(r2) (4.127)

⇔ τ > r1CFL, τ <
r2

CFL
. (4.128)

This is clear for all the basis functions except P3, where, changing the tolerance we can find
very different results. Moreover in all cases, there is no a clear area for stability, in particular CFL
should be very small and this may cause very long computational costs.

Then, we have to check the Kreiss’ constants for the valid points on which the spectral radius
is smaller than 1. This is not an easy task, because we should check that for every point z in the
unit circle, we should have condition (4.94). We check the maximum of Kreiss’ constants of the
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(a) max
p∈{−N,...,N}

ρ(Gp) (b) max
p∈{−N,...,N}

ρ(Gp)> 1+10−12 (c) zoom of max
p

ρ(Gp)> 1+10−12

Figure 4.6: Stability analysis for B3 Bernstein basis functions

(a) max
p∈{−N,...,N}

ρ(Gp) (b) max
p∈{−N,...,N}

ρ(Gp)> 1+10−12 (c) zoom of max
p

ρ(Gp)> 1+10−12

Figure 4.7: Stability analysis for P2 Bernstein basis functions

(a) max
p∈{−N,...,N}

ρ(Gp) (b) max
p∈{−N,...,N}

ρ(Gp)> 1+10−12 (c) zoom of max
p

ρ(Gp)> 1+10−12

Figure 4.8: Stability analysis for P3 Bernstein basis functions

family of matrices Gp. If it is not too big with respect to other values we will consider it bounded.
This condition is a bit heuristic, but with the data we have, it is the only possible consideration
we can make.

What we can observe in figs. 4.9 to 4.13 is not so helpful. The impression that we get is that
the condition maxp ρ(Gp)≤ 1 is enough in these situations to bound also the Kreiss’ constants.
Overall, the constants are bounded by 100.2 = 1.58. Of course, in B1 fig. 4.9 the Kreiss’ condition
coincides with (4.125), so for points valid for condition (4.125) we can see only points with
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(a) max
p∈{−N,...,N}

κ(Gp) (b) zoom of max
p∈{−N,...,N}

κ(Gp)

Figure 4.9: Stability analysis for B1 Bernstein basis functions

(a) max
p∈{−N,...,N}

κ(Gp) (b) zoom of max
p∈{−N,...,N}

κ(Gp)

Figure 4.10: Stability analysis for B2 Bernstein basis functions

κ(Gp)≤ 1.
Doing a more detailed study of figs. 4.4 to 4.8, we can obtain the following relations and the

optimal values for τ and CFL for different cases.

for B1 : τ & 0.1CFL and τ .
0.3

CFL
;

for B2 : τ & 0.05CFL and τ .
0.003
CFL

;

for B3 : τ & 0.03CFL and τ .
0.003
CFL

;

for P2 : τ & 0.0056CFL and τ .
0.017
CFL

.

(4.129)
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(a) max
p∈{−N,...,N}

κ(Gp) (b) zoom of max
p∈{−N,...,N}

κ(Gp)

Figure 4.11: Stability analysis for B3 Bernstein basis functions

(a) max
p∈{−N,...,N}

κ(Gp) (b) zoom of max
p∈{−N,...,N}

κ(Gp)

Figure 4.12: Stability analysis for P2 Bernstein basis functions

These conditions suggest to use as CFL and τ the intersection of the two curves above described:

CFL =

√
r2

r1
, τ =

√
r1r2. (4.130)

This should guarantee stability and the biggest possible timestep.
In table 4.7, we can see the best values we obtained for the CFL for the linear advection

equation for different basis functions. Not everywhere we can really use relation (4.130). Indeed,
if one watches carefully and zooms fig. 4.7, one can see that close to big CFL value, an intersection
of two lines is not sharp. So, to find the best values, we recur to the zoom of that area.

It is surprising that with B2 we need more restrictive CFL conditions than with B3. Moreover,
in this area the value of τ is very restricted, it can not vary at all. If we decrease CFL, then we
can relax the condition on τ such that [CFLr1,

r2
CFL ] is an actual interval, not just a point.

77



4.2. RESIDUAL DISTRIBUTION SCHEMES

(a) max
p∈{−N,...,N}

κ(Gp) (b) zoom of max
p∈{−N,...,N}

κ(Gp)

Figure 4.13: Stability analysis for P3 Bernstein basis functions

VΣ CFL τ

B1 0.8 0.79
B2 0.19 0.017
B3 0.28 0.0071
P2 0.75 0.019

.

Table 4.7: Stable values for CFL and τ .

The case of P3 is more delicate. The shape of the function max
p∈{−N,...,N}

log(||Gp||2) on the

plane spanned by log(τ) and log(CFL) in fig. 4.8 is very similar to other basis functions. But
when we are sectioning at a fixed threshold ε , we can not see the same profile of other basis
functions. Comparing also some slices of fig. 4.8, we cannot say that this method can be stable
for big CFL conditions, i.e., CFL & 10−4, for any value of τ .

This result confirms the choice of using Bernstein polynomials instead of classical Lagrangian
ones.
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5
KINETIC MODELS

In many models, such as kinetic models, multiphase flows, viscoelasticity or relaxing gas
flows, we have to deal with hyperbolic systems with relaxation terms. The relaxation term is often
led by a parameter ε , the relaxation parameter, that can represent the mean free path, the average
distance between two collisions of particles, the time needed to reach the equilibrium between
two phases, etc. Expanding these equations asymptotically with respect to ε , one can find the
limit equations that describe the average, effective or macroscopic physical behavior [17, 80, 115].

In particular, we focus on the kinetic model proposed by Aregba-Driollet and Natalini
in [17, 18]. This model is able to solve any hyperbolic system of equation, through a BGK
relaxation, which leads to a linear advection system with a relaxation source term. It can be used
to test classical hyperbolic systems in the relaxation limit case. This model must be subjected to
a generalization of Whitham’s subcharacteristic condition [17, 80], which assures the stability of
the model. We use this model to approximate transport linear equation and Euler equation in 1D
and 2D. There are various other models and physical problems which behave similarly to this
kinetic model. In the future, the perspective is to extend the method to other problems, such as
multiphase flows Baer-Nunziato model or viscoelasticity problems.

We use the residual distribution framework of section 4.2.3 to discretize our space [3, 8, 52,
130]. This class of schemes is a generalization of FEM, they use compact stencils, they do not
need Riemann solvers and they are easily generalisable. Indeed, many well known FEM, finite
volume and discontinuous Galerkin schemes can be rewritten into the RD distribution framework
as shown in [6]. The main steps of the scheme are three: we have to compute total residuals for
each cell, then, we have to distribute each residual to degrees of freedom belonging to the cell,
finally, we sum all contributions for each degree of freedom. In order to get a high order scheme,
the RD is coupled with a Deferred Correction (DeC) iterative method to have high order time
integrator [5, 54, 104]. It needs two operators: the first one is a low order method, but easy to be
inverted, while the second one, must be higher order, but we do not need to solve it directly. The
coupling of these two operators allows to reach the high order through a few iterative intermediate
steps. Thanks to this, we can produce a scheme which is fast, high order and stable. Up to
our knowledge, RD was used only for hyperbolic equations with mild source terms, such as in
gravitation problems or shallow water equations, but never on strongly stiff source terms.

To deal with the stiffness of the relaxation term, we have to introduce some special treatments.
An explicit scheme with CFL conditions tuned on the macroscopic regime would, indeed, present
instabilities, because of the stiff relaxation term. It is natural to choose an implicit or semi–
implicit formulation, which guarantees the stability of the scheme. We use an IMEX scheme
to treat implicitly the relaxation term and explicitly the advection part [80, 115]. Nevertheless,
we can obtain a computationally explicit scheme, thanks to some properties of the considered
model. Then, we introduce an IMEX discretization for the DeC RD schemes with the details of
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its implementation. Furthermore, we prove that the new DeC RD IMEX scheme is asymptotic
preserving (AP). AP schemes allow to preserve the asymptotic behavior of the model from the
microscopic regime to the macroscopic one. These schemes solve the microscopic equations,
avoiding the coupling of different models, and automatically they are able to solve the asymptotic
macroscopic limit in a robust way. In the appendix, we also provide a proof of the accuracy of
the total scheme.

We show the performance of the high order scheme on some tests. In particular, we simulated
different examples in 1D and 2D for linear transport equation and Euler equation. Thanks to
these results, we validate the accuracy of our method and the capability of shock limiting along
discontinuities.

The chapter is organized as follows. In section 5.1 we present the kinetic model we want to
solve, the conditions under which it is stable and some examples. In section 5.2 we introduce a
first order IMEX scheme, that preserves the AP property of the analytical model. In section 5.3 we
describe the RD schemes for the spatial discretization with the DeC high order time discretization.
In section 5.4, we adjust the time discretization of the DeC according to the IMEX scheme and
we prove the asymptotic preserving property of the whole scheme and the high order accuracy of
the method. We show numerical results for 1D and 2D problems in section 5.5.

The work of this chapter is under revision to a peer–reviewed journal. It can be found in [14].

5.1 Kinetic Relaxation Model for Hyperbolic Systems

In this section, we present the kinetic model that will be the object of this work. This family
of kinetic models was introduced by D. Aregba-Driollet and R. Natalini in [17, 18]. Starting from
a hyperbolic system of conservation laws, the macroscopic model, they build an artificial kinetic
model, the relaxed microscopic model we will actually solve. The scheme we propose in this
work solves this artificial model, where no physical meaning is involved in the kinetic model,
but only in the macroscopic limit. The aim is to test the properties and the quality of the scheme
before applying it to more involved problems. In the future, we aim to develop the method
for Baer-Nunziato multiphase equations model, Boltzmann equations and Lattice–Boltzmann
models.

Let us introduce the two models we will consider. Let Ω⊂ RD be a bounded smooth spatial
domain and let u : Ω×R+→ RS be a weak solution of the macroscopic model that is defined by
the following hyperbolic system of S conservation laws

∂tu(x, t)+
D

∑
d=1

∂xd Ad(u(x, t)) = 0, ∀x ∈Ω, ∀t ∈ R+. (5.1)

Here, t defines the time, xd the different dimensions and ∂ represents the partial derivative in a
specified variable. Ad : RS→ RS, for d = 1, . . . ,D, are some Lipschitz continuous functions and
u0 : Ω→ RS are the initial conditions and B an operator representing the boundary conditions.
The kinetic model proposed in [17] is a relaxed version of this system. Let fε : Ω×R+→ RL be
the solution of the following microscopic kinetic model, where L > S is to be defined,

fε(x, t)t +
D

∑
d=1

Λd∂xd fε(x, t) =
1
ε
(M (Pfε(x, t))− f ε(x, t)) , ∀x ∈Ω, ∀t ∈ R+. (5.2)

where Λd ∈ RL×L are constant diagonal matrices and the source term is the difference between the
microscopic variable fε and the equilibrium state given by the Maxwellian M : RS→ RL, which
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embeds a macroscopic variable into the microscopic space, P ∈ RL×S is a projection matrix that
compresses information from the microscopic variables to the macroscopic ones. The relaxation

Ω⊂ RD RS

RL

u

f
M P

Ad

Λd

Figure 5.1: Relaxation functions

parameter ε ∈ R+ can be a physical parameter or an artificial one, and, as ε → 0, the kinetic
model (5.2) tends formally to the macroscopic one (5.1). Again, f0 are initial conditions and
boundary conditions must be imposed. All the operators, the domain and the codomain spaces
are summarized in fig. 5.1.

There are two fundamental hypothesis on the operators M , P and the functions Ad and Λd ,
which allow to prove the convergence of the kinetic model to the macroscopic one.

P(M (u)) = u, ∀u ∈ RS, (5.3)

PΛdM (u) = Ad(u), ∀u ∈ RS. (5.4)

The first property (5.3) tells us that the projection P of the Maxwellian M is the identity matrix
I ∈ RS×S, or, in other words, that if we take a macroscopic variable u, we embed it in the
microscopic space and then we project it back, we obtain the original state. The second property
(5.4) is necessary to guarantee that the limit of the kinetic model will preserve the original
macroscopic fluxes.

What we will consider in this work is one specific model, the so-called diagonal relaxation
method (DRM) [17]. In this model we choose L := (D+ 1) · S, P := (I, . . . , I) ∈ RS×L as the
juxtaposition of D+1 identity matrices I ∈ RS×S. We introduce a constant parameter λ > 0 to
define the flux matrices

Λd := diag(C(d)
1 , . . . ,C(d)

D+1), ∀d = 1, . . . ,D, C(d)
j :=


−λ IS j = d
λ IS j = D+1
0 else

. (5.5)

The Maxwellian functions are defined in blocks of dimension S each, M j : RS→ RS where
j = 1, . . . ,D+1, so that the original Maxwellian function can be reinterpreted as

M = (M1, . . . ,MD+1)
T : RS→ RL,

as follows MD+1(u) :=

(
u+

1
λ

D

∑
d=1

Ad(u)

)
/(D+1)

M j(u) :=− 1
λ

A j(u)+MD+1(u), for j = 1, . . . ,D

. (5.6)

These definitions verify the hypotheses (5.3) and (5.4).
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Example 5.1.1 (Jin-Xin relaxation system). If we consider a 1D scalar example, D = 1, S = 1, as
macroscopic equation

∂tu+∂xa(u) = 0, (5.7)

the DRM for the relaxed model leads for the variable f := ( f1, f2)
T to the kinetic model

∂t

(
f1
f2

)
+

(
−λ 0
0 λ

)
∂x

(
f1
f2

)
=

1
2ε

(
− f1 + f2−a( f1 + f2)/λ

f1− f2 +a( f1 + f2)/λ

)
. (5.8)

If we apply a change of variables to the previous system and we define uε := Pfε = f ε
1 + f ε

2 and
vε := λ ( f ε

2 − f ε
1 ), we can rewrite the previous system as{

∂tuε +∂xvε = 0
∂tvε +λ 2∂xuε = a(uε )−vε

ε
,

(5.9)

also known as the Jin-Xin relaxation system proposed in [80]. In this small case, one can easily
perform a Chapman–Enskog expansion and see that

∂tuε +∂xa(uε) = ε(λ 2− (a′(uε))2)∂xxuε +O(ε2). (5.10)

We observe that the macroscopic model appears as the 0th term of the Chapman-Enskog expansion,
while the first term is a diffusion operator if the Whitham’s subcharacteristic condition is fulfilled,
i.e., λ 2 ≥ (a′(uε))2.

Example 5.1.2 (Euler system 1D). Suppose we have the system of equations

∂t
(
ρ,ρv,E

)
+∂x

(
ρv,ρu2 + p,u(E + p)

)
= 0, (5.11)

where ρ is the density, v the speed, p the pressure, E the total energy and they are linked by
the closure equation of state (EOS) p = (γ − 1)(E − 0.5ρu2). Then, we denote the different
components of the microscopic variable as fε = (ρ1,ρ1v1,E1,ρ2,ρ2v2,E2)

T . The kinetic model
reads

∂t



ρ1
ρ1v1
E1
ρ2

ρ2v2
E2

+∂x



−λρ1
−λρ1v1
−λE1
λρ2

λρ2v2
λE2

=
1

2ε



−ρ1v1+ρ2v2
λ

−ρ1 +ρ2

−ρ1v2
1+p1+ρ2v2

2+p2
λ

−ρ1v1 +ρ2v2

− v1(E1+p1)+v2(E2+p2)
λ

−E1 +E2
ρ1v1+ρ2v2

λ
+ρ1−ρ2

ρ1v2
1+p1+ρ2v2

2+p2
λ

+ρ1v1−ρ2v2
v1(E1+p1)+v2(E2+p2)

λ
+E1−E2


. (5.12)

Example 5.1.3 (Scalar 2D). Let us consider a scalar equation in 2D

∂tu+∂xa(u)+∂yb(u) = 0. (5.13)

The microscopic unknown will be denoted by fε = ( f1, f2, f3)
T and let us define uε := Pf =

f1 + f2 + f3. Thus, the model will be

∂t

 f1
f2
f3

+∂x

−λ f1
0

λ f3

+∂y

 0
−λ f2
λ f3

=
1

3ε

(−2 f1 + f2 + f3)+
−2a(uε )+b(uε )

λ

( f1−2 f2 + f3)+
a(uε )−2b(uε )

λ

( f1 + f2−2 f3)+
a(uε )+b(uε )

λ

 . (5.14)
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5.1.1 Chapman-Enskog Expansion

Inspired by the Jin-Xin example 5.1.1, we develop the Chapman-Enskog for the general
kinetic system (5.2), with the only additional properties (5.3) and (5.4), as proposed in [17].

Proposition 5.1.4. Assume that fε , solution of (5.2), converges to f, in some strong topology, as
ε → 0. And suppose, furthermore, that the initial conditions fε

0 are such that Pfε
0→ u0. Then the

projection of the solution of the kinetic model (5.2) converges to the macroscopic solution u of
the system (5.1), i.e., Pfε → u.

Proof. Define the auxiliary variables as in Jin–Xin example 5.1.1.

uε := Pfε , vε
d := PΛdfε , ∀d = 1, . . . ,D. (5.15)

Then we have from (5.2) that{
∂tuε +∑

D
j=1 ∂x j v

ε
j = 0

∂tvε
d +∑

D
j=1 ∂x j(PΛ jΛdfε) = 1

ε
(Ad(uε)−vε

d), ∀d ∈ {1, . . . ,D}
. (5.16)

Applying the Chapman-Enskog expansion, we get that

∂tuε +
D

∑
d=1

∂xd Ad(uε) = ε

D

∑
d=1

∂xd

(
D

∑
j=1

Bd j(uε)∂x j u
ε

)
+O(ε2) (5.17)

vε
d = Ad(uε)− ε

(
∂tvε

d +
D

∑
j=1

∂x j(PΛdΛ jM (uε))

)
+O(ε2), (5.18)

with Bd j(u) := PΛdΛ jM
′(u)−A′d(u)A

′
j(u) ∈ RS×S, ∀d, j = 1, . . . ,D. (5.19)

If we want the microscopic limit to be a stable approximation of the original equation, we
have to impose a generalised Whitham’s subcharacteristic condition on the final result (5.17) as
stated in [17, 18, 80]. It must hold that

D

∑
j,d=1

(Bd jξ j,ξd)≥ 0, ∀ξ1, . . . ,ξD ∈ RS. (5.20)

This condition can be interpreted as an imposition of positive diffusion to the equation (5.17).

5.1.2 AP Property

The asymptotic behavior given by the Chapman–Enskog expansion is the property that
we would like to maintain also at the discrete level. Schemes that verify this limit are called
asymptotic preserving (AP). This property can be summarized in the diagram of fig. 5.2. The
macroscopic and microscopic analytical models are respectively denoted by F 0 and F ε , meaning
that F 0 := lim

ε→0
F ε . The discretization of the kinetic model given by the scheme is define as F ε

∆
.

The limit of this model is defined as F 0
∆

. We can say that a scheme is asymptotic preserving, if
lim
∆→0

F 0
∆
= F 0. In order to verify this property, we have to build a scheme that, in the discrete

Chapman-Enskog expansion, behaves analogously to the analytical one.
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F ε
∆ F 0

∆

F 0F ε

ε → 0

ε → 0

∆→ 0∆→ 0

Figure 5.2: Asymptotic preserving schemes

5.2 AP IMEX First Order Scheme

In order to obtain a stable and AP scheme, we have to be careful in the time discretization. A
natural choice for this class of problems are the IMEX schemes. They are particularly suited for
the model (5.2), because, as ε vanishes, the source term becomes stiff. Classically, one should
take discretization scales of the same order of the relaxation parameter, ∆t ∼ h ∼ ε , where ∆t
is the size of a time step and h := maxe∈Ω d(e) is the maximum diameter of an element of the
domain. Obviously, this is not feasible as ε → 0. Therefore, we need to treat the stiff term
in an implicit way. The flux part will be discretized in an explicit way. The resulting IMEX
discretization in time we obtain, after some initial condition f0,ε = fε

0(x), is the following

fn+1,ε − fn,ε

∆t
+

D

∑
d=1

Λd∂xd fn,ε =
1
ε

(
M (Pfn+1,ε)− fn+1,ε) (5.21)

where the overscript n indicates the known explicit timestep tn or the unknown implicit timestep
tn+1.

Remark 5.2.1 (CFL conditions). Since the flux is explicitly discretized, we need to impose some
restrictions on the timestep size, such that ∆t ≤ λ−1CFLh, where CFL is a number smaller than
1 that depends on the used polynomials. Here, λ is the convection coefficient in (5.5) and the
spectral radius of Λd . The choice of this parameter is lead by the Whitham’s subcharacteristic
condition (5.20), knowing that is necessary that λ is bigger than the spectral radius of the original
fluxes λ ≥ ρ(Ad), d = 1, . . . ,D, to verify the condition. This does not allow to choose better CFL
conditions than the ones of the macroscopic problem.

In the general case, the source may depend non-linearly on the variable f n+1 and the solution
of this system (of dimension L) must be found with nonlinear solvers such as the Newton-Raphson
method. In the specific case of this kinetic model (5.2), we can exploit the property (5.3) to write
the projection of the previous time discretization (5.21) and obtain

un+1,ε −un,ε

∆t
+

D

∑
d=1

PΛd∂xd fn,ε = 0, (5.22)

where un,ε :=Pfn,ε . This resulting time discretization is totally explicit in time, so we can compute
un+1,ε without recurring to non-linear solver. Once obtained this value, we can substitute it in
(5.21) and collect all the fn+1,ε on the left-hand side, leading to the following explicit scheme

fn+1,ε =
ε

∆t + ε
fn,ε − ε∆t

∆t + ε

D

∑
d=1

Λd∂xd fn,ε +
∆t

∆t + ε
M (un+1,ε). (5.23)
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We notice that ε never appears alone at the denominator, so for any value of ε the scheme will be
stable. Moreover, if we let ε → 0, using the property (5.4), the scheme is converging to{

un+1 = un +∆t ∑
D
d=1 Ad(un)

fn+1 = M (un+1)
. (5.24)

This coincides with explicit Euler scheme for the macroscopic model (5.1).
Clearly, this scheme is only first order accurate in time, since the discretization has been done

only at the previous or at the new timestep. We introduce a high order accurate discretization
in space (residual distribution) and the Deferred Correction procedure to achieve high order
accuracy in time.

5.3 Residual Distribution and DeC Schemes

In this section we will introduce the RD DeC algorithm for the kinetic model. The used
notation refers to the sections 4.2 and 4.2.5, where, we have to consider the kinetic equation
equation (5.2) in the following form

∂tf+
D

∑
d=1

∂xd Λd f −R(f) = 0. (5.25)

The algorithm are as before given by RD schemes [1, 52] and DeC approach [5, 54] as
presented in sections 4.2.3 and 4.2.5.

We just highlight the definition of the operators L 1 and L 2 in the new notation:

L 2
σ (f) :=



∑
e|σ∈e

∫
e
ϕσ (f1− f0)dx+ ∑

e|σ∈e

tn,1∫
tn,0

IM(φ e
σ (f

0), . . . ,φ e
σ (f

M),s)ds

. . .

∑
e|σ∈e

∫
e
ϕσ (fM− f0)dx+ ∑

e|σ∈e

tn,M∫
tn,0

IM(φ e
σ (f

0), . . . ,φ e
σ (f

M),s)ds


(5.26)

and

L 1
σ (f) :=


(f1

σ − f0
σ ) ∑

e|σ∈e

∫
e
ϕσ dx+ ∑

e|σ∈e

tn,1∫
tn,0

I0(φ
e
σ (f

0), . . . ,φ e
σ (f

M),s)ds

. . .

(fM
σ − f0

σ ) ∑
e|σ∈e

∫
e
ϕσ dx+ ∑

e|σ∈e

tn,M∫
tn,0

I0(φ
e
σ (f

0), . . . ,φ e
σ (f

M),s)ds


. (5.27)

Now, the DeC combines the two operators as seen in sections 3.2 and 4.2.5, with the following
procedure, where we omit the timestep index n for clarity of the notation.

fm,(0) := f(tn), ∀m = 1, . . . ,M;

f0,(k) := f(tn), ∀k = 1, . . . ,K;

L 1(f(k)) = L 1(f(k−1))−L 2(f(k−1)) with k = 1, . . . ,K.

(5.28)
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Given the DeC procedure (5.28), we can state and prove the following proposition as in [5].

Proposition 5.3.1. Let L 1 and L 2 be two operators defined on V m
h , which depend on the

discretization scale ∆∼ h∼ ∆t, such that

• L 1 is coercive with respect to a norm, i.e., ∃α1 > 0 independent of ∆, such that we have
that

α1||f−g|| ≤ ||L 1(f)−L 1(g)||, ∀ f,g,

• L 1−L 2 is Lipschitz with constant α2 > 0 uniformly with respect to ∆, i.e.,

||(L 1
∆ (f)−L 2

∆ (f))− (L 1
∆ (g)−L 2

∆ (g))|| ≤ α2∆||f−g||, ∀ f,g.

We also assume that there exists a unique f∗∆ such that L 2(f∗∆) = 0. Then, if η := α2
α1

∆ < 1, the

DeC is converging to f∗ and after K iterations the error ||f(K)− f∗|| is smaller than ηK ||f(0)− f∗||.

Proof. By definition, we know that L 1(f∗) = L 1(f∗)−L 2(f∗), so that

L 1(f(k+1))−L 1(f∗) =
(
L 1(f(k))−L 1(f∗)

)
−
(
L 2(f(k))−L 2(f∗)

)
, (5.29)

α1||f(k+1)− f∗|| ≤ ||L 1(f(k+1))−L 1(f∗)||=
=||L 1(f(k))−L 2(f(k))− (L 1(f∗)−L 2(f∗))|| ≤ α2∆||f(k)− f∗||.

(5.30)

Hence, we can write

||f(k+1)− f∗|| ≤
(

α2

α1
∆

)
||f(k)− f∗|| ≤

(
α2

α1
∆

)k+1

||f(0)− f∗||. (5.31)

After k iterations we have an error at most of ηk · ||f(0)− f∗||.

The proof of the properties of L 1 and L 2, which depend on their definitions, can be found
for our specific case in sections 5.4.2 and 5.4.3, after the definition of the operator in our specific
context.

The proposition 5.3.1 states that at each iteration we gain one order of accuracy with respect
to the previous correction (k−1). Notice that we always solve the equations for the unknown
variable f(k) which appears only in the L 1 formulation, the one that can be easily solved. While
L 2 is only applied to already computed predictions of the solution f(k−1).

Remark 5.3.2 (Computational costs and order of accuracy). The proposition 5.3.1 tells us that,
if the method L 2 is accurate with order of accuracy z, namely it has M = z−1 subtimesteps,
then we should perform K = z iterations for every timestep of the method. For space accuracy,
we will use p = z−1 polynomial order for the basis functions. For example, B1 basis functions,
K = 2 iterations of the DeC with 1 subtimesteps (tn,0 = tn, tn,1 = tn+1) amount to a RK2 method,
see [130]. In all our test cases we will use the same number of degree of polynomial, corrections-1
and subtimesteps, i.e., p = K−1 = M.

Remark 5.3.3 (Comparison with RK schemes). First of all, the presented DeC scheme does not
make use of mass matrices, sparing the cost of its inversion and the multiplication, passing from
a cost of O(|Dh|2) to O(|Dh|). Any high order RK method without mass matrix would require
extra efforts in the formulation of the scheme to compensate this fact, see [52, 130]. Nevertheless,
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a z-order DeC scheme can be written as a RK scheme with (M−1)×K = z(z−1)≈ z2 stages,
but the M subtimesteps are independent one from another and can be performed in parallel,
reducing the time cost to just K = z corrections for any order of accuracy, which is faster than
or comparable to RK where the stages are bigger or equal than z. Moreover, the coefficients of
the time integration are automatically given by the polynomials used, so it does not require a
different definition for different orders, resulting in an arbitrarily high order accurate schemes.

Remark 5.3.4 (Distribution of subtimestep points). In this work, we considered equidistributed
subtimestep points tn,m = tn + m

M ∆t. Other choices may have more advantages and stability
properties, as shown in [44], for example Gauss–Legendre points were already used in [54]. It
is also possible not to include the start and end points tm, tn+1 and extrapolate the final point
with interpolation polynomials. This choice varies the stability properties of the time integration
scheme. In future works, we are going to consider more possibilities and compare them and try
to find the best choice accordingly to the properties one wants to obtain.
Example 5.3.5 (Explicit DeC). We present an example of the explicit DeC procedure for second
order of accuracy. Take M = 1 subtimestep tn = t0, tn+1 = t1 and K = 2 iterations. Recalling that
f0,(0) = f1,(0), the scheme for the first iteration reads

f0,(0) = f1,(0) = f0,(1) = f0,(2) = fn, (5.32a)

L 1(f(1)) = L 1(f(0))−L 2(f(0)), (5.32b)

f1,(1)
σ − fn

σ +
∆t
|eσ | ∑

e|σ∈e
φ

e
σ (f

n) = f1,(0)
σ − fn

σ +
∆t
|eσ | ∑

e|σ∈e
φ

e
σ ( f n)− f1,(0)

σ + fn
σ −

∆t
|eσ |

1

∑
r=0

θ
1
r ∑
e|σ∈e

φ
e
σ (f

r,(0)) (5.32c)

⇐⇒ f1,(1)
σ = fn

σ −
∆t
|eσ | ∑

e|σ∈e
φ

e
σ (f

n). (5.32d)

The second and last iteration reads

L 1(f(2)) = L 1(f(1))−L 2(f(1)), (5.33a)

f1,(2)
σ − fn

σ +
∆t
|eσ | ∑

e|σ∈e
φ

e
σ (f

n) = f1,(1)
σ − fn

σ +
∆t
|eσ | ∑

e|σ∈e
φ

e
σ (f

n)− f1,(1)
σ + fn

σ −
∆t
|eσ |

1

∑
r=0

θ
1
r ∑
e|σ∈e

φ
e
σ (f

r,(1)) (5.33b)

⇐⇒ fn+1 = f1,(2)
σ = fn

σ −
∆t
|eσ |

1

∑
r=0

θ
1
r ∑
e|σ∈e

φ
e
σ (f

r,(1)). (5.33c)

For this simple second order case, the scheme coincides with the strong stability preserving RK
method of second order [65].

5.4 IMEX DeC Kinetic Scheme

Now we want to combine the time discretization of the IMEX scheme (5.21) and the DeC
method. The IMEX discretization is a first order discretization, thus, it can only affect the L 1

operator. On the contrary, to get high order of accuracy through the DeC procedure, the L 2

operator must remain the same of (5.26). To modify L 1, we have to introduce few new terms. In
particular, we have to treat separately the time derivative, the fluxes and the source term. This
implies a new definition of total (4.57) and nodal (4.58) residuals of the RD scheme.

As in (5.21), we want the zero order interpolant I0 to be explicit in the fluxes and implicit in
the source term. In the subtimestep context of the DeC formulation, this means that the source
term is evaluated constantly at the end of the subtimestep, namely in tn,m, while the fluxes are
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evaluated at the beginning of the timestep tn,0. Moreover, in order to invert the system, we apply
a mass lumping also on the source term, as we did for the time derivative in L 1 (5.27). This
leads to the following definitions.

φ
e
source :=

∫
e

M (Pfn,m,ε)− fn,m,ε

ε
dx, φ

e
source,σ :=

∫
e
ϕσ (x)

M (Pfn,m,ε
σ )− fn,m,ε

σ

ε
dx, (5.34)

φ
e
ad =

∫
e

D

∑
d=1

Λd∂xd fn,0,εdx. (5.35)

With definition (5.34), we can collect the degrees of freedom of the source outside the integral
and have a linear dependency on the unknown fn,m,ε

σ , thanks to the projection trick explained in
(5.22). The total advection residuals (5.35), on the contrary, behave as before, while the nodal
residuals φ e

ad,σ can be defined in many way, according to the scheme we want to achieve, see
section 4.2.3.1.

So, if we rewrite the L 1 operator explicitly, we get

L 1
σ (f

n,0, . . . , fn,M) = L 1
σ (f) :=

|eσ |(fn,1
σ − fn,0

σ )+ ∑
e|σ∈e

β
1
∆tφ e

ad,σ (f
n,0)+ |eσ |

β 1∆t
ε

(
M (Pfn,1

σ )− fn,1
σ

)
· · ·

|eσ |(fn,M
σ − fn,0

σ )+ ∑
e|σ∈e

β
M

∆tφ e
ad,σ (f

n,0)+ |eσ |
β M∆t

ε

(
M (Pfn,M

σ )− fn,M
σ

)
 .

(5.36)

The system L 1 = 0 can be solved without recurring to any nonlinear solver if we use projection
P on the whole operator, defining the u auxiliary operator L 1,m

σ ,u := PL 1,m
σ . Indeed, what we get

is the following operators for each subtimestep m = 1, . . . ,M, defining ∆tm := β m∆t,

L 1,m
σ ,u (f) = |eσ |(Pfm

σ −Pf0
σ )+∆tm

∑
e|σ∈e

Pφ
e
ad,σ (f

0); (5.37a)

L 1,m
σ (f) =|eσ |

(
1+

∆tm

ε

)
fm
σ −|eσ |f0

σ +∆tm
∑

e|σ∈e
φ

e
ad,σ (f

0)−|eσ |
∆tm

ε
M (Pfm

σ ). (5.37b)

The equation (5.37a) can be solved explicitly for Pfm, then, we can substitute it in the Maxwellian
term of equation (5.37b), which is given by (5.36) collecting all the unknown term fm. Given this,
we can solve L 1 = 0 for fm explicitly, from a computational point of view. Moreover, as before,
we can see that equation (5.37b) does not lead to terms with ε alone at the denominator. Indeed,
it can be rewritten as

ε ·L 1,m
σ (f)

|eσ |(ε +∆tm)
= fm

σ−
ε · f0

σ

ε +∆tm +
ε∆tm

|eσ |(ε +∆tm) ∑
K|σ∈K

φ
K
ad,σ ( f 0)− ∆tm

ε +∆tm M (Pfm
σ ). (5.37c)

This guarantees that, as ε → 0, we are not facing any stiffness.
Finally, we can write a general term of the correction DeC procedure for the (k + 1)th

correction and the mth subtimestep. With the auxiliary equation we find Pfm,(k+1) as follows

L 1,m
σ ,u (f(k+1))−L 1,m

σ ,u (f(k))+L 2,m
σ ,u (f(k))

!
= 0

|eσ |(Pfm,(k+1)
σ −Pfm,(k)

σ )+

∑
e|σ∈e

[∫
e
ϕσ (x)(um,(k)(x)−u0,(k)(x))dx+∆t

M

∑
r=0

θ
m
r Pφ

e
σ (f

r,(k))

]
!
= 0;

(5.38a)
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and, then, the equation for the kinetic unknown fm,(k+1)

L 1,m
σ (f(k+1))−L 1,m

σ (f(k))+L 2,m
σ (f(k)) !

= 0

|eσ |
(

1+
∆tm

ε

)
(fm,(k+1)

σ − fm,(k)
σ )−|eσ |

∆tm

ε

(
M
(

Pfm,(k+1)
σ

)
−M

(
Pfm,(k)

σ

))
+

∑
e|σ∈e

[∫
e
ϕσ (x)(fm,(k)(x)− f0,(k)(x))dx+∆t

M

∑
r=0

θ
m
r φ

e
σ (f

r,(k))

]
!
= 0.

(5.38b)

Again, thanks to the factor
(
1+ ∆tm

ε

)
in front of the unknown fm,(k+1), we are sure not to have any

stiff term, even in the source of the residuals φ E
σ (fr,(k)) of L 2.

Example 5.4.1 (IMEX DeC scheme). We show an example of the second order scheme of the
IMEX DeC algorithm, where we have M = 1 subtimestep and K = 2 DeC iterations. The variables
for any subtimestep m at the correction (0) are initialized as fm,(0) := fn and the beginning steps
for all corrections k as well f0,(k) := fn. Then, we proceed solving the projected operator. At the
first iteration, it coincides with explicit Euler, i.e.,

Pf1,(1)
σ := Pf0− ∆t

|eσ | ∑
e|σ∈e

Pφ
e
σ ,ad(f

0). (5.39a)

Then, we can use this result to solve (5.38b) for f 1,(1) inverting the beginning coefficient, i.e.,

f1,(1)
σ := f0 +

∆t
∆t + ε

(M (Pf1,(1)
σ )−M (Pf0

σ ))−
ε∆t

|eσ |(∆t + ε) ∑
e|σ∈e

φ
e
σ (f

0). (5.39b)

Note that the nodal residuals of the L 2 operators contain source terms that are an O( 1
ε
), but that

part is premultiplied by ε itself, leading to a stable approximation. At the moment, we have a first
order approximation of the solution. Performing the second correction, we obtain a second order
approximation, i.e.,

Pf1,(2)
σ := Pf1,(1)−∑

e|σ∈e

(∫
e

ϕσ

|eσ |
(Pf1,(1)+Pf0)dx− ∆t

|eσ |
1

∑
r=0

θ
1
r Pφ

e
σ ,ad(f

r,(1))

)
. (5.39c)

Here, we used the fact that for 1 subtimestep θ 1
0 = θ 1

1 = 1
2 . What we obtain is essentially a strong

stability preserving second order RK, with a correction term for the mass matrix that we lumped.
The last step for the final kinetic variable f1,(2) is

fn+1
σ = f1,(2)

σ := f1,(1)+
∆t

∆t + ε
(M (Pf1,(2)

σ )−M (Pf1,(1)
σ ))

− ∑
e|σ∈e

ε

|eσ |(∆t + ε)

(∫
e
ϕσ (f1,(1)− f0)dx+∆t

φ e
σ (f0)+φ e

σ (f1,(1))

2

)
.

(5.39d)

As before, the source terms in the nodal residuals of L 2 are controlled by the ε in front of them.
Finally, we have a second order approximation for the microscopic variable.

In the next sections we prove the properties that the operators of the DeC procedure must
verify and the ones that the whole scheme verifies. In particular, in section 5.4.1 we prove that the
scheme is aymptotic preserving, in section 5.4.2 we prove the coercivity of L 1 and the Lipschitz
continuity of L 1−L 2 in section 5.4.3
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5.4.1 AP Property of the IMEX DeC Scheme

As for the first order scheme, we have to prove that the whole IMEX DeC discretization
is asymptotic preserving. This means that, when we let the relaxation term vanish, we should
recast a scheme consistent with the macroscopic model (5.1). We will expand all the terms in ε

and we will keep track also of the O(∆), where ∆≈ ∆t ≈ h is a coefficient proportional to the
discretization scales, since ∆t is linked to the discretization scale in space h by the CFL conditions.
Notice that ε goes to 0 before ∆, in other words O( ε

∆t ) = O(ε), see also fig. 5.2.

Theorem 5.4.2 (IMEX DeC is AP). Suppose that at tn the variable fn is such that

fn = M (Pfn)+O(ε)+O(∆), (5.40)

then, at each subtimestep m = 1, . . . ,M and for every correction k = 0, . . . ,K and every degree of
freedom σ ∈ Dh

Pfm,(k)
σ −Pf0

σ

∆tm +
D

∑
d=1

∂xd Ad(Pf0)+O(ε)+O(∆) = 0, (5.41a)

fm,(k) = M (Pfm,(k))+O(ε)+O(∆). (5.41b)

Proof. We will prove the statement by induction on the corrections k= 0, . . . ,K. For the correction
k = 0 we know from the initial conditions that the theses hold. So, given that (5.41a) and (5.41b)
hold for k and for any m = 1, . . . ,M, we have to prove the same properties for k + 1. Let
us consider the projection of the DeC scheme (5.38a). We will split it into L 1,m

u (f(k+1)) and
L 1,m

u (f(k))−L 2,m
u (f(k)). The first term, gives us

L 1,m
u (f(k+1)) =

Pfm,(k+1)
σ −Pf0

σ

∆tm +β
m

D

∑
d=1

∂xd PΛdf0 (5.42a)

=
Pfm,(k+1)

σ −Pf0
σ

∆tm +β
m

D

∑
d=1

∂xd PΛdM (Pf0)+O(ε)+O(∆) (5.42b)

=
Pfm,(k+1)

σ −Pf0
σ

∆tm +β
m

D

∑
d=1

∂xd Ad(Pf0)+O(ε)+O(∆). (5.42c)

Here, we used in (5.42b) the initial hypothesis (5.40) and in (5.42c) we have used the property
(5.4). The second term gives us

L 1,m
u (f(k))−L 2,m

u (f(k)) (5.42d)

=
Pfm,(k)

σ −Pf0
σ

∆tm +β
m

D

∑
d=1

∂xd PΛdf0−∑
e|σ∈e

∫
e

ϕσ

|eσ |
Pfm,(k)−Pf0

∆tm −
D

∑
d=1

M

∑
r=0

θ
m
r ∂xd PΛdfr,(k). (5.42e)

The two time derivatives differ by a mass lumping, that leads to a O(∆) error. For the property
(5.4), we can write

L 1,m
u (f(k))−L 2,m

u (f(k)) (5.42f)

=β
m

D

∑
d=1

∂xd PΛdM (Pf0)−
D

∑
d=1

M

∑
r=0

θ
m
r ∂xd PΛdM (Pfr,(k))+O(ε)+O(∆) (5.42g)

=β
m

D

∑
d=1

∂xd PΛdM (Pf0)−
D

∑
d=1

β
m

∂xd PΛdM (Pf0)+O(ε)+O(∆) = O(ε)+O(∆). (5.42h)
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In the last step, we have used the induction hypothesis (5.41a), that gives us a O(∆)+O(ε).
Now, if we sum the two contributions L 1,m

u (f(k+1))−L 1,m
u (f(k))−L 2,m

u (f(k)) = 0, which is the
first step of the DeC scheme, we obtain the property (5.41a) for (k+1) and any m.

To prove the second property (5.41b) for (k+1), we have to expand similarly the second step
of the IMEX DeC scheme (5.38b). We start again from L 1,m

σ (f(k+1)). We can collect already the
unknown fm,(k+1)

σ and see what is a O(ε),

L
1,m,(k)

σ (f(k+1)) =

(
1+

∆tm

ε

)(
fm,(k+1)
σ − ∆tm

∆tm + ε
M (Pfm,(k+1)

σ )+O(ε)

)
. (5.43a)

The second term must be multiplied by the inverse of 1+ ∆tm

ε
, which is ε

ε+∆tm . Thanks to this
factor, we consider only terms with an ε at the denominator. So, we write

ε

ε +∆tm

(
L 1,m

σ (f(k))−L 2,m
σ (f(k))

)
= (5.43b)

fm,(k)
σ −M (Pfm,(k)

σ )−∑
e|σ∈e

∫
e

ϕσ

|eσ |

(
fm,(k)−

M

∑
r=0

θ
m
r M (Pfr,(k))

)
dx+O(ε)=O(∆)+O(ε). (5.43c)

Again, the last step is just due to the mass lumping and the time integration. There we get an
extra O(∆). If we sum the terms together and solve the scheme L 1,m

σ (f(k+1))−L 1,m
σ (f(k))+

L 2,m
σ (f(k)) = 0, we obtain the second property (5.41b) of the induction step. Hence, we proved

the theorem.

Summarizing, the proposed IMEX DeC scheme is an asymptotic preserving scheme that can
solve with high order accuracy kinetic models in the form (5.2). In this section we proved that the
scheme is asymptotic preserving and, thus, can resolve the small scales of ε without refining the
discretization scales. The proof of the high order accuracy of the scheme is given in sections 5.4.2
and 5.4.3.

Remark 5.4.3 (Comparison with high order IMEX schemes). As pointed out in remark 5.3.3,
with respect to higher RK IMEX schemes, our scheme is mass matrix free and the weights of
time integration are automatically defined by the polynomial choice.

One can also think of combining a high order RK IMEX procedure with the DeC algorithm,
as done in [22]. In this case, we face the same problems presented above. Anyway, this approach
should lead to an increase of the order convergence in each correction step of the DeC procedure.
Namely, if we use an IMEX RK2 scheme as L 1 formulation, we will get 2 orders of accuracy
more at each DeC corrections. Overall, there is no improvement in the computational costs
between IMEX RK DeC and an IMEX DeC. Moreover, it has been shown in [44] that this
approach leads also to some problems of smoothness of the error behavior and in a consequently
drop of the order accuracy.

5.4.2 Coercivity of L 1

We now prove that the operators L 1 (5.36) and L 2 (5.26) verify all the hypothesis of
proposition 5.3.1.

Proposition 5.4.4. L 1 is coercive, i.e., ∃α1 > 0 s.t. ∀f,g ∈V M
h and m = 1, . . . ,M, i.e.,

||L 1,m
u (f)−L 1,m

u (g)|| ≥ α1||Pf−Pg||, (5.44)

||L 1,m(f)−L 1,m(g)|| ≥ α1||f−g||. (5.45)
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Proof. We suppose that the initial states coincide for f and g, i.e., f 0 = g0, from the previous
timestep. Then, (5.44) is trivial because

L 1,m
σ ,u (f)−L 1,m

σ ,u (g) = P(fm
σ −gm

σ ), (5.46)

which leads immediately to (5.44). For (5.45) we have to collect the implicit terms as done in
(5.37b). Then, we can write

L 1,m
σ (f)−L 1,m

σ (g) = (fm
σ −gm

σ )−
∆t

∆t + ε
(M (Pfm

σ )−M (Pgm
σ )) = fm

σ −gm
σ . (5.47)

The last step is possible, since the Maxwellians in our scheme are computed from the auxiliary
equation and they are actually explicitly computed, so they must coincide, since f 0 = g0. If we
write the operator explicitly both for Pf and f , we can see that the coercivity constant is α1 = 1,
given any norm.

5.4.3 Lipschitz Continuity of DeC Operators

Before proving the Lipschitz continuity, we define the norm || · || for a function f ∈Vh, which
is consistent with the L 2 norm, and the norm ||| · ||| of all the subtimesteps defined as

||f||2 := ∑
σ∈Dh

|eσ |f2
σ , |||f|||2 = |||(f0, . . . , fM)|||2 :=

1
M

M

∑
m=0
||fm||2. (5.48)

Moreover, we will need the definition of the following seminorms:

|f|21,x : = ∑
σ∈Dh

|eσ |
(

max
e|σ∈e

max
x∈e

fσ − f(x)
d(e)

)2

, (5.49)

|f|21,t : = ∑
σ∈Dh

|eσ |
(

max
m=1,...,M

fm− fm−1

∆tm

)2

, (5.50)

where d(e) is the diameter of the cell e and it is bounded by maxe d(e) = h. In particular, we note
that |f|1,x ≤ |f|1 = ||∇f||L2 for every discretization mesh.

Proposition 5.4.5. Assume some regularity on the solutions, more precisely,

|f|1,x ≤C1||f||, (5.51)

|f|1,t ≤C2|||f|||, (5.52)

where C1 and C2 do not depend on the mesh size h and timestep ∆t. Moreover, we require that
there exists C3 > 0 independent on h and ∆t, such that the nodal residuals verify

∑
σ∈Dh

1
|eσ |

(
∑

e|σ∈e
φ

e
σ ( f )−φ

e
σ (g)

)2

≤C3 ∑
σ∈Dh

|eσ |(fσ −gσ )
2 =C3||f−g||2, (5.53)

then, L 1−L 2 is Lipschitz continuous, i.e., ∃α2 > 0 s.t. ∀ f,g ∈V M
h

|||
(
L 1

u (f)−L 1
u (g)

)
−
(
L 2

u (f)−L 2
u (g)

)
||| ≤ α2∆|||Pf−Pg|||, (5.54)

|||
(
L 1(f)−L 1(g)

)
−
(
L 2(f)−L 2(g)

)
||| ≤ α2∆|||f−g|||. (5.55)
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Remark 5.4.6 (Regularity of the solution). The extra hypotheses added are related to the regularity
of the solution. Of course, when they are not satisfied, for example when there are shocks in the
solution, (5.51) does not hold. Anyway, we see numerically a big improvement in higher order
solutions. Equation (5.53), in our case, is given by the consistency of the nodal residuals, the
Lipschitz continuity of the flux F and by the regularity of the solutions f,g as stated in (5.51).

Proof. The estimation of (5.54) is a simplification of the case of (5.55), so we will skip its proof.
For simplicity, we introduce the differences δ f := f−g, δφ K

σ (f) := φ K
σ (f)−φ K

σ (g), δM (Pf) :=
M (Pf)−M (Pg), δL :=L 1−L 2 and δI (f) :=I0(f)−IM (f). Now, we split the operators
into two parts. The first one is composed of the term related to time derivative and the source
term Lts, the second one concerns the advection part Lad . If we write explicitly the source and
time part, we get

δL m
ts,σ (f)−δL m

ts,σ (g) = ∑
e|σ∈e

1
|eσ |

ε

ε +∆tm

[∫
e
ϕσ (δ fm

σ −δ fm)−

∆tm

ε

∫
e
ϕσ (δM (Pfm

σ )−δ fm
σ )+

1
ε +∆tm

∫ tm

t0
IM

(
δφ

e
s,σ (f

0), . . . ,δφ
e
s,σ (f

M),s
)

ds
]
.

(5.56a)

Supposing that the residuals are a consistent discretization of fluxes and source terms, we can use
the Galerkin discretization instead of any other one. Moreover, we add and subtract the residual
in timestep tn,m, i.e., φts,σ (δ fm). So, we can write, neglecting O(∆2|||f−g|||),

L 1,m
ts,σ (f)−L 1,m

ts,σ (g)−L 2,m
ts,σ (f)+L 2,m

ts,σ (g)+O(∆2|||f−g|||) = (5.57a)

=
1
|eσ |

∫
Ω

ϕσ (δ fm
σ −δ fm)− 1

|eσ |
∆tm

(ε +∆tm)

∫
Ω

ϕσ (δM (Pfm
σ )−δM (Pfm))

+
1

ε +∆tm

∫ tm

t0
IM(δφs,σ (f0)−δφs,σ (fm), . . . ,δφs,σ (fM)−δφs,σ (fm),s)ds.

(5.57b)

Now, we sum over the DoFs and we square the previous quantity. We use Lemma A.1 of [5]
to pass from coefficients vσ to pointwise evaluation v(σ), with abuse of notation. It states
that ∑σ∈e |vσ − vσ ′ | ≤CP ∑σ∈e |v(σ)− v(σ ′)| where CP is the norm of the inverse of the matrix
(ϕσ (σ

′))σ ,σ ′ and it depends only on the chosen polynomials, not on the mesh.

∑
σ∈Dh

|eσ |
(
L 1,m

ts,σ (f)−L 1,m
ts,σ (g)−L 2,m

ts,σ (f)+L 2,m
ts,σ (g)

)2
≤ (5.58a)

≤Cah2
∑

σ∈Dh

1
|eσ |

(∫
Ω

ϕσ

(
δ fm

σ −δ fm(x)
d(e)

))2

+Cbh2 ∆tm

(ε +∆tm) ∑
σ∈Dh

1
|eσ |

(∫
Ω

ϕσ

δM (Pfm)(σ)−δM (Pfm)

d(e)

)2

+Cc
∆tm

ε +∆tm ∑
σ∈Dh

|eσ |max
r

(δφs,σ (fr)−δφs,σ (fm))2 ≤

(5.58b)

≤Cdh2(|δ fm|21,x + |δM (Pfm)|21,x +max
r
||δ fr−δ fm||2)≤ (5.58c)

≤Ceh2(||δ fm||2 + ||δM (Pfm)||2 +∆t2|δ f|21,t)≤ (5.58d)

≤C f h2|||δ f|||2 +O(h4)≤C4h2|||f−g|||2. (5.58e)
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In (5.58b) we explicitly bring the scale h outside the first two sums, while in the third term we just
bound the interpolant polynomial with the maximum of the interpolant values times a constant, in
(5.58c) we use the definition of the seminorm (5.49), the Lipschitz continuity of residuals (5.53),
the product rule for integrals and the bound ∆tm ≤ ∆tm + ε . In (5.58d) we use the inequality
(5.51) and the definition of the seminorm (5.50). In (5.58e) we use the fact that the Maxwellians
M and the projections P are Lipschitz continuous, the inequality (5.52) and the fact that ∆t ∼ h.
The constant C4 does not depend on h,∆t nor on ε , but it depends on the size of the domain, on
the Lipschitz continuity of the Maxwellians, on the regularity of the mesh and on basis functions.

For the advection term a similar computation is carried out, but, in this case the error is a
O(∆t). Using the notation of φσ := ∑

K|σ∈K
φ K

σ , we write

||Sx||2 := ∑
σ∈Dh

|eσ |
(

δL 1,m
ad,σ (f)−δL 1,m

ad,σ (g)
)2

= (5.59a)

= ∑
σ∈Dh

1
|eσ |

(
ε

ε +∆tm

∫ tn,m

tn,0
δI

(
δφad,σ (f0), . . . ,δφad,σ (fM),s

)
ds
)2

≤ (5.59b)

≤Cl ∑
σ∈Dh

∆t2

|eσ |

(
∑

e|σ∈e
max

m=1,...,M

|δφ e
ad,σ (f

m)−δφ e
ad,σ (f

m−1)|
∆tm

)2

. (5.59c)

In (5.59c) we use the bound ε ≤ ε +∆tm and the fact that I0 is a zero order approximation of
IM, so, adding the integration in time, we get the error estimation above.

||Sx||2 ≤Cq ∑
σ∈Dh

∆t2|eσ |
(

max
m=1,...,M

|δ fm−δ fm−1|
∆tm

)2

≤ (5.59d)

≤Cp∆t2
M

∑
m=1
|fm− fm|21,t ≤C5∆t2|||f−g|||2. (5.59e)

In (5.59d) we use the Lipschitz continuity and consistency hypothesis on the residuals (5.53).
Finally, in (5.59e) we use the definition of seminorm (5.50) and we apply the bound in (5.52). C5
does not depend on ∆t, h or ε , but only on fluxes, geometry and basis functions.

Summing up the inequalities (5.58e) and (5.59e), we prove the thesis of the proposition.

5.5 Numerical Simulations

In this section, we validate the theoretical results through some numerical tests. We will
focus on scalar equations and Euler’s systems of equations as macroscopic model, both in 1D
and 2D. In all the simulations, we will introduce the macroscopic equation (5.1) and we will run
the simulation on the related kinetic model generated by (5.2). In all the tests we will use the
presented IMEX DeC scheme.

Some parameters must be chosen in each simulations. In particular, the relaxation parameter
ε will be chosen accordingly to what we are interested in. Most of the time we want to check the
macroscopic limit, so, we will choose ε � ∆t. As imposed by the Whitham’s subcharacteristic
conditions (5.20), we have to choose the convection parameter bigger than the spectral radius of
the macroscopic Jacobian of the flux, i.e., λ > ρ(JA(u)), for all u in the domain of interest.

In the nodal residual definitions, more parameters play a role in order to stabilize the solution.
We will make use of different schemes presented in [8] and reported in section 4.2.3.1. In
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particular, we will specify the choice of the coefficients τz of the penalty terms of schemes (4.64)
and (4.69) for the jump of the derivatives on the boundaries.

5.5.1 1D Numerical Tests

5.5.1.1 Convergence for Linear Transport Equation

To start, we test the IMEX DeC scheme with the scalar linear equation ut + ux = 0 as
macroscopic equation, see example 5.1.1. The nodal distribution, that we will use for smooth
test cases, is a Galerkin approximation stabilized by jump penalty terms proposed by Burman
[30]. The scheme is defined in the section 4.2.3.1 in (4.64). The initial conditions are u0(x) =
e−80(sin(π(x−0.4))/π)2

and f0 = M (u0). All the other parameters are in fig. 5.3(c). The number
of subtimesteps M is the same of the degree of the polynomials in Bp and the corrections are
K = p+1 = M+1. As we can see in fig. 5.3(a), the convergence of the scheme is the theoretical
one.
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Figure 5.3: Scalar linear 1D test

In fig. 5.3(b) we test the scheme varying the relaxation parameter ε . The order of accuracy
is the expected one. There are slight oscillations in particular for B2 solutions. This is a well
known problem of order reduction as ε is approaching the magnitude of ∆, which affects several
schemes, including some RK methods, as stated in [22]. Anyway, we can say that the scheme is
getting an order of accuracy bigger or equal than the expected one, except for few mid–range
values of ε . Moreover, this proves stability, for any value of ε .

5.5.1.2 Euler’s Equation – Isentropic Flow

Now, we solve Euler’s equations(
ρ,ρv,E

)
t +
(
ρv,ρv2 + p,(E + p)v

)
x = 0, (5.60)

p = (γ−1)(E−0.5ρv2), (5.61)
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where ρ is the density, v the speed, p the pressure and E the total energy. The quantities are
linked by the EOS (5.61). To test the convergence of the scheme on 1D Euler’s equations, we
use the case of isentropic flow, when γ = 3 and p = ργ , with initial conditions

(
ρ0,v0, p0

)
=(

1+0.5 · sin(πx),0,ργ

0

)
. The parameters used for the scheme are in fig. 5.7(c). As we can see in

fig. 5.7(a), the order of convergence is what we expected.

5.5.1.3 Euler’s Equation – Sod Shock Test

Now, we test the IMEX DeC scheme on not smooth solutions. We begin with the Euler’s
Sod test case. The Sod test case is solving equation (5.60) on domain [0,1], with EOS (5.61),
where γ = 1.4. The initial conditions are

(
ρ0,v0, p0

)
=
(
1,0,1

)
for x ≤ 0.5 and

(
ρ0,v0, p0

)
=(

0.125,0,0.1
)

for x > 0.5. The nodal residual definition in this non smooth test case is the one of
section 4.2.3.1 in (4.69), where a convex combination between a Rusanov scheme and a limitation
of it is applied, as described by Abgrall [8]. In fig. 5.4, we show the parameters used in the
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(b) N = 256

Ω T λ ε CFL BC B1 B2 B3 B1 B2 B3

[0,1] 0.16 2 10−9 0.2 outflow τ1 1 1 2.5 τ2 0 0.5 4

Figure 5.4: Density of Sod test case 1D

scheme and the density plots for different mesh sizes N = 64,256. As we notice, even with few
points the B3 solution is outperforming the other solutions, catching in a better way the edges of
the discontinuities.

5.5.1.4 Euler’s Equation – Woodward Colella

We observe even more advantages of using a high order scheme in the following examples.
First, we present the one proposed by Woodward and Colella [48]. It solves again Euler’s
equation (5.60) with EOS (5.61) with γ = 1.4. The initial conditions are ρ0 = 1, v0 = 0, p0 =
103

1[0,0.1]+10−2
1[0.1,0.9]+102

1[0.9,1]. We used again scheme (4.69) for this non smooth problem,
with the parameters in fig. 5.5.
We observe that in this case, only B3 is able to catch the shape of the second peak (with 512
elements).
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(b) N = 512
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Figure 5.5: Density of Woodward Colella test
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(b) N = 256
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(c) N = 512
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Figure 5.6: Density of Shu–Osher’s test

5.5.1.5 Euler’s Equation – Shu Osher Test

Last test we performed in 1D was proposed by Shu and Osher [138]. Again we have Euler’s
equation (5.60) with EOS (5.61) with γ = 1.4. The initial conditions areρ0

v0
p0

=

 3.857143
2.629369

10.333333

 if x ∈ [−5,−4],

ρ0
v0
p0

=

1+0.2sin(5x)
0
1

 if x ∈ [−4,5].

As before, the scheme used is defined in (4.69). In section 5.5.1.5, we can see results for
several Ns. Even here, the second and third order polynomials outperform the first order one.
In particular, the oscillations are already captured with few points and the precision increases
quickly if the order is high.
In all the tests performed, our method captures the correct behavior of the solutions. Moreover,
it is convenient to choose high order approximations to get a faster convergence to the exact
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solution.

5.5.2 2D Numerical Tests

Finally, we test the IMEX DeC scheme on some 2D tests. Again, we will present the
macroscopic equations, but we will solve the kinetic model (5.2). The system of equations we
are going to solve is 2D Euler’s equations:

∂tu(x, t)+∂xA1(u(x, t))+∂yA2(u(x, t)) = 0, x ∈Ω⊂ R2, U =
(
ρ,ρvx,ρvy,E

)
,

A1(u) =
(
ρvx,ρ(vx)2 + p,ρvxvy,vx(E + p)

)
,

A2(u) =
(
ρvy,ρvxvy,ρ(vy)2 + p,vy(E + p)

)
,

(5.62)

p = (γ−1)
(

E−0.5ρ((vx)2 +(vy)2)
)
, (5.63)

where ρ is the density, vx is the speed in x direction, vy is the speed in y direction, E the total
energy and p the pressure. A closure law is given by the EOS (5.63).

5.5.2.1 Euler’s Equation – Smooth Vortex Test Case
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(b) 2D Euler’s convergence

Ω T λ ε CFL BC B1 B2 B3 B1 B2 B3
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(c) Parameters for isentropic Euler’s 1D

Ω T λ ε CFL BC B1 B2 B3

B10 1 3 10−9 0.1 Dirichlet τ1 0.1 0.01 0.03
(d) Parameters steady vortex 2D

Figure 5.7: Convergence on Euler’s equations in 1D and 2D

To start, we want to study the convergence of the method also in 2D. To do so, we test our
scheme with a steady vortex test case, so that we can compare the final solution with the initial
one. The domain is a circle of radius 10 and center (0,0). The exact conditions are imposed on
the boundary.
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To define the initial conditions, let us introduce the radius r2 := x2 + y2, the coefficient

C(r) := e
−r0

r2
0−r2

1{r<r0}, where r0 := 5 is the radius of the circle where the solution is not constant
and β := 5. The modulus of the speed is defined as |v| := 2βC(r) r0

r2
0−r2 . The initial conditions

and solutions for all times are(
ρ0,u0,v0, p0

)
=

((
1− γ−1

γ
β 2C(r)2

) 1
γ−1

,(−y)|v|,(x)|v|,ργ

0

)
.

In our simulations γ = 1.4 for the EOS (5.63). The scheme used is (4.64) and the parameters
chosen are in fig. 5.7(d). We use different refinements of the domain mesh. These are uniform
triangular meshes and on the x–axis of fig. 5.7(b) one can see the maximum diameter of a cell
of the mesh. As in 1D cases, in fig. 5.7(b) the convergence is reflecting the theoretical results
running with number of corrections K = d +1 and subtimesteps.

5.5.2.2 Euler’s Equation – Sod 2D Test Case

T 0.25 B1 B2 B3

λ 1.4 τ1 0.1 0.1 0.01
ε 10−9 τ2 0 10−4 10−4

CFL 0.1 BC outflow Ω B1
(a) parameters

(b) Scatter of density of Sod test (B1

blue, B2 red and B3 green)
(c) scale

(d) B1,N = 13548 (e) B2,N = 13548 (f) B3,N = 13548

Figure 5.8: Density of Sod test

We tested the IMEX DeC method on the analogous of the Sod test in 2D. This test is again
solving Euler’s equation (5.62) where γ = 1.4 in EOS (5.63). The domain Ω is a circle of
radius r = 1 and center in (0,0). The initial conditions are

(
ρ0,u0,v0, p0

)
=
(
1,0,0,1

)
if r < 0.5,(

ρ0,u0,v0, p0
)
=
(
0.125,0,0,0.1

)
if r ≥ 0.5.

The parameters used for this test are in fig. 5.8(a). We use uniform triangular meshes and
what is shown in figs. 5.8(d) to 5.8(f) is obtained with N = 13548 triangles on the domain. In
fig. 5.8(b) it is shown the scatter plot of the points of the density. The scheme used for this test
case is given by the nodal residuals (4.69).

Comparing figs. 5.8(b) to 5.8(f), we observe that with higher order schemes we are able to
better catch the sharpness of the shock moving on the domain. The mesh is chosen without
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T 0.2 λ 15 B1 B2 B3 B1 B2 B3

ε 10−9 CFL 0.1 τ1 0.1 0.01 0.005 τ2 0 10−4 10−4

(a) Parameters

(b) B1 (c) B1

(d) B3

Figure 5.9: Density of DMR test B1,B2,B3

particular attention to the geometry, nevertheless, in fig. 5.8(b), the points for same values of the
radius are not spread too much one from another.

5.5.2.3 Euler’s Equation – DMR 2D Test Case

In the end, we test our scheme on the DMR (double Mach reflection) problem presented in [58].
It consists of Euler’s equation (5.62) with γ = 1.4 in EOS (5.63). The domain is the rectangular
shape [−0.2,3]× [0,2.2], cut on the bottom right part by an oblique edge passing through (0,0)
and (3,1.7). We have wall boundary conditions on the bottom, on the top and on the oblique edge
of the mesh, inflow on the left edge and outflow on the right one. The initial conditions have a
discontinuity on x= 0. This shock has an initial speed in right direction and, as the time passes, the
shock crosses the oblique surface and creates more internal shock surfaces. The initial conditions
are
(
ρ0,u0,v0, p0

)
=
(
8,8.25,0,116.5

)
if x≤ 0, and

(
ρ0,u0,v0, p0

)
=
(
1.4,0,0,1

)
if x > 0.

The parameters used for scheme (4.69) are in fig. 5.9. The mesh we used is composed of
N = 19248 triangular elements with a maximum diameter of 0.0369.
Again we can see in fig. 5.9 that the scheme catches the behavior of the shock and its reflection
against the lower wall. Again, the sharpness of the shock is really well captured by the B3 scheme,
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while the others are less precise in defining the shock zone.

5.6 Remarks and Possible Extensions

The method presented in this section is a high order scheme for kinetic models of hyperbolic
system of equations. The method proposed solves the stiffness of the relaxation term through an
IMEX formulation (implicit for source term and explicit for advection term). Nevertheless, we
were able to solve computationally explicitly the system, thanks to the structure of the model [17]
and an auxiliary equation, which allows us not to recur to nonlinear solvers. The high order
accuracy of the scheme is reached thanks to the residual distribution space discretization and
the deferred correction algorithm in time. The result is an iterative method able to reach high
order accuracy and stability via few iterations. Even if in this work we solved only one model,
the extension to other models with similar properties can be carried out and will be the study of
future research.

The results obtained both from a theoretical point of view and from the simulation side are
satisfactory. Indeed, the theorems proved the asymptotic preserving property for our scheme and
the rate of accuracy. In addition, the run simulations are reaching the expected accuracy in 1D
and 2D, the correct behavior of the discontinuities of the solutions is well caught by the scheme
and, as the order increases, we see improvements in the prediction of the solutions.

Possible extension of this work may be done in the following directions. There are still some
open questions over the complete automation of the scheme. For example, it is still not well
known which relation occurs between parameters τ1,τ2, CFL and the quality of the solution
for any possible model. This is a common problem with other works, such as [8]. The von
Neumann stability analysis in section 4.2.6 and [15] are only partially satisfactory, since they are
not extensible to 2D and to nonlinear systems.

Finally, different models could be considered, for example multiphase flows equations, other
BGK equations, viscoelasticity problems or many other kinetic schemes.
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6MODEL ORDER REDUCTION FOR
HYPERBOLIC PROBLEMS

Parametrized partial differential equations (PPDE) have received in the last decades an
increasing amount of attention from research fields such as engineering and applied sciences. All
these domains have in common the dependency of the PPDE on the input parameters, which are
used to describe possible variations in the solution, initial conditions, source terms and boundary
conditions, to name just a few. Hence, the solutions of these problems are depending on a large
number of different input values, as in optimization, control, design, uncertainty quantification,
real time query and other applications. In all these cases, the aim is to be able to evaluate,
in an accurate and efficient way, an output of interest when the input parameters are varying.
This will be very time consuming or it can even become prohibitive when using high–fidelity
approximation techniques, such as finite element (FE), finite volume (FV) or spectral methods.
For this kind of problems, model order reduction (MOR) techniques are used, in order to replace
the high–fidelity problem by another one featuring a much lower numerical complexity. A key
ingredient of MOR are the reduced basis (RB) methods, which allow to produce fast reduced
surrogates of the original problem by only combining a few high–fidelity solutions (snapshots)
computed for a small set of parameter values [66, 79, 117]. The most common and efficient
strategies available to build a reduced basis space are the proper orthogonal decomposition
(POD) and the greedy algorithm. These two sampling techniques have the same objective but
in very different approach forms: the POD method is most often applied only in one space
(parameter or time) and mostly in conjunction with (Petrov-)Galerkin projection methods, in
order build reduced order models of time–dependent problems [90, 127], but also in the context
of parametrized systems [26, 27, 82, 142]. The disadvantage of this method is that it relies on
the singular value decomposition (SVD) of a large number of snapshots, which might entail a
severe computational cost. On the other side, the greedy algorithm [120, 121, 135] represents
an efficient alternative to POD and it is directly applicable in the multi–dimensional parameter
domain. The algorithm is based on an iterative sampling from the parameter space fulfilling at
each step a suitable optimality criterion that relies on a posteriori error estimates.

A first challenge in the context of MOR deals with unsteady problems, so implicitly the
exploration of a parameter–time framework is needed. In this case, the sampling strategy to
construct reduced basis spaces for the time–dependent problem is POD–greedy [67] and it
is based on combining the POD algorithm in time, with a greedy algorithm in the parameter
space. In general, all these methods are well suited for parametrized elliptic and parabolic partial
differential equation models, for which their solutions are smooth with respect to the change of
the inputs. We are interested instead, in parametrized hyperbolic systems of conservation laws,
which involve moving waves and discontinuities such as shocks. It is well known that, in this
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case, the discontinuities will persist also in the parameter space, hence accurate surrogates have to
be developed, in order to be able to capture the evolution of the discontinuous solutions. A second
challenge refers to the nonlinear problems. In general, the computational efficiency of the RB
method rely on affine assumptions, which is not the case for a big range of problems, including
the hyperbolic ones. Hence, in order to approximate nonaffine or nonlinear terms, one can make
use of the empirical interpolation method (EIM) which approximates a general parametrized
function by a sum of affine terms. This method was first introduced in [19] and in the context of
MOR in [66]. Some applications of the EIM method are discussed in [101] and an a posteriori
error analysis is presented in [55, 66]. There are only a few papers in the literature which are
focused on MOR methods for parametric nonlinear hyperbolic conservation laws and they are
based on: POD and Galerkin projection [83, 134], domain partitioning [140], Gauss-Newton with
approximated tensors (GNAT) [35], L1-norm minimization [7] or suitable algorithms extended
to linear and nonlinear hyperbolic problems [67, 68]. The work of Drohmann, Haasdonk and
Ohlberger [53], presents a new approach of treating nonlinear operators in the reduced basis
approximations of parametrized evolution equations based on empirical interpolation namely,
the PODEI-Greedy algorithm, which constructs the reduced basis spaces for the empirical
interpolation in a synchronized way.

In this chapter, we focus on reduced order models for hyperbolic conservation laws based
on explicit FV schemes. The FV schemes will be formulated within the framework of residual
distribution (RD) schemes. The advantages of this alternative are: a better accuracy, a much
more compact stencil, easy parallelization, explicit scheme and no need of a sparse mass matrix
“inversion”. For more details on RD, we refer to the work of Abgrall [3, 4, 6] and to section 4.2.
However, we want to emphasize that our approach can be applied to any general FV formulation
and RD is just our choice. In this work, we concentrate on uncertainty quantification (UQ)
applications for hyperbolic conservation laws. In practice, the input parameters are obtained by
measurements (observations) and these measurements are not always very precise, involving
some degree of uncertainty [21, 57]. A good example of hyperbolic conservation laws is when
computing the flow past an airfoil or a wing, the inputs for this calculation, such as the inflow
Mach number, the angle of attack, as well as the parameters that specify the airfoil geometry, are
all measured with some uncertainty. This uncertainty in the inputs results in the propagation of
uncertainty in the solution [12]. Moreover, the need of model order reduction for UQ is obvious
by just taking into account that these problems feature high-dimensionality, low regularity and
arbitrary probability measures. However, the classical methods (Monte Carlo, stochastic Galerkin
projection method, stochastic collocation method, etc) can not be applied directly to solve the
underlying deterministic PDEs, since they might need millions of full solutions (or even more), in
order to achieve a certain accuracy. Hence, with the help of reduced basis method, together with
an a posteriori error estimate, we will be able to break the curse of dimensionality of solving high
dimensional UQ problems whenever the quantities of interest reside in a low dimensional space.
Up to our knowledge, there is no work done on hyperbolic conservation laws with applications in
UQ and the only results that are available in literature are holding for elliptic PDEs [37, 38, 39].

In the first section we will present the problem of interest, namely the unsteady hyperbolic
conservation laws and we will quickly recall the RD scheme in relation with the nonlinear fluxes.
In section 6.2 we will describe the algorithms that we are using for the construction of the reduced
basis: POD-Greedy, PODEI. In section 6.3 we describe the UQ method and in the last section we
present our numerical results.

This chapter is based on our work [49].
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6.1 Problem of Interest

6.1.1 Hyperbolic Conservation Laws

In this work, we consider high–dimensional models (HDM) arising from the space discretiza-
tion of hyperbolic PPDEs. These problems are characterized by a parameter µµµ ∈ P from some
set of possible parameters P ⊂ Rp. The unsteady problem then consists of determining the state
variable solution u(x, t,µµµ) on a bounded spatial domain Ω⊂RD, D = 1,2, and finite time interval
R+ = [0,T ],T > 0 such that the following system of S, S≥ 1 balance laws has to be satisfied:

ut(x, t,µµµ)+∇ ·F(u(x, t,µµµ),µµµ) = R(u,µµµ), x ∈Ω, t ∈ R+,
B(u,µµµ) = g(t,µµµ), x ∈ ∂Ω, t ∈ R+,
u(x, t = 0,µµµ) = u0(x,µµµ), x ∈Ω,

(6.1)

where F :RS→ (RS)d is the nonlinear flux, B is a suitable boundary operator, and R,g are volume,
respectively surface forces. Obviously, the moving shocks and discontinuities will depend on the
different parameter settings µµµ ∈ P and will develop during time. The task of the RB method will
be to capture the evolution of both smooth and discontinuous solutions.

The discrete evolution schemes are based on approximating high–dimensional discrete space
VΣ ⊂ L2(Ω) (or subset of some Hilbert space), dim(VΣ) = Σ. We use also h to represents the
characteristic mesh size and we approximate the exact solution at time-instances 0 = t0 < t1 <
· · ·< tK = T , i.e., providing a sequence of functions uk

Σ
(µµµ) : RΣ→ RS for k = 0, . . . ,K such that

uk
Σ
(µµµ)≈ u(tk,µµµ).

In particular, we will use as discretization schemes the residual distribution scheme of
section 4.2 with Rusanov nodal residuals (4.65) and explicit Euler as time integration method and
some FV schemes of section 4.1.2. This choice is not restrictive and any other explicit method
can be easily reshaped into the framework of the following algorithm. To be more general, we
use the following notation to indicate any explicit (FV, RD, FE) scheme.

uk
Σ(µµµ) = uk−1

Σ
(µµµ)−E (x, t,µµµ)[u(x, t,µµµ)], k = 1, . . . ,K, ∀µµµ ∈ P , (6.2)

where E represents the discretized evolution operator.

6.2 Algorithm

Before starting discussing the full algorithm we have used for our method, we should point
out which are the main difficulties that we will encounter preparing our reduced basis space RB.
First of all, we know that the main prerequisite of a RB method is the separability into an affine
decomposition, where the parameter dependent functionals are evaluated separately with respect
to some precomputed parameter independent operators. To efficiently apply this principle to a non–
linear functional, like our E (x, t,µµµ)[u(x, t,µµµ)], we need to introduce the empirical interpolation
method in order to approximate an (a priori) nonlinear parametrized operator with a separable
one, which is efficient for evaluations of these operators for a reduced basis algorithm. We will
show that this kind of surrogate operator can be computed in an efficient way using RD (or any
FV) scheme in Section 6.2.5. Moreover, we need to build an efficient algorithm that will select
sequentially some snapshots from some high–fidelity discretized solutions, until a prescribed
tolerance. To do this, we will recur to a POD–Greedy algorithm, which is a combination of POD
algorithm in time and a Greedy algorithm in the parameter space.
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We will discuss in a general way the Greedy algorithm, since also EIM and POD–Greedy can be
recast into a Greedy algorithm.

6.2.1 Greedy Algorithm

A Greedy algorithm [120,121] is taking as an input some given precomputed functions and is
building a reduced basis space, where the error of the approximation of any of these snapshots
into this reduced basis space is smaller than a certain prescribed tolerance. The way the algorithm
is choosing the reduced basis space, is an iterative method. At each step, the Greedy algorithm
is selecting the snapshot that is worst approximated by the reduced basis projection and it is
enriching the reduced basis space adding this new function. There are 3 main procedures that we
will use in the Greedy algorithm. They are:

• INITBASIS which initializes the reduced basis DN , also called dictionary in literature;

• ERRORESTIMATE which estimates the error between the high–fidelity function and its
projection on the reduced basis space DN ;

• UPDATEBASIS which updates the RB space DN , given a certain selected parameter.

The greedy algorithm proceeds as in Algorithm 3.

Algorithm 3 Greedy Algorithm

Input: Training set Mtrain = {µµµ i}Ntrain
i=1 , tolerance ε tol and Nmax.

Output: Reduced basis DN
1: Initialize a reduced basis of dimension N0:

DN0= INITBASIS
N = N0

2: while maxµµµ∈Mtrain ERRORESTIMATE(u(µµµ),DN)≥ ε tol AND N ≤ Nmax do
3: Find the parameter of worst approximated snapshot:

µµµmax = argmaxµµµ∈Mtrain
ERRORESTIMATE(u(µµµ),DN)

4: Extend reduced basis DN with the found snapshot (adding the new snapshot to dictionary):
DN ,N =UPDATEBASIS(DN ,u(µµµmax))

5: end while

6.2.2 Empirical Interpolation Method

In this section we will apply the EIM algorithm [19] to the discretized operators. The method
has the goal to apply an interpolation to the fluxes E (x, tk,µµµ)[u(x, tk,µµµ)]≈ E (x, tk,µµµ)[uk

Σ
(µµµ)].

The set of the interpolant DoFs ϒNEIM = {τττEIM
m }NEIM

m=1 , where τττEIM
m ∈ V′

Σ
and the corresponding

set of interpolating basis functions Q NEIM = {qm}NEIM
m=1 , where qm ∈ VΣ and τττm(qn) = δδδ mn for

m≤ n, will be the outputs of the algorithm. When the degrees of freedom can be identified with
points in the domain (i.e. for Lagrange polynomial basis functions), EIM DoFs will be called
“magic points”. The specialization of Greedy algorithm into the EIM algorithm consists in the
definition of the greedy procedures, i.e. Algorithm 4, where the reduced basis, that we want
to produce, comprise the interpolation DoFs ϒNEIM and the interpolation functions Q NEIM , i.e.,
DN = (Q N ,ϒN). After the EIM procedure, we will use the interpolated fluxes instead of the high
fidelity discretized ones.

INEIM [E (x, tk,µµµ)][vΣ] =
NEIM

∑
m=1

τττ
EIM
m

(
E (x, tk,µµµ)[vΣ]

)
qm ≈ E (x, tk,µµµ)[vΣ]. (6.3)

105



6.2. ALGORITHM

Algorithm 4 Empirical Interpolation Method
EIM–INITBASIS()

1: return empty initial basis D0 = /0

EIM–ERRORESTIMATE((Q M,ϒM),µµµ, tk )
1: Compute the exact flux vΣ = E (x, tk,µµµ)][uk

Σ
(µµµ)]

2: Compute the interpolation coefficients σσσM(vΣ) := (σM
j )M

j=1 ∈ RM by solving the linear system (upper
triangular)

M

∑
j=1

σ
M
j (vΣ)τττ

EIM
i [q j] = τττ

EIM
i [vΣ], ∀i = 1, . . . ,M (6.4)

3: return approximation error ||vΣ−∑
M
j=1 σM

j (vΣ)q j||VΣ

EIM–UPDATEBASIS ((Q M,ϒM),µµµmax, t
kmax )

1: Compute the exact flux
vΣ = E (x, tkmax ,µµµmax)][u

kmax
Σ

(µµµmax)]
2: Compute the interpolation coefficients

σσσM(vΣ) := (σM
j )M

j=1 ∈ RM from (6.4)
3: Compute the residual between the high–fidelity flux and its interpolant

rM = vΣ−∑
M
j=1 σM

j (vΣ)q j
4: Find the DoF that maximize the residual

τττEIM
M+1 := argmaxτττ∈ϒh

|τττ(rM)|
5: Normalize the correspondent basis function

qM+1 := τττEIM
M+1(rM)−1 · rM

6: return updated basis DM+1 := ((qm)
M+1
m=1 ,(τττ

EIM
m )M+1

m=1 )

The algorithm produced a basis Q NEIM which fulfills in a relaxed way the Kronecker’s delta
condition: τττNEIM

m (qn) = δδδ mn only if m≤ n. This condition will provide an upper triangular matrix
that can be easily inverted during the EIM procedure to solve the interpolant coefficients problem.
Moreover, the EIM basis functions spaces will be hierarchical, i.e. Q M ⊂Q M+1, and the infinity
norm of all the basis functions will be equal to 1 (||qm||∞ = 1).
Let us remark that, when we are dealing with Lagrange polynomial basis functions, formula
(6.3) requires the evaluation of functions E (x, tk,µµµ)[vΣ] only in the magic points, and this will
give the biggest reduction in computational time, since the evaluation of fluxes can be very
expensive. Indeed, the number of interpolation DoFs should be NEIM� Σ. In RD framework, we
can explicitly see what we need to compute:

τττ i[E (x, tk,µµµ)][uk
Σ(µµµ)] = ∑

e|i∈e
φ

e
i (u

k
Σ(µµµ)). (6.5)

Each nodal residual φ e
i (uk

Σ
(µµµ)) depends only on DoFs of element e, this means that for each

magic point i we have to keep track of the function uk
Σ
(µµµ) in all the DoFs of the elements e to

which i belongs. The number of these DoF is mesh–dependent, for the simplest example in 1D
with P1 piecewise continuous elements we know that for each magic point we have to keep track
of 3 points: itself, its right and left neighborhoods. If we suppose some regularities on the mesh
we can say that at most each vertex belongs to C elements. In this case, again for P1 Lagrangian
basis functions, the number of DoF we are interested in is R = C(K− 2)+ 1, where K is the
biggest number of vertices that an element e can have.
At the end, we will have that the empirical interpolation method will provide an approximated
version of the fluxes that depends at most on R ·NEIM � Σ DoFs.
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6.2.3 POD–Greedy

To create a reduced basis RB space, we want to find a low dimensionality good approximation
of the high fidelity functional space VΣ. The algorithm, that generates the RB, is a combination
of the following methods: POD [81, 90], POD–greedy [72], EIM–greedy [19]. What we will
get is a POD–EIM–greedy algorithm, described by [53]. The main idea is to extend EIM basis
functions and POD–greedy basis functions in a synchronized way, at each step of the main greedy
algorithm.

A key ingredient of the procedure is the POD method [90], which is also known as PCA
(principal component analysis) in statistical environment [81]. The POD receives as input a set
of vectors {vi}N

i=1 and returns NPOD modes {ξξξ i}NPOD
i=1 that minimize the error between the original

vectors vi and their projection onto the subspace generated by the modes U =
〈
{ξξξ i}NPOD

i=1

〉
. We

can write it in this way

POD({vi}N
i=1) = argmin

U |dim(U)=NPOD

N

∑
i=1

(||vi−ΠU(vi)||2) , (6.6)

where ΠU is the L2 projection on the subspace U ⊂ VΣ. Equivalently, this can be seen as the
subspace of fixed dimension that maximizes the variance. The algorithm is based on SVD
decomposition. We need to order the eigenvalues from the biggest to the smallest and we keep
the first NPOD ones and the related eigenvectors. The span of the latter will be the output of the
algorithm. To choose the dimension of this subspace, it is possible to use a tolerance, which will
decide which percentage of the variance we want to keep or which percentage of the error we
want to ignore. In our algorithms, we will use different tolerances, according to whether we want
them to be fast (bigger NPOD) or sharp (small NPOD, even 1).

Before explaining the main algorithm, let us introduce the POD-Greedy algorithm, which
deals with unsteady problems in the reduced basis context. The goal of the algorithm is to select
new basis functions iteratively between precomputed snapshots {{uk

Σ
(µµµ i)}K

k=1}Ntrain
i=1 . So, we have

to find strategies to go through the parameter space and through the time steps. First, we explore
the parameter space through a Greedy algorithm. We pick the parameter µµµmax that is worst
approximated in RB space. Hence, on its temporal evolution {uk

Σ
(µµµmax)}K

k=1, we perform a POD
that chooses the most representative M–dimensional space for that solution, to compress the
solution in a few synthetic basis functions. Then we add to the RB space the new basis functions
selected by POD. Finally, we perform a second POD on the RB space, to get rid of useless
information.
Overall, we will compute a Greedy algorithm on the parameter domain P and a POD on the
temporal space. Also in this case, we can write the POD-Greedy Algorithm 5, specifying the
greedy procedures as in Algorithm 3.

Let us point out a couple of details of Algorithm 5. At the beginning, we may initialize the
reduced basis with a POD with a NPOD bigger than one used later (or a smaller error tolerance),
since we still do not have any RB and we want to accelerate the first steps, to decrease the number
of greedy steps. During the rest of the algorithm we will use the POD on the time evolution of the
worst approximated solution in the training set and NPOD here will be smaller (or the tolerance
will be bigger). The last POD that we use is in the last step of the POD–GREEDY–UPDATEBASIS,
where NPOD will be big and set by a very small tolerance (of the order of the final error that we
want to reach). This will suppress some spurious vectors that may come from oscillations or
small errors. Often this step is not changing the updated reduced basis.
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Algorithm 5 POD–Greedy
POD–GREEDY–INITBASIS()

1: Pick a parameter µµµ and compute the solution through all the time steps tk: {uk
Σ
(µµµ)}K

k=1
2: return initial basis D0 = POD({uk

Σ
(µµµ)}K

k=1)

POD–GREEDY–ERRORESTIMATE(RB,µµµ, tk )
1: return error indicator ηk

N,NEIM
(µµµ)≥ ||uk

Σ
(µµµ)−uk

N(µµµ)||VΣ

POD–GREEDY–UPDATEBASIS (RB,µµµmax)
1: Compute the exact solution for all timestep with high fidelity solver {uk

Σ
(µµµmax)}K

k=1
2: Compute the Galerkin projection of the solution onto the RB space Π[uk

Σ
(µµµmax)]

3: Compute the POD over time steps of the orthogonal projection of the high fidelity solution
RBadd = POD

(
{Π[uk

Σ
(µµµmax)]−uk

Σ
(µµµmax)}K

k=1

)
4: Compute a second POD to get rid of extra information

RB = POD(RBadd ∪RB)
5: return updated basis RB

About the error estimator η , we would like to have a function which is independent of Σ that
can be computed also in an online phase. Of course, this bound should also be enough sharp,
to give a precise idea of the error. We will describe in section 6.2.6, an error indicator that is
possible to use. If this indicator is not available, in the offline phase we can still use the real error,
which is computationally less efficient, and in the online phase, where the high fidelity solutions
are not available, we can not compute it directly. So, we will not have an explicit error bound to
guarantee a good approximation.

In Algorithm 5, it is not written explicitly the EIM–method that every time we are applying
to some reduced basis solutions. Moreover, the error indicator should also include the error
produced by EIM procedure. This approach has some drawbacks described in [53]:

1. Is not really clear what is the relation between the tolerance used to stop EIM algorithm
and the error produced in the POD–Greedy and how it influences the error indicator η .
Therefore, it is impossible to determine a priori an optimal correlation between the reduced
basis space and the EIM space.

2. The empirical interpolation error estimation depends on high dimensional computations
for each parameter and time step tested. This can be very inefficient.

6.2.4 PODEIM–Greedy

To avoid these drawbacks, the idea of [53] is to synchronize the EIM and the POD–Greedy
algorithms. We sketch the steps of the PODEIM-Greedy in Algorithm 6. Again, we can rewrite
the PODEIM–Greedy based on the procedures of the Greedy Algorithm 3.

The differences between this new algorithm and the POD–Greedy are in the update phase,
where we enrich at the same moment the EIM and the RB basis. Moreover, it is possible that
the error (and the indicator η) is not monotonically decreasing as the dimension of RB increases.
This is caused by a bad approximation of the non–linear fluxes through the EIM. Indeed, in such
a situation, we are enlarging only the EIM space and discarding the additional part of the RB that
we added. This leads to an automatic tuning between N and NEIM.
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Algorithm 6 PODEIM–Greedy
PODEIM–GREEDY–INITBASIS()

1: (Q Msmall ,ϒMsmall ) = EIM-GREEDY(Mtrain,εtol,small)

2: Pick a parameter µµµ and compute the solution through all the time steps tk: {uk
Σ
(µµµ)}K

k=1
3: RB0 = POD({uk

Σ
(µµµ)}K

k=1)
4: return initial bases D0 = (RB0,(Q Msmall ,ϒMsmall ))

PODEIM–GREEDY–ERRORESTIMATE(DS,µµµ, tk )
1: return error indicator ηk

N,NEIM
(µµµ)

PODEIM–GREEDY–UPDATEBASIS (DS,µµµmax)
1: Extend EIM basis DEIM

NEIM+1 = EIM–UPDATEBASIS (DEIM
NEIM

,µµµmax)

2: Extend RB basis DRB
N+1 = POD–GREEDY–UPDATEBASIS (DRB

N ,µµµmax)
3: Discard extended RB if error increases:
4: if ηk

N−1,NEIM−1(µµµmax)< maxµµµ i∈Mtrain ηk
N,NEIM

then
5: return only EIM updated basis: DS+1 = (DRB

N ,DEIM
NEIM+1)

6: else
7: return updated basis DS+1 = (DRB

N+1,D
EIM
NEIM+1)

8: end if

6.2.5 Online Phase

In this section we will describe the reduced basis scheme that we will eventually apply to
find a reduced solution. This process is also used in the offline–phase at each greedy step for
each parameter in the training set, to get the reduced solution and the correspondent error. We
will focus on explicit finite volume method, that can be rewritten into RD explicit scheme, but it
is possible to extend this scheme to implicit (Newton iteration based method) as done in [53].
The basic idea is to replace the discrete evolution operator E [·] := E (x, tk,µµµ)[·] with its empirical
interpolants and project it onto the RB space. For this purpose, let us introduce the orthogonal
projection Π : VΣ→ RB such that

〈Π[u],ψψψ〉VΣ
= 〈u,ψψψ〉VΣ

, ∀ψψψ ∈ RB (6.7)

and we can define the reduced operator as

E := Π◦INEIM ◦E . (6.8)

Let us define {ψψψ i
RB}N

i=1 a basis of RB, {qm}NEIM
m=1 the interpolation functions of EIM space and,

for m = 1, . . . ,NEIM, let us define {β m
i }N

i=1 such that Π(qm) = ∑
N
i=1 β m

i ψψψ i
RB.

To begin the procedure, for any parameter µµµ , we compute the trajectory of the reduced
solution, projecting the initial data onto the RB space: u0

N(µµµ) := Π[u0
Σ
(µµµ)]. Then, for each time

step, we compute the reduced solution applying the reduced operator E[uk
N ]. This implies to

compute
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uk+1
N (µµµ) =uk

N(µµµ)−E[uk
N(µµµ)] =

N

∑
i=1

α
k
RB,i(µµµ)ψψψ

i
RB−Π(INEIM(E [uk

N(µµµ)])) =

=
N

∑
i=1

α
k
RB,i(µµµ)ψψψ

i
RB−Π

(
NEIM

∑
m=1

τττ
NEIM
m (E [uk

N(µµµ)])qm

)
=

=
N

∑
i=1

α
k
RB,i(µµµ)ψψψ

i
RB−

NEIM

∑
m=1

τττ
NEIM
m (E [uk

N(µµµ)])Π(qm) =

=
N

∑
i=1

α
k
RB,i(µµµ)ψψψ

i
RB−

NEIM

∑
m=1

τττ
NEIM
m (E [uk

N(µµµ)])
N

∑
i=1

β
m
i ψψψ

i
RB =

=
N

∑
i=1

(
α

k
RB,i(µµµ)−

NEIM

∑
m=1

τττ
NEIM
m (E [uk

N(µµµ)])β
m
i

)
ψψψ

i
RB.

(6.9)

In the last formula, what we really need to compute online is only

τττm(E [uk
N(µµµ)]), ∀m = 1, . . . ,NEIM,

which implies, as written in Section 6.2.2, RNEIM evaluation of the flux. All the other terms are
computed previously and stored: αk

RB,i(µµµ) are the coefficient of the previous time step, ψψψ i
RB are

the basis functions of RB, previously computed, and β m
i are the projection coefficient of EIM

functions onto RB. Overall, the computational cost of a reduced solution at each time step will
be O(RNEIM) flux evaluations and O(NEIMN) multiplications.

6.2.6 Error Indicator

We can provide an error indicator, which is also an error upper bound for the difference
between the high fidelity solution and the reduced one, under some hypothesis. This estimation
is derived following the guidelines of [53] and [68]. The hypothesis under which the indicator
becomes a bound is that there exists a higher order empirical interpolation of the used opera-
tors which is exact. This requirement is fulfilled if we take the interpolation over all the DoFs
(N′EIM : NEIM +N′EIM = H), where H is the number of DoFs. But, for practical purposes, it has
been show in [53] that fewer points are necessary to get a good estimator.
Let us define other N′EIM EIM basis functions {q′m}

N′EIM
m=1 , simply iterating further the EIM proce-

dure. And we suppose that

INEIM+N′EIM
[E (x, tk,µµµ)][uk

N(µµµ i)] = E (x, tk,µµµ)[uk
N(µµµ i)]. (6.10)

Moreover, we suppose that the projection of the initial condition are in the reduced basis space,
i.e. u0

Σ
(µµµ) ∈ RB, ∀µµµ ∈ P . This can be easily obtained if there exists an affine decomposition

of the parametric dependent part of the initial conditions: u0
Σ
(x,µµµ) =

F
∑

k=1
αk(µµµ)uk(x). Anyway,

we will show that, also without fulfilling this condition, the numerical results do not present
particular problems if the tolerance of the RB is enough small.
Then, we need a very last hypothesis on the operator Id−∆tE (x, tk,µµµ) namely, to be Lipschitz
continuous with constant C > 0, i.e., ∀u,v ∈ VΣ:

||u−v−∆tE [u]+∆tE [v]||VΣ
≤C||u−v||VΣ

(6.11)
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holds.
Under these hypothesis we can say that the error ek(µµµ) := uk

Σ
(µµµ)−uk

N(µµµ) can be bounded by
ηk

N,NEIM ,N′EIM
(µµµ), which can be computed efficiently, and it is defined as

||eK(µµµ)||VΣ
≤η

K
N,NEIM ,N′EIM

(µµµ) :=
K

∑
k=1

CK−k

(
N′EIM

∑
m=1

∆tξ k
m(µµµ)

∥∥q′m
∥∥
VΣ

+∆t||Rk(µµµ)||VΣ

)
, (6.12)

where
∆tRk(µµµ) := uk

N(µµµ)−uk−1
N (µµµ)+∆tINEIM [E ][uk−1

N (µµµ)] (6.13)

and the coefficient

ξ
k
m(µµµ) := τττ

N′EIM
m

(
E [uk−1

N (µµµ)]
)
, ∀m = 1, . . . ,N′EIM. (6.14)

Proof. For the sake of simplicity, we will drop all the µµµ parameters.∥∥uK+1
Σ
−uK+1

N

∥∥=∥∥(Id−∆tE )(uK
Σ )− (Id−∆tINEIM [E ])(uK

N)−∆tRK
∥∥=

≤
∥∥(Id−∆tE )(uK

Σ )− (Id−∆tE )(uK
N)
∥∥

+
∥∥(∆tE −∆tINEIM [E ])(uK

N)
∥∥+ ||∆tRk||.

(6.15)

Then we can use Lipschitz condition (6.11) and get the following:∥∥uK+1
Σ
−uK+1

N

∥∥≤C
∥∥uK

Σ −uK
N

∥∥+∥∥(∆tE −∆tINEIM [E ])(uK
N)
∥∥+ ||∆tRK ||. (6.16)

Now, using the fact that the evolution is exactly represented with the second EIM interpolant
(6.10), we can rewrite it into:

C
∥∥uK

Σ −uK
N

∥∥+∥∥∥(∆tINEIM+N′EIM
[E ]−∆tINEIM [E ])(uK

N)
∥∥∥+ ||∆tRK || ≤

≤C
∥∥uK

Σ −uK
N

∥∥+∥∥∥∥∥∆t
N′EIM

∑
m=1

τττ
N′EIM
m [E (uK

N)]q
′
m

∥∥∥∥∥+ ||∆tRK || ≤

≤C
∥∥uK

Σ −uK
N

∥∥+∥∥∥∥∥∆t
N′EIM

∑
m=1

ξ
K
m q′m

∥∥∥∥∥+ ||∆tRK || ≤

≤
K+1

∑
k=1

CK+1−k

(∥∥∥∥∥N′EIM

∑
m=1

∆tξ k
m(µµµ)q

′
m

∥∥∥∥∥+ ||∆tRk(µµµ)||
)
.

(6.17)

This proves that the error indicator is an actual bound when all the hypothesis are fulfilled.

Anyway, from experimental results, we can see that, also when we are not in this case, the
estimator is giving a good approximation of the error. Indeed, for EIM′, as shown in [53], we can
take very few basis functions and get good results, because the chosen DoFs should be the ones
that maximize the error. Moreover, its computational cost is O(RN′EIM) evaluations of the flux.

111



6.3. APPLICATIONS TO UNCERTAINTY QUANTIFICATION

Estimation of the Lipschitz Constant

A couple of words should be spent on the way to find the Lipschitz constant C. Actually,
it really depends on the specific method that is used and it is difficult to give a general way to
estimate it. For the scheme that we use, we could not find a sharp estimation, because it involves
some operators that do not belong to C 1. But, since the operator E is the discretized operator of
the gradient of the flux, we can use the spectral radius ρ of the Jacobian of the flux to approximate
this constant.

||u−v−E [u]+∆tE [v]|| ≈ ||u−v||+∆t||∇ ·F(u)−∇ ·F(v)|| ≈
≈||u−v||+∆t||J(F)(u−v)|| ≤ ||u−v||+ρ∆t||u−v||= (1+ρ∆t)||u−v||. (6.18)

What we used in the numerical experiments is a bound b for the spectral radius of the Jacobian of
the flux, for u being in a reasonable box. Then we can fix C = 1+b∆t. This can be done in a
smarter way and more efficiently if the flux is affinely depending on the parameter µµµ . Therefore,
one can split this constant into a parameter dependent and a fixed part.

6.3 Applications to Uncertainty Quantification

6.3.1 Stochastic Conservation Laws

Many problems in physics and engineering are modeled by hyperbolic systems of conservation
or balance laws. As examples for these equations, we can mention the Euler equations of
compressible gas dynamics, the Shallow Water equations, the Magnetohydrodynamics (MHD)
equations, see, e.g. [50, 60].

Many efficient numerical methods have been developed to approximate the entropy solutions
of systems of conservation laws [60, 95], e.g. finite volume or discontinuous Galerkin methods.
The classical assumption in designing efficient numerical methods is that all the input data, e.g.
initial and boundary conditions, flux vectors, sources, etc, are deterministic. However, in many
situations of practical interest, these data are subject to inherent uncertainty in modeling and
measurements of physical parameters. Such incomplete information in the uncertain data can
be represented mathematically as random fields. Such data are described in terms of statistical
quantities of interest like the mean, variance, higher statistical moments; in some cases the
distribution law of the stochastic data is also assumed to be known.

A mathematical framework of random entropy solutions for scalar conservation laws with
random initial data has been developed in [107]. There, existence and uniqueness of random
entropy solutions has been shown for scalar hyperbolic conservation laws, also in multiple
dimensions. Furthermore, the existence of the statistical quantities of the random entropy solution
such as the statistical mean and k-point spatio-temporal correlation functions under suitable
assumptions on the random initial data have been proven. The existence and uniqueness of
the random entropy solutions for scalar conservation laws with random fluxes has been proven
in [106].

A number of numerical methods for uncertainty quantification (UQ) in hyperbolic conserva-
tion laws have been proposed and studied recently in e.g. [9, 64, 97, 98, 107, 108, 119, 136, 141,
147, 148].
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6.3.2 Random Fields and Probability Spaces

We introduce a probability space (H,F ,ν), with H being the set of all elementary events,
or space of outcomes, and F a σ -algebra of all possible events, equipped with a probability
measure ν . Random entropy solutions are random functions taking values in a function space;
to this end, let (E,G ,G) denote any measurable space. Then an E-valued random variable is
any mapping Y : H→ E such that ∀A ∈ G the preimage Y−1(A) = {ω ∈H : Y (ω) ∈ A} ∈F , i.e.
such that Y is a G -measurable mapping from H into E.

We confine ourselves to the case that E is a complete metric space; then (E,B(E)) equipped
with a Borel σ -algebra B(E) is a measurable space. By definition, E-valued random variables
Y : H → E are

(
E,B(E)

)
measurable. Furthermore, if E is a separable Banach space with

norm ‖◦‖E and with topological dual E∗, then B(E) is the smallest σ -algebra of subsets of E
containing all sets

{x ∈ E : ζ (x)< α},ζ ∈ E∗,α ∈ R .

Hence, if E is a separable Banach space, Y : H→ E is an E-valued random variable if and only if
for every ζ ∈ E∗, ω 7→ ζ

(
Y (ω)

)
∈ R is an R-valued random variable. Moreover, there hold the

following results on existence and uniqueness [107].
For a simple E-valued random variable Y and for any B ∈F we set∫

B
Y (ω)ν(dω) =

∫
B

Y dν =
N

∑
i=1

xiν(Ai∩B). (6.19)

For such Y (ω) and all B ∈F holds∥∥∥∫
B

Y (ω)ν(dω)
∥∥∥

E
≤
∫

B
‖Y (ω)‖E ν(dω). (6.20)

For any random variable Y : H→ E which is Bochner integrable, there exists a sequence {Ym}m∈N
of simple random variables such that, for all ω ∈H,‖Y (ω)−Ym(ω)‖E → 0 as m→∞. Therefore
(6.19) and (6.20) can be extended to any E-valued random variable. We denote the expectation
of Y by

E[Y ] =
∫

H
Y (ω)ν(dω) = lim

m→∞

∫
H

Ym(ω)ν(dω) ∈ E,

and the variance of Y is defined by

V[Y ] = E
[
(Y −E[Y ])2].

Denote by Lp(H,F ,ν ;E) for 1 ≤ p ≤ ∞ the Bochner space of all p-summable, E-valued
random variables Y and equip it with the norm

‖Y‖Lp(H;E) =
(
E[‖Y‖p

E ]
)1/p

=

(∫
H
‖Y (ω)‖p

E ν(dω)

)1/p

.

For p = ∞ we can denote by L∞(H,F ,ν ;E) the set of all E-valued random variables which
are essentially bounded and equip this space with the norm

‖Y‖L∞(H;E) = ess sup
ω∈H
‖Y (ω)‖E .

Consider now the balance law (6.1) and assume that the parameter µµµ represents vector of
real-valued real variables. Different uncertainty quantification (UQ) techniques can be applied to
model the effects of this randomness in µµµ on the solution u.
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6.3.3 Monte Carlo Method

In this chapter, we restrict ourselves to the applications of MOR techniques to UQ problems
in conjunction with the well-known Monte Carlo sampling method. We note, however, that the
outlined ideas could be easily extended to more recent sampling methods such as Multi-Level
Monte Carlo (MLMC) method, as well as Stochastic Collocation methods.

The idea of the Monte Carlo method consists in generating M independent, identically dis-
tributed samples µ̄µµ

i of the random variable µµµ , for i = 1, . . . ,M, and calculating the corresponding
deterministic approximate solutions ūi of (6.1). Then, the Monte Carlo estimate of the expected
solution value E[u] at time t and at point x is given by

EM[u(x, t)] =
1
M

M

∑
i=1

ūi(x, t), (6.21)

and the variance can be computed according to the unbiased estimate

VM[u(x, t)] =
1

M−1

M

∑
i=1

(
ūi(x, t)−EM[u(x, t)]

)2
. (6.22)

6.4 Numerical Results

In this chapter we will present our numerical results that illustrate the behavior of the RB
methods in the case of nonlinear unsteady hyperbolic conservation laws in 1D and 2D with
applications in UQ.

6.4.1 Stochastic Unsteady Burgers’ Equation in 1D with Random Data

We consider here Burgers’ equations with randomness in both flux and initial data

∂u
∂ t

+
∂F(u,ω)

∂x
= 0, x ∈ [0,π], ω ∈ H, (6.23)

u0(x,ω) = u0(x,Y1(ω),Y2(ω)), (6.24)

defined on Ω = [0,π]⊂ R, t > 0 with periodic boundary conditions, the nonlinear flux is given
as:

F(u,ω) = F(u,Y3(ω)) = Y3(ω) f (u) = Y3(ω)
u2

2
(6.25)

and the initial condition is given by:

u0(x,Y1(ω),Y2(ω)) = |sin(2x+Y1(ω))|+0.1Y2(ω), (6.26)

where y j = Yj(ω), j = 1,2,3, ω ∈ H and Yj is a random variable which takes values in the
domain P ⊂ Rp of the parametrized probability space.

The PDE is discretized by an upwind first order finite volume scheme. We used an uniform
mesh {xi−1/2}Σ+1

i=1 , resulting in a HDM of dimension Σ = 103, with the CFL condition of 0.318,
K = 159 time iterations, final time tK = 0.159 and time step of 0.001. In this first example,
we will use a finite volume approach, in the RD context, since it can be rewritten in this
formulation thanks to [6]. With xi−1/2 defining the points of the grid, we define the cells
Ti = [xi−1/2,xi+1/2] and we consider constant approximation over each cell ui. The scheme will
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then read uk+1
i = uk

i − ∆t
∆x

(
fi+1/2− fi−1/2

)
. We are using the numerical Roe fluxes f defined at

the cell interface as1

fi+1/2 = f (uL,uR) =
1
2

[
f (uL)+ f (uR)−|a(uL,uR)|(uR−uL)

]
, (6.27)

where uL = ui and uR = ui+1. The Rankine–Hugoniot velocity is

a(uL,uR) =
f (uL)− f (uR)

uL−uR
.

This numerical flux choice has the purpose of linearizing the flux f around the cell interface and
then using an upwind flux, which has the role of an entropy fix. For Burgers’ equations, the Roe
flux including the randomness Y3(ω) writes

f (uL,uR) = Y3(ω)
[u2

L +u2
R

4
− 1

2
|uL +uR|(uR−uL)

]
. (6.28)

We consider now two cases: the first one which consists only in one randomness in the initial
data and the second case which contains randomness in the flux and in the initial condition.

6.4.1.1 Stochastic Unsteady Burgers’ Equation with Random Initial Data

In this case, we consider as deterministic Y2(ω) = Y3(ω) = 1, ∀ω ∈ H, while Y1(ω) ∼
U [0.4,0.5] is the only random variable. In the greedy procedure we sampled the training set
using an uniform grid on the parameter domain P = [0.4,0.5]. We have not used the PODEIM–
Greedy algorithm in this test case (the EIM is performed before the POD–Greedy), because the
error of the greedy procedure was naturally decreasing without oscillations. The tolerance set for
the EIM procedure was 10−6 and for the Greedy algorithm was 10−4. What we get from offline
phase is an EIM space with 61 functions and a RB space of dimension 12. In Figure 6.1 we can see
the decay of the error with respect to the dimension of the reduced basis space. The error indicator
and the true error are respectively the error bound η(µµµmax) and the error e(µµµmax) for the worst
approximated parameter, namely η(µµµmax) = maxµµµ∈Mtrain η(µµµ) and e(µµµmax) = maxµµµ∈Mtrain e(µµµ).
Meanwhile, the average error is the mean error over the training set 1

|Mtrain| ∑µµµmax∈Mtrain e(µµµ).
For the online phase, we want to compute some statistical moments with arbitrary probability

distributions of the uncertainty, such as the solution mean and the variance, as well as the solution
mean plus/minus the standard deviation of the random variable uK

h (ω). This UQ analysis is
performed using a set with 100 elements in the parameter domain P = [0.4,0.5], which were
generated by a random Monte Carlo method. The advantage of performing an UQ analysis after a
RB procedure is that the computational time for a single reduced solution will be much lower than
the high fidelity one, the solution accuracy being comparable. In Figures 6.2 and 6.3, the mean
of the solutions and the standard deviation are almost identical in high–fidelity and reduced cases.
However, the average computational time for one high fidelity solution is of 1.2551 seconds,
while the reduced solution takes only 0.17118 seconds, the percentage of the saved time being
then of 86%. 1

1The computations are performed with a Intel(R) Xeon(R) CPU E7-2850 @ 2.00GHz
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Figure 6.1: The error decrease during basis extension with growing RB size for Burgers’
equation with one random data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 exact expectation
exact + std 
exact - std 

ROM expectation
ROM + std + ROM err
ROM - std - ROM err

Figure 6.2: Solution mean and the mean plus/minus the standard deviation for both the reduced
and the high-fidelity problem in the case of Burgers’ equation with one random data

6.4.1.2 Stochastic Unsteady Burgers’ Equation with Random Flux and Initial Data

Consider now the case of Burgers’ equation with randomness in both flux and initial con-
dition, namely Y3(ω), respectively Y1(ω) and Y2(ω). Let us define Y1 ∼ U [0.4,0.5], Y2 ∼
U [1,1.2], Y3 ∼ U [0.9,1.1]. In the greedy procedure we sampled the training set using an
uniform three-dimensional grid on the parameter domain P = [0.4,0.5]× [1,1.2]× [0.9,1.1]. We
are using the same tolerances for the construction of the EIM space and of the RB as in the
previous test case and without using any PODEI algorithm, we obtain an EIM space with 48
functions and an RB space of dimension 11 (see Figure 6.4).
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Figure 6.3: Variance for the reduced and the high-fidelity problem in the case of Burgers’
equation with one random data

0 2 4 6 8 10 12
Dimension Reduced Basis

10-5

10-4

10-3

10-2

E
rr

o
rs

Error indicator
True error
Average error

Figure 6.4: The error decrease during basis extension with growing RB size for Burgers’
equation with random flux and random initial condition

In the online phase, the UQ analysis is performed using a set with 125 elements in the
parameter domain P = [0.4,0.5]× [1,1.2]× [0.9,1.1], which were generated by a random Monte
Carlo method. Comparing again the solution mean and the variance, as well as the solution mean
plus/minus the standard deviation of a random variable uK

h (ω) in the case of the reduced problem
and the high fidelity one (see Figure 6.5, 6.6), we obtain a computational saving time of 88%.
Indeed, the average computational time for one high fidelity solution is of 1.2143 seconds, while
the reduced solution takes only 0.14472 seconds.

This shows that the PODEIM procedure helps in taking what is really necessary and nothing
more. Indeed, in this simulation, even if the parameter space is bigger, we need a smaller EIM
space to represent the solution with the same accuracy of the previous test case. Moreover, this
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Figure 6.5: Solution mean and the mean plus/minus the standard deviation for both the reduced
and the high-fidelity problem in the case of Burgers’ equation with random flux and random

initial condition
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Figure 6.6: Variance for the reduced and the high-fidelity problem in the case of Burgers’
equation with random flux and random initial condition

leads to an extra computational saving of 18% with respect to the previous solution, where the
PODEIM was not utilized.
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6.4.2 Stochastic Euler Equations in 1D with Random Data

We consider the parametrized Euler equations

∂u
∂ t

+
∂F(u,ω)

∂x
= 0, x ∈ [−1,1] (6.29)

u0(x,ω) = u0(x,Y1(ω)) (6.30)

with y j = Yj(ω), j = 1,2 ω ∈ H and

u = (ρ,ρu,E)T , F = (ρ,ρu2 + p,ρu(E + p))T , p = (γ−1)(E− 1
2

ρu2).

We also assume the randomness in the adiabatic constant, γ = Y2(ω), and therefore the flux is
parameter dependent:

F(u,ω) = F(u,Y2(ω)).

We consider again two cases: the first one when we have randomness only in the initial data
and the second case when we have randomness in the initial data and also in the specific heat
ratio γ .

6.4.2.1 Stochastic Euler Equations in 1D with Random Initial Data

For this smooth test case, we consider the following random initial condition:

u0(x,Y1(ω)) =

 2+ sin(30Y1(ω))sin(π(x−1)+Y1(ω))
0

(2+ sin(30Y1(ω))sin(π(x−1)+Y1(ω)))γ

 .

We set the value of the specific heat to γ = Y2(ω) = 1.4 and we construct Y1(ω) using a random
Monte Carlo sampling method in the interval P = [0.4,0.5], resulting in a set with 100 elements.
The PDE is discretized by a first order finite volume scheme with MUSCL extrapolation on the
characteristic variables and minmod limiter on all waves and the resulting HDM is of dimension
Σ = 1200 using K = 200 time iterations of step 0.001, final time tK = 0.2 and the space step of
0.001667.

In the offline step, the tolerance set for the greedy algorithm is 5 ·10−6 and we are using a
PODEIM–Greedy algorithm generating an EIM space with (10,11,10) basis and a RB space
of dimension (9,10,9) in each component, namely in density, momentum and total energy (see
Figure 6.7 for the total energy). The PODEIM–Greedy algorithm helps us to avoid the unstable
behaviour of the scheme. Indeed, if the accuracy of the empirical interpolation is not enough with
respect to the accuracy of the RB space, namely we see an increment in the error, then we discard
the newly computed RB functions. This will lead to an automatic control of the correlation
between the dimension of the EIM space NEIM and the one of the RB space N, as seen also for
this test case.

In the online phase, the UQ analysis is performed using a set with 100 samples in the
parameter domain P = [0.4,0.5], which were generated by a random Monte Carlo method. In
Figures 6.8, 6.9 and 6.10, one can see the comparison of the solution mean and the variance, as
well as the solution mean plus/minus the standard deviation of a random variable uK

Σ
between the

reduced problem and the high fidelity one. For a better visualization, we plot each component of
the solution independently. As before, the error is very small and no difference can be qualitatively
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Figure 6.7: The error decrease during basis extension with growing RB size for the total energy
component of Euler equation with one random data

seen, even if the basis functions used are much less than the original space dimension. More
specifically, we obtain a computational saving time of 89%. Indeed, the average computational
time for one high fidelity solution is of 28.107 seconds, while the reduced solution takes only
3.2133 seconds.
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Figure 6.8: Solution mean, the mean plus/minus the standard deviation and the variance for both
the reduced and the high-fidelity problem in the case of Euler equation with random initial

condition for density
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Figure 6.9: Solution mean, the mean plus/minus the standard deviation and the variance for both
the reduced and the high-fidelity problem in the case of Euler equation with random initial

condition for momentum
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Figure 6.10: Solution mean, the mean plus/minus the standard deviation and the variance for
both the reduced and the high-fidelity problem in the case of Euler equation with random initial

condition for the total energy

6.4.2.2 Stochastic Sod’s Shock Tube Problem in 1D with Random Initial Data and Ran-
dom Flux

Consider now the Riemann problem for the one-dimensional Euler equations (6.29) with the
following initial data set in primitive variables:

w0(x,ω) = (ρ0(x,ω),u0(x,ω), p0(x,ω))T =

{
(1,0,1), if x < 0
(0.125+Y1(ω),0,0.1), if x > 0.

In this test case, we have randomness in both flux and initial condition, namely the adiabatic
constant γ = Y2(ω), respectively Y1(ω). We construct the random variables Y1(ω),Y2(ω) using
a random Monte Carlo sampling method in the interval P = [−0.02,0.02]× [1.4,1.5], resulting
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in a set with 100 samples. The PDE is discretized by a first order finite volume scheme with
MUSCL extrapolation on the characteristic variables and minmod limiter on all waves and the
resulting HDM is of dimension Σ = 1200 using K = 320 time iterations of step 0.0005, final time
tK = 0.16 and the space step of 0.001667.

In the offline step, the tolerance set for the greedy algorithm is 2 · 10−6 and we are using
a PODEI algorithm generating an EIM space with (132,145,157) basis and a RB space of
dimension (87,110,103) in each component, namely in density, momentum and total energy (see
Figure 6.11 for the total energy).

Figure 6.11: The error decrease during basis extension with growing RB size for the total energy
component of Euler equation with one random data
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Figure 6.12: Solution mean, the mean plus/minus the standard deviation and the variance for
both the reduced and the high-fidelity problem in the case of Euler equation with random initial

condition and random flux for density

In the online phase, the UQ analysis is performed using a set with 100 elements in the
parameter domain P = [−0.02,0.02]× [1.4,1.5], which were generated by a random Monte
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Figure 6.13: Solution mean, the mean plus/minus the standard deviation and the variance for
both the reduced and the high-fidelity problem in the case of Euler equation with random initial

condition and random flux for momentum
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Figure 6.14: Solution mean, the mean plus/minus the standard deviation and the variance for
both the reduced and the high-fidelity problem in the case of Euler equation with random initial

condition and random flux for the total energy

Carlo method. This test case is more challenging. Indeed, three shocks are developing from the
initial discontinuity. The speed and the position of these shocks vary in time and changing the
parameter. This leads to a more oscillatory reduced basis space and only with a bigger number
of basis functions we can recast a good reduced approximation of the solution. This is noticed
also in the error decay in Figure 6.11, which is not quick as before. Indeed, one has to catch the
discontinuities in every position where a shock may be (varying time and parameter) with several
basis functions, to let it decrease. Also in the solution means and variances in Figures 6.12, 6.13
and 6.14, we can see some small oscillations due to these several shock positions. Nevertheless,
we obtain a computational saving time of 51%. Indeed, the average computational time for one
high fidelity solution is of 38.479 seconds, while the reduced solution takes 18.856 seconds.
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The problem of tracking shock position and centering basis functions on the discontinuities
has been recently studied in [33, 129] and these features can be applied in this context to reduce
the number of basis function used. In this particular case, we have more shocks and the tracking
of several positions has not been studied yet and it is not so easily extendible.

6.4.3 Stochastic Sod’s Shock Problem in 2D with Random Initial Data and Ran-
dom Flux

Consider the two-dimensional Euler equations with random initial data and random flux:

∂u
∂ t

+
∂F1(u,ω)

∂x1
+

∂F2(u,ω)

∂x2
= 0, x = (x1,x2) ∈Ω = {(x1,x2)|x2

1 + x2
2 ≤ 1} (6.31)

u0(x,ω) = u0(x,Y1(ω)) (6.32)

where y j = Yj(ω), j = 1,2, ω ∈ H, the components are expressed as

u = (ρ,ρu,ρv,E)T , F1 = (ρ,ρu2 + p,ρuv,ρu(E + p))T , F2 = (ρ,ρuv,ρv2 + p,ρv(E + p))T

and the pressure as

p = (γ−1)
(

E− 1
2

ρ(u2 + v2)
)
.

We assume again randomness in the adiabatic constant, γ = Y2(ω), and therefore

F1(u,ω) = F1(u,Y2(ω))

and
F2(u,ω) = F2(u,Y2(ω)).

The initial data is set in primitive variables as

w0(x,ω) =


ρ0(x,ω)
u0(x,ω)
v0(x,ω)
p0(x,ω)

=

{
(1,0,0,1)T , if 0≤ r < 0.5
(0.125+Y1(ω),0,0,0.1)T , if 0.5 < r ≤ 1

where r =
√

x2
1 + x2

2 is the distance of the point (x1,x2) from the origin.
The computations have been performed on a triangular mesh consisting of 13548 cells and

Σ = 6775 DoFs, using K = 500 time instances of step ∆t = 0.0005, the final time is T = 0.25
and using a first order version of the RD scheme presented in [10] in (4.69) with first order
polynomials and explicit Euler in time.

In the offline step, the tolerance set for the greedy algorithm is 0.02 and we are using a
PODEIM–Greedy algorithm generating an EIM space with (67,68,69,76) basis functions and a
RB space of dimension (36,50,51,53) in each component, namely in density, momentum in x and
y direction and total energy. In this test case, we have randomness in both flux and initial condition,
namely Y2(ω), respectively Y1(ω). We construct the random variables Y1(ω),Y2(ω) using a
uniform random Monte Carlo sampling method in the interval P = [0.125,0.225]× [1.4,1.6],
resulting in a set with 100 elements. We can see the decay of the error during the offline phase in
Figure 6.15.
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Figure 6.15: Error decay in Offline phase with respect to dimension of reduced basis space of
Energy

(a) (b)

Figure 6.16: Density of high-fidelity solution (left) and the reduced solution (right) at final time
T=0.25 for Y = (0.16353811,1.50632869)

In the online phase, the UQ analysis is performed using a set with 50 elements in the
parameter domain P = [0.125,0.225]× [1.4,1.6], which was generated by a uniform random
Monte Carlo method. In Figures 6.16 and 6.17, we can see the high fidelity and the reduced
order approximations for one parameter value. The differences between the two simulations are
really small. If we test the first moment as in Figures 6.18 and 6.19 and the variance as in Figures
6.20 and 6.21, we can not distinguish the reduced solution from the high fidelity one. Moreover,
we obtain a computational saving time of 76%. Indeed, the average computational time for one
high fidelity solution is of 517.59 seconds, while the reduced solution takes only 125.50 seconds.
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Figure 6.17: Scatter plot of density of the high-fidelity solution (red) and the reduced solution
(blue) at final time T=0.25 for Y = (0.16353811,1.50632869)

(a) (b)

Figure 6.18: Solution mean for density of the high-fidelity problem (left) and for the reduced
solution (right) at final time T=0.25

6.5 Limitations

In this chapter we have seen how MOR techniques can be used to compress information
of hyperbolic problems. Nevertheless, we can notice strong limitation in this approach. If in
elliptic and parabolic problems one can obtain several orders of magnitude of reduction in the
computational costs between the high fidelity solver and the RB one, in the advection dominated
problems this is not true. We can see, for example in the Sod’s shock problem, that even evolving
for very small final times, the reduced solutions present some oscillations that are visible in
the variance in fig. 6.12. Moreover, the reduction obtained in time is just of the 50%, whereas
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Figure 6.19: Scatter plot of density of the high-fidelity mean solution (red) and the mean of the
reduced solution (blue) at final time T=0.25

(a) (b)

Figure 6.20: Variance for the density of high-fidelity problem (left) and for the reduced solution
(right) at final time T=0.25

reduction of 10, 100 or 1000 times are observable in the diffusion dominated problems, with
these techniques.

In the next chapter, we try to better exploit the known features of the advection dominated
problems to obtain a more advantageous MOR algorithm.
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Figure 6.21: Scatter plot of density of the high-fidelity variance (red) and the reduced solution
variance (blue) at final time T=0.25
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7
MOR FOR ADVECTION DOMINATED
PROBLEMS

Advection dominated problems are very common in many engineering applications where
particles or waves travel in space at fast speeds, for example in shallow water equations, gas
dynamics simulations or explosions. They arise frequently in hyperbolic conservation laws, since
their weak solutions develop shocks from smooth initial data and typical simulations consist of
shock propagations. They can be found also in advection–diffusion–reaction problems when the
advection parameter dominates the equation.

In this work we contribute to the development of model order reduction (MOR) algorithms
for advection dominated problems. MOR techniques are extremely useful and sometimes of vital
importance to reduce the computational time of parametric problems where many simulations or
fast simulations are necessary.

The extension of MOR algorithms to advection dominated problems is anyway not straight-
forward. It is well–known that these problems suffer of a slow decay of the Kolmogorov N–width.
Indeed, if one wants to compress the information of, for example, a traveling shock in a linear
subspace, the number of basis functions needed is proportional to the number of degrees of
freedom of the discretized domain. Hence, all the classical MOR techniques are not suited for
these types of problem.

Nevertheless, much effort has been devoted in the last years in adapting and creating new
MOR techniques for advection dominated problems. In particular, nonlinear approaches have
been used and they can be distinguished in two big classes: the Eulerian methods, where
the reduced structures are adapting to the moving frame, inter alia [16, 118, 129, 131, 151],
and the Lagrangian methods, where the solutions are transformed before applying the MOR
techniques [34, 77, 109, 110, 111, 113, 132, 139]. Even being more complicated to construct, the
Lagrangian methods allow to fully apply the classical MOR techniques in the new framework.
All the previous works, even tackling the problematics of the topic, do not present a general
approach for a parametric time–dependent problem. Namely, none of them proposed a complete
MOR algorithm with an offline and an online phase, where the reduction in computational time is
observable. A different remark must be done for the work in [100], where deep learning are used
to predict the parameter–to–observable map. If considered as a MOR algorithm, it comprehend
an online and offline phase, but it does not predict the whole solution of a parametric problem,
but only few features, like physical relevant quantities, as drag and lift, or statistical averages.

The work that we present wants to solve a wide class of advection–dominated problems and
shows the direction to develop more MOR techniques for many other problems. It is based on a
Lagrangian approach. In particular, we want to align all the solutions in order to minimize the
effort of the MOR algorithms. This leads to an arbitrary Lagrangian–Eulerian (ALE) formulation
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of the equations, that must be solved both in the offline and online phase of the algorithms. Now,
the classical speed of the mesh of the ALE framework must be found with new techniques. We
propose different regression maps to learn this speed, in order to use it cheaply also in the online
phase. Here, regression algorithms, as polynomial least square regression or more recent neural
networks, are compared.

The overall MOR algorithm makes use of this new ALE framework. It also applies the
classical Greedy algorithm in the parameter domain, the proper orthogonal decomposition on
the time evolution and the empirical interpolation method to compress the nonlinearities of the
fluxes. The ALE framework exports these methods to a reference domain, allowing to compute a
complete online phase, where practical advantages in computational times are shown for different
types of equations.

The work is organized as follows. In section 7.1 we highlight the difficulties in reducing
advection–dominated problems with these algorithms. In section 7.2 we present the ALE
framework where we can obtain aligned solutions that can be easily reduced. In section 7.3 we
present the regression maps that we use in the simulations and the learning algorithms that we
need to optimize their parameters. In section 7.4 we demonstrate the quality of the algorithm on
typical advection–dominated problems on which the classical MOR algorithms fail or struggle
to compress information. Finally, in section 7.5 we remark the new features of the proposed
algorithm and we suggest new possible directions of investigation.

7.1 Challenges in MOR for Advection Dominated Problems
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Figure 7.1: Smooth solution for wave equation

The algorithm shown in chapter 6, but also all the other algorithms based on POD, show
difficulties in capturing the behavior of advection dominated problems. This is a common problem
in many model order reduction techniques. Indeed, the classical MOR methods are better suited
for diffusion dominated problems. Nevertheless, there are several works that tried to apply the
classical techniques to advection dominated problems [49,114,144] resulting, most of the time, in
very expensive online phase and using extra diffusion to smoothen out the advection phenomena.

We can point out very simple examples that make the POD reduction fails even just for one
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non parametric unsteady equation. Consider the 1D scalar wave equation

∂tu+∂xu = 0, x ∈ [0,1], t ∈ [0, t f ], (7.1)

with initial conditions u0(x) = exp(−10sin2(π(x− 0.2))) and periodic boundary conditions,
which has exact solution u(x, t) = u0(x− t). This is a simple, smooth, one parameter (time–
dependent) problem. Nevertheless, if we perform a POD with tolerance 10−5 on a set of these
solutions computed on a space grid with Σ = 1000 equispaced intervals and with K = 1400 time
steps, we obtain 13 modes to describe a one-parameter problem. In fig. 7.1(a) we plot some
snapshots and in fig. 7.1(b) the POD basis functions.
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Figure 7.2: Shock solution for wave equation

Another similar behavior can be observed with moving steep gradients or shocks, which are
typical in the context of hyperbolic conservation laws, even starting with smooth initial conditions.
Take the same wave equation (7.1) with the Riemann problem u0 = 1x<0.5 as initial condition
and Dirichlet boundary conditions. The exact solution is a moving shock, as in fig. 7.2(a), and,
performing a POD, we get 245 modes to catch the evolution of this one-parameter problem, see
fig. 7.2(b). This number is proportional to the size of the cells where the shock is located in any
of the snapshots. This is very dangerous as soon as we increase the computational complexity.
We can observe in fig. 7.2(c) and in fig. 7.2(d) that, as soon as we use a bit of diffusion in the
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solution scheme, in this case a Rusanov scheme, the problem becomes easier to be compressed.
Still, 21 modes to compress information of a one-parameter problem are not what we would like
to obtain.

More challenging examples can be constructed with systems of equations or nonlinear
problems, where more shocks or waves moving at different speeds can meet or separate. As an
example, we show the exact solution of a shallow water system in 1D, for a Riemann problem.
We can see in fig. 7.3(a) and in fig. 7.3(b) again similar results. The dealing of multiple waves
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Figure 7.3: Shallow water equations

problems is more problematic than the previous ones and we will not consider them in this work.
In future research they will be studied in more details.

The common problematic of these examples is the slow decay of the Kolmogorov N-width. It
is defined as

dN(S ,VΣ) := inf
VN⊂VΣ

sup
f∈S

inf
g∈VN
|| f −g||, (7.2)

where S ⊂ VΣ is the manifold that we want to represent, namely, the set of all the solutions. The
first infimum is taken over all the linear subspaces of VΣ with dimension N. In other words, the
Kolmogorov N-width is the worst error we can make given the best linear subspace VN ⊂ VΣ

for a fixed dimension N. If this error dN(S ,VΣ) is quickly decaying as N → ∞, the POD will
be successful. When this does not happen, linear subspaces of VΣ are not the best way of
compressing these information.

7.1.1 Notation

We base the following discussion on the algorithm presented in chapter 6 proposed by
[53, 67, 68]. More specifically, we will focus only on scalar 1D hyperbolic equations

∂tu(x, t,µµµ)+ d
dx F(u,µµµ) = 0, x ∈Ω, t ∈ [0, t f ], µµµ ∈ P ⊂ RP,

B(u,µµµ) = 0, x ∈ ∂Ω

u(x, t = 0,µµµ) = u0(x,µµµ), x ∈Ω.

(7.3)
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The MOR algorithm produces a reduced model that can be described as

uk+1
N (µµµ) :=

N

∑
i=1

uk+1
i (µµµ)ψ i =

N

∑
i=1

uk
i (µµµ)ψ

i−
N

∑
i=1

Ei(F(uk
N(µµµ),µµµ))ψ

i. (7.4)

Here, E : VΣ → RN is the reduced evolution operator defined in (6.8), ui are the coefficients
related to the basis functions ψ i of the reduced space VN , which provide the reduced solution
uN = ∑

N
i=1 uiψ

i.

7.2 Arbitrary Lagrangian–Eulerian Framework for MOR

During the last years many works developed new non–linear techniques to approximate the
manifold of the solutions S . As Taddei is underlining [139], there are, in general, two types
of approaches for this problem. The Eulerian approaches, where the projection Π : VΣ→ VN

may even be a nonlinear operator and the solutions are sought with different techniques, inter
alia, Grassmannian learning [151], convolutional auto-encoders [92], transported/transformed
snapshots [34, 129], displacement interpolation [131] and local adaptivity [118]. On the other
hand, there are fewer Lagrangian works where the map Π : VΣ → VN is sought as a linear
mapping composed with a transformation bijection, which maps the solution into a reference one,
letting the transformation solve the nonlinearities of the problem. We can find some examples
in [77, 109, 113, 139].

Moreover, some of these works make use of a transformation map to move the solutions or
the reduced basis functions onto a reference domain, see [34, 77, 109, 110, 113, 129, 132, 139].

What we aim to do in this work is to align the discontinuities or some features of the solution
for every parameter and time step. To do so, we will use a transformation (bijection) of the
domain into a reference one and we will rewrite the whole equation into an ALE setting, where
the speed of the mesh is given by the derivative in time of the transformation. Putting together
these two features, we will be able to adapt the PODEI–Greedy algorithm to this problem and
apply it directly on the reference domain, where the decay of the Kolmogorov N–width will be
faster.

Suppose we have a transformation map T from a reference domain R ⊂R to the original one
Ω, T : Θ×R→Ω, where Θ⊂ Rc is the space of the calibration parameters, that will be chosen
according to time and parameter. Suppose that the map T aligns our solution in a way that the
POD on the aligned solutions will be more effective. In practice, we define a calibration map
θ : [0, t f ]×P →Θ on the spirit of [34], which represents an interesting feature that we want to
align in all the solutions, i. e., u

Σ
(T (θ(t,µµµ),y), t,µµµ)≈ v̄(y).

If we try to apply the PODEI–Greedy algorithm on the previous transformed variables, we
soon realize that we do not know how to treat the transformation in the reduced equation

N

∑
i=1

uk+1(µµµ)ψ i(T (θ(tk+1,µµµ),y))−
N

∑
i=1

uk
i (µµµ)ψ

i(T (θ(tk,µµµ),y))+

N

∑
i=1

NEIM

∑
m=1

τττ
EIM
m

(
E (F(uΣ

(
T
(

θ

(
tk+1,µµµ

)
,y
)
, tk,µµµ

)
,µµµ))

)
Πi(ρρρ

EIM
m )ψ i(T (θ(tk,µµµ),y)) = 0.

(7.5)

If we keep an Eulerian approach, the bases should move with the transformation and they would
depend hence on the transformation. This does not allow us to compute collocation methods,
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like the EIM, because it would indicate DoFs which vary for the bases functions according to
transformation. Indeed, if we fix the EIM DoFs on the original domain Ω, they will correspond
to points which have variable importance across different parameters and times and they would
be meaningless for the sake of reduction. Many works that use Eulerian approaches do not have
an online phase because of these conflicts.

Hence, we have to adapt to an ALE approach, where everything, in particular the collocation
methods, is computed on the reference domain R.

7.2.1 Arbitrary Lagrangian–Eulerian Framework

Inspired by the transformations of the works of [34, 113, 129, 139], let T : Θ×R→Ω be a
map such that the function T (θ , ·) : R→Ω is a bijection for every θ ∈Θ and

• T (·, ·) ∈ C 1(Θ×R,Ω),

• ∃T−1 : Θ×Ω→R such that T−1(θ ,T (θ ,y)) = y for y ∈R and T (θ ,T−1(θ ,x)) = x for
x ∈Ω,

• T−1(·, ·) ∈ C 1(Θ×Ω,R).

Moreover, suppose that there exists a calibration map θ : [0, t f ]×P →Θ such that

• θ(·,µµµ) ∈ C 1([0, t f ],Θ) for all µµµ ∈ P ,

• u
Σ
(T (θ(t,µµµ),y), t,µµµ)≈ v̄(y), ∀µµµ ∈ P , t ∈ [0, t f ],y ∈R,

where the last condition expresses the way we want to align the solutions and it will be explained
more carefully in section 7.3. There, we will also give some examples of maps that suit our
typical problems.

Given this map, and a solution u
Σ
(x, t,µµµ) of the equation (7.3), we want to describe the

behavior of the calibrated solution vΣ(y, t,µµµ) := u
Σ
(T (θ(t,µµµ),y), t,µµµ), through another PDE.

If we try to compute the time derivative of the calibrated solution vΣ, setting x := T (θ(t,µµµ),y),
we get

d
dt

vΣ(y, t,µµµ) =
d
dt

uΣ(T (θ(t,µµµ),y), t,µµµ) (7.6)

=∂tuΣ(x, t,µµµ)+∂xuΣ(x, t,µµµ)
dT (θ(t,µµµ),y)

dt
(7.7)

=− d
dx

F(uΣ(x, t,µµµ),µµµ)+
d
dx

uΣ(x, t,µµµ)
dT (θ(t,µµµ),y)

dt
(7.8)

=− dy
dx

d
dy

F(vΣ(y, t,µµµ),µµµ)+
dy
dx

d
dy

vΣ(y, t,µµµ)
dT (θ(t,µµµ),y)

dt
. (7.9)

So, we can write the PDE for the reference unknown vΣ as

d
dt

vΣ(y, t,µµµ)+
dT−1

dx
d
dy

F(vΣ(y, t,µµµ),µµµ)−
dT−1

dx
d
dy

vΣ(y, t,µµµ)
dT (θ(t,µµµ),y)

dt
= 0. (7.10)

Here, dT−1

dx is the Jacobian of the inverse transformation T−1(θ , ·) and the time derivative
dT (θ(t,µµµ),y)

dt is also called the grid speed in ALE context.
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If we remove the dependence of all the variable to simplify the notation, we obtain

d
dt

vΣ+
dT−1

dx
d
dy

F(vΣ)−
dT−1

dx
d
dy

vΣ

dT
dt

= 0. (7.11)

Now, it is clear why we need the hypotheses on the transformation and on the calibration map to
be satisfied. We are using the transformation, its inverse and their derivatives in time and in space.
In particular, when we compute dT

dt we mean dT (θ(t,µµµ),y)
dt = ∂θ T (θ(t,µµµ),y)dθ(t,µµµ)

dt .
The generalization to multidimensional spaces and systems of type

∂tus
Σ +

d

∑
i=1

d
dxi

Fs
i (uΣ) = 0, ∀s = 1, . . . ,S, (7.12)

is straightforward and it reads

d
dt

vs
Σ +

d

∑
i=1

d

∑
j=1

d(T−1) j

dxi

d
dy j

Fs
i (vΣ)−

d

∑
i=1

d

∑
j=1

d(T−1) j

dxi

d
dy j

vs
Σ

dTi

dt
= 0, ∀s. (7.13)

Nevertheless, in this work we consider only scalar and 1D problems, to avoid more technicalities
that arise when more shocks or more complicated structures move at different speeds.

7.2.2 MOR for ALE

It is crucial to write the MOR algorihtm and the RB space for the reference variables vΣ on
the reference domain R. Otherwise, we would have troubles in performing the reduction and in
the application of collocation methods. So, we can write

N

∑
i=1

(vk+1−vk)(µµµ)ψ i(y)+
N

∑
i=1

NEIM

∑
m=1

τττ
EIM
m

(
Ẽ

(
vN(y),

dT−1

dx
,
dT
dt

,µµµ

))
Πi(ρρρ

EIM
m )ψ i(y) = 0,

(7.14)

where the new evolution operator is defined on the reference flux, following the formula (7.11),
i. e.,

Ẽ

(
vN(y),

dT−1

dx
,
dT
dt

,µµµ

)
:=

dT−1

dx
E (F(vN))+

dT−1

dx
dT
dt

E (vN) . (7.15)

With the ALE formulation for the RB algorithm (7.14), we notice a couple of major differ-
ences with respect to the original RB formulation (7.4). First of all, we have to compute new
terms regarding the transformation dT−1

dx and dT
dt , which must be easily computable, in a way not

to affect the computational costs in the online phase. Then, the evolution scheme must be applied
not only on the flux F(vN) but also on vN itself. Considering a compact stencil scheme, this can
affect the computational costs of around a factor of 2.

The hope is that the reduced ALE model will need much less basis functions both in the EIM
space and in the RB space. This reduction should strongly compensate the extra time we need in
each computation, as we will see in the simulations of section 7.4.

Remark 7.2.1 (Error indicator). The error indicator introduced in (6.12) can be used exactly as it
is in the new framework. Indeed, we need simply to substitute the evolution operator E with the
ALE evolution operator Ẽ . The considerations done in section 6.2.6 hold for this error indicator.
In particular, it is not always guaranteed to be an error bound, but it shows good behaviors in the
experiments.
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7.3 Transport Map and Learning of the Speed

To compute the reference solutions, we need a transformation map which respects the
following properties:

1. T should be written in a parameteric form T (θ(t,µµµ),y), where T : Θ×R → Ω, θ :
P × [0, t f ]→Θ, in order to easily align solutions through calibration parameters θ ;

2. T and T−1 should be smooth as prescribed in section 7.2.1;

3. u
Σ
(T (θ(t,µµµ),y), t,µµµ)≈ v̄(y), ∀µµµ ∈ P , t ∈ [0, t f ], y ∈R, in order to align the solution and

gain more reduction in the RB space.

To address the first two point, we give a couple of examples of possible transformations that one
can use. The following are the one that we will utilize in the simulations of this work.

Example 7.3.1 (Translation map). Consider the map

T (θ ,y) = y+θ (7.16)

for the traveling wave example in fig. 7.1(a), where the domains are Ω = R = [0,1] with periodic
boundary conditions, see fig. 7.4(a). Consider the solutions to the parametric equation ∂tu+
µ1∂xu = 0, where the initial conditions are u0(x,µµµ) = exp(−10sin2(π(x− µ2))) = G (x− µ2).
We know that the exact solutions are u(x, t,µµµ) = u0(x−µ1t,µµµ). If we detect the maximum of
each solution in θ(t,µµµ) = µ2 +µ1t and apply the translation, we get the reference solutions

v(y, t,µµµ) = u(T (θ(t,µµµ),y), t,µµµ) = u(y+µ2 +µ1t, t,µµµ) = u0(y+µ2,µµµ) = G (y). (7.17)

Example 7.3.2 (Dilatation map). Consider the map T and its inverse T−1 defined by

T (θ ,y) = y
θ

(2θ −1)y+1−θ
, T−1(θ ,x) = x

θ −1
(2θ −1)x−θ

, (7.18)

for the traveling shock example in fig. 7.2(a), where the domains are Ω=R = [0,1] with Dirichlet
boundary conditions. The maps are smooth for θ ∈ (0,1) and T (θ ,0) = 0, T (θ ,1) = 1 and
T (θ ,0.5) = θ , see fig. 7.4(b). For this case, the exact solutions to the equation ∂tu+µ1∂xu = 0,
where the initial conditions are u0(x,µµµ) = 1x<µ2 are u(x, t,µµµ) = u0(x−µ1t,µµµ) = 1x−µ1t<µ2 . If
we detect the steepest point of each solution in θ(t,µµµ) = µ2 +µ1t and apply the transformation,
we get the reference solutions

v(y, t,µµµ) = 1y<0.5. (7.19)

The alignment process, i. e., how we find the map θ(t,µµµ), is more challenging. A first
possibility would be to use the information of the system to obtain a speed, in the classical ALE
sense, and use this speed to compute how the transformation should behave, in order to align some
features, like shocks or waves, as done in [109]. This way does not provide a feasible method
to detect the initial calibrations θ(t0,µµµ) for different parameters µµµ ∈ P . Another possibility is
given by the registration procedure [139] which applies optimization techniques, given a set of
parametric steady solutions.

What we will use here is a more naı̈ve approach, where we detect a feature (a peak of the
solution, a shock, a change in sign) and we track this feature along time and parameter domains.
First, we define this map for few snapshots in a training set of Eulerian solutions {u

Σ
(t,µµµ)}µµµ∈Ptrain ,

then, we extend it using regression/machine learning techniques to the whole parameter and time
domain as presented in algorithm 7.
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(a) Translation (b) Smooth dilatation

Figure 7.4: Examples of transport map T−1(·,θ) : Ω→R

Algorithm 7 Transformation-Learning

Input: A training set of Eulerian snapshots: {u
Σ
(tk,µµµ) : µµµ ∈ Ptrain,k = 0, . . . ,K}, a test set of Eulerian

snapshots: {u
Σ
(tk,µµµ) : µµµ ∈ Ptest ,k = 0, . . . ,K}, hyperparameter s

1: Detect the calibration parameter for all the training set {θ(tk,µµµ) : µµµ ∈ Ptrain,k = 0, . . . ,K}
2: Test the map θ̂ on the test set and provide an error estimation through the test set e≈maxµµµ∈Ptest ‖θ̂−θ‖

on [0, t f ]×P
3: return Approximation map θ̂ and the error approximation e

7.3.1 Learning the Calibration Map

Now, we present three possible regression processes that we tested in our simulations.

7.3.1.1 Piecewise Linear Interpolation

The first and most empirical method consists of a piecewise linear interpolation of the
parameters of the training set (all the time steps are always spanned). It is straightforward to
be applied when the parameters are chosen on a grid, but, according to the utilized sampling
algorithm, they can be put in irregular points. In those situations, the linear interpolation becomes
harder. What we propose in this situation, given a µµµ∗ of which we want to compute θ̂ , is to

1. sort the parameters µµµ ∈ Ptrain in ascending order according to the distance ‖µµµ−µµµ∗‖;

2. pick the first p+1 parameters {µµµ j}p+1
j=1 ;

3. write µ∗ = ∑
p+1
j=1 α jµµµ

j, where ∑
p+1
j=1 α j = 1;

4. define θ̂(t,µµµ∗) = ∑
p+1
j=1 α jθ(t,µµµ j).

This interpolation has some important drawbacks. First of all, the online interpolation scales
as the number of the training sample parameters, which may be many in case of low tolerance.
Secondly, as the dimension of the parameter space increases, the less probable is to have a convex
combination of points. This leads to instabilities in the computation of the linear combination.
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A positive aspect of this interpolation that has been observed in the simulations is that few
training parameters are often enough to catch a general (simple) behavior of the function. When
we are facing something close to linear in the parameter space, few parameters are enough.

7.3.1.2 Polynomial Regression

A second option would be a polynomial representation of the map. This choice can also be
justified by the typical examples of calibrations that we have observed in example 7.3.1 and in
example 7.3.2. Given a maximum degree s

θ̂(t,µµµ) = ∑
γ:‖γ‖`∞≤s

βγtγ0
p

∏
i=1

µ
γi
i , (7.20)

where γ are multi–indexes of size p+1 and the coefficients βγ can be found through a least–square
method on the training set.

Here, the hyperparameter s must be carefully chosen. We can easily see that the number

of parameters βγ involved in this regression are
(

p+ s+1
p

)
. This means that the number of

parameters grows exponentially with the dimension of the parameter space and the degree of
the polynomials. It is really easy to ends up in overfitting phenomena when the training set is
not big enough. On the other side, a small degree s may not be enough to capture the physical
behavior of the calibration points. Even if this tuning may seem complicated, we will see that the
regression given by this model is the closest to the training set. A quick hyperparameter analysis
can be done on the training set before the offline phase of the MOR algorithm.

7.3.1.3 Multilayer Perceptron

In this section we describe the specifications for one artificial neural network (ANN) that can
be used to learn the calibraton map. More details about ANN can be found in [63]. A multilayer
perceptron is an ANN composed of several layers: an input layer (t,µµµ) ∈ Y (0) = [0, t f ]×P ,
where we pass the parameters of our problem, L hidden layers y(k) ∈Y (k) ⊂Rm(k)

for k = 1, . . . ,L
and an output layer θ ∈Θ, where we receive the prediction of the calibration parameter. In fig. 7.5
one can observe the architecture of this ANN. Each layer is connected to the following and the
previous ones through weights, i.e., affine maps δ (k) : Y (k)→ Y (k+1), which are represented by
arrows in fig. 7.5. In every node of the hidden and output layers a nonlinear activation function
ζ : R→ R is performed component–wise. We denote with ζ̃ the component–wise extension of
the scalar map ζ . Overall, the multilayer perceptron map is defined as

θ̂(t,µµµ) = ζ̃ (δ (L)(ζ̃ (. . .(δ (0)(t,µµµ))))). (7.21)

Using a training and a validation set, the learning process changes the weights δ (k) based on
the error of the output with respect to the exact values. The supervised learning is carried out
through the backpropagation of the error combined with a stochastic gradient descent algorithm,
which is an extension of the least mean squares method. Details about this algorithm can be
found in [63]. We make use of the Keras package [43] in Python to build and learn the ANN.

We choose ζ (x) := tanh(x) as activation function, because we are looking for a smooth
transformation. After different tests, where we have not observed large variation in the results,
we choose to have L = 4 hidden layers with 8 nodes each.
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Figure 7.5: Multilayer Perceptron architecture

The stochastic gradient descent prevents overfitting phenomena even if the number of parame-
ters ∑

L
k=0(m

(k)+1)m(k+1) can be large. To obtain a reasonable validation error for this algorithm,
we have to use a large training set, as we will see in the simulations. This is probably due to the
fact that the shape of the function is far away from the exact one that we want to reach.

After a hyperanalysis on the number of nodes and layers, we fix them for all the tests to
4 hidden layers and 8 nodes each layer. The hyperanalysis shows that more layers/nodes are
too difficult to be trained by the samples that we can produce with the full solver and fewer
layers/nodes are producing worse approximation results.

Improvements on this algorithms and on other learning algorithms are anyway under investi-
gation.

7.3.2 Final Algorithm

To complete the algorithm, we glue together the different pieces as specified in algorithm 8.
First of all, we compute the Eulerian solutions of the training and validation sets Ptrain,Pvalid .
Using the calibration procedure, we obtain the calibration points for these sets. As remarked
in section 7.3.1, we run different training processes on the different tests to obtain optimal
hyperparameters of the methods. In particular, we will run different tests with different methods
to compare the different results. We check on the validation set that the error of the calibration
process is smaller than a tolerance (something related to the discretization scale, we chose, for
example, 5∆x). Thus, we use the approximated calibration map θ̂ to compute the PODEIM–
Greedy algorithm on the ALE solutions.

Algorithm 8 ALE PODEI Greedy with learning – Offline Phase
Input: Eulerian solver, Lagrangian solver, a training set Ptrain, a test set Pvalid , hyperparameter for learning

s, ε tol
θ

, ε tol
RB, Nmax

1: Generate the training and test set with the Eulerian solver Mtrain = {uΣ
(tk,µµµ) : µµµ ∈ Ptrain, ∀k} and

{u
Σ
(tk,µµµ) : µµµ ∈ Pvalid , ∀k}

2: Compute the calibration points {θ(tk,µµµ) : µµµ ∈ Ptrain, ∀k} and {θ(tk,µµµ) : µµµ ∈ Pvalid , ∀k}
3: θ̂ , errθ =Transformation learning({θ(tk,µµµ) : µµµ ∈ Ptrain, ∀k}, {θ(tk,µµµ) : µµµ ∈ Ptest , ∀k}, s)
4: Check that errθ < 5∆x
5: VN ,EIM = PODEIM–Greedy(Ptrain, ε tol , Nmax, Ẽ , θ̂ ) with the ALE flux Ẽ .
6: return VN ,EIM, θ̂
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7.3.2.1 Online Phase

The online of the ALE PODEI-Greedy algorithm is given by the simple formula (7.14),
where the reduced evolution operator is computed with the EIM algorithm as in (7.15) and the
total number of flux evaluation computed are at most 2NEIM ·N instead of Σ. Moreover, the
evaluation of the reduced evolution operator necessitates of the map θ̂ in the ALE framework.
The final solution on the original domain can be quickly recomputed through the maps T−1. The
computation costs of the calibration map and of the reconstruction are negligible with respect to
the computation of the solution.

With the ALE strategy we wish to strongly decrease the dimensions NEIM and N, in order to
gain computational advantages in the online phase. This is what we show in the next section of
simulations.

7.4 Results

In this section we present some tests and their hyperanalysis. We will study just simple scalar
1D hyperbolic problems, but extension to systems and 2D problems is straightforward when we
still deal with one speed features. More complicated structures and more shocks will be object of
future works.

We will consider the linear advection equation, the Burgers’ equation and the Buckley–
Leverett equation, respectively,

∂tu+a∂xu = 0, (7.22)

∂tu+a∂x
u2

2
= 0, (7.23)

∂tu+∂x
u2

u2 +a(1−u2)
= 0. (7.24)

In order to run all the simulations with the same time steps to facilitate the online phase, we
fix

∆t := CFL min
µµµ∈Ptrain,x∈Ω

∆x
|JuF(u

Σ
(x,0,µµµ),µµµ)| , (7.25)

with CFL=0.25. This guarantees us a reasonable security of not incurring into oscillations. For
all the simulations we used 1000 nodal points in the domain Ω. In all the algorithms we use a
very stable Rusanov scheme as space discretization and forward Euler in time.

We proceed with the different cases showing first of all the training process of the regression
of the calibration maps, plotting the error on the validation set with respect to the dimension
Ntrain of the training set. Afterwards, we motivate the choice of the regressions we use in the
offline phase.

For the offline phases, we show the plot of the error decay of the PODEI–Greedy process only
for few tests but we store all the resulting data in table 7.1. In these plots we show the maximum
of the error indicator for all the parameters, the maximum of the error and the average error
with respect to the dimension of the RB space. On the error indicator we print the dimension of
the EIM space. In a couple of simulations we also plot the EIM error decay with respect to the
dimension of the EIM space. Sometimes the error goes up as the dimension increases, this means
that a new solution has been considered for the extension of the EIM space, see algorithms 4
and 6.
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Test Dim RB Dim EIM FOM time RB time Ratio Online error
(7.26) ALE Poly2 4 7 516s 18s 3 % 5.210−4

(7.26) ALE ANN 12 20 516s 38s 7 % 1.710−4

(7.26) Eulerian 52 54 191s 24s 12 % 2.410−4

(7.27) ALE Poly2 17 22 125s 6s 5 % 7.610−5

(7.27) Eulerian 64 124 49s 9s 18 % 5.310−4

(7.28) ALE Poly3 50 60 314s 35s 11 % 2.910−4

(7.28) ALE ANN 139 167 298s 66s 22 % 6.410−4

(7.28) Eulerian 153 335 119s 50s 42% 1.210−3

(7.29) ALE Poly4 19 41 444s 53s 11% 3.810−4

(7.29) Eulerian failed > 600 167s ∞ ∞ ∞

(7.30) ALE pwL 25 45 462s 79s 17% 5.510−4

(7.30) Eulerian 16 270 190s 69s 36% 9.210−3

Table 7.1: Times and dimensions of the tests

Then, we plot some simulations of the online phase of both Eulerian and ALE approaches for
one parameter in the range and few time steps.

Remark 7.4.1 (Notes about the data). First of all, we have to remark that the computational times
of table 7.1 have been measured with an Intel(R) Xeon(R) CPU E7-2850 @ 2.00GHz. The online
error is the L2 error between a FOM solution and its respective RB solution. Finally, in the
cases (7.28) and (7.30) the Eulerian algorithm is not able to reach the prescribed threshold, but
it just stop beforehand. Moreover, in (7.29) for the Eulerian test, the algorithm is not able to
complete the starting EIM procedure, since, after 600 selected magic points and functions, it has
not reached the starting threshold.

7.4.1 Advection of a Solitary Wave

In this test, we consider a solitary wave with different amplitudes and centers traveling at
different speeds. The domain is Ω = [0,1] and the initial conditions are

u0(x,µµµ) = e−(100+500µ1)(x−0.2+0.1µ2)
2
, µ1,µ2 ∈ [−1,1], (7.26)

and we solve the linear transport equation (7.22) with a = µ0 ∈ [0,2]. We use periodic boundary
conditions and the translation (7.16) as calibration map. The calibration point is chosen to be the
maximum value point.

This problem travels at constant speed µ0, i. e. θ ≈ tµ0 +µ2, hence it is straightforward to
obtain an almost perfect map with polynomial interpolation of degree at least 2. In fig. 7.6(b) we
see how the polynomial of degree 2 obtains a very good regression map with just 10 samples.
This is true also for the piecewise linear interpolation. The higher order polynomials need more
samples to regularize their coefficients and the neural network has an even slower decay of the
error.

In figs. 7.6(a), 7.6(c) and 7.6(d) we compare different offline phases for the ALE with second
order polynomial regression map and the Eulerian algorithm with a tolerance of 10−3.

The Eulerian algorithm produced RB and EIM spaces of dimensions (52, 54), while the
second order polynomial ALE has dimensions (4, 7) and the ANN ALE has (12, 20) as one can
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Figure 7.6: Offline phases of advection of solitary wave

see in table 7.1. We already see the big improvement, in particular for the case where the learned
regression map behaves well.

The RB space of the Eulerian framework does not behave particularly bad in this situation
because the scheme we used is very diffusive and the simulated shape functions are smooth
enough. In computational time we can appreciate the advantage of the ALE algorithm only
relatively. Indeed, in table 7.1 we see that even if the time for computing a ALE solution is
roughly the double of the Eulerian solution, we still gain something with this approach, because
we obtain very small reduced basis spaces.

In figs. 7.7(a) and 7.7(b) we see the quality of the solutions for one parameter of the domain
with the two regressions. We see the troubles that the RB algorithm with the ANN has to tackle
due to the not precise alignment of the selected feature, but the quality of the solutions still
remains accurate.

7.4.2 Advection of a Shock Wave

In this test, we consider a shock traveling at a parametric speed with a random initial position.
The domain is Ω = [0,1] and the initial conditions are

u0(x,µµµ) =

{
µ1 if x < 0.35+0.05µ2,

0 else,
µ1,µ2 ∈ [−1,1]. (7.27)
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Figure 7.7: Online phase for ALE algorithms

We solve again the linear transport equation (7.22) with a = µ0 ∈ [0,2] till final time T = 1.5.
The boundary conditions are inflow on the left and outflow on the right. We use the hyperbolic
dilatation (7.18) as calibration transformation. We select the steepest point of the solution as
calibration point.
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Figure 7.8: Shock wave tests
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As for the previous test, this problem travels at constant speed, hence polynomials of degree 2
are the sought regression map. In fig. 7.8(b) we see which regression maps are quickly converging.
Similar considerations to the previous test hold for this one.

In figs. 7.8(a), 7.8(c) and 7.8(d) we compare, for a tolerance of 10−3, the classical PODEI–
Greedy errors, the classical EIM errors and the new ALE PODEI Greedy with the polynomial
regression of degree 2. More than before, we see how it is easy to catch the behavior of the
solutions with few basis functions in RB and EIM spaces in ALE framework (17, 22), while the
algorithm struggles in representing the right solutions in the Eulerian framework where many
basis functions are needed (64, 124). In table 7.1 we compare again the dimensions and the
computational times, where we observe a strong advantage in the new methodology.
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Figure 7.9: Online phase

In fig. 7.9 we can observe the main reason why the new methodology defeats the classical
one. In fig. 7.9(a) the ALE–PODEI–Greedy produces high quality reduced solution, while in
fig. 7.9(b) the Eulerian framework obtains strong spurious oscillations that are very dangerous in
many physical application, where they can represent, for example, negative density or pressure.

7.4.3 Burgers Oscillation

In this test, we solve the Burgers’ equation (7.23) on the domain Ω = [0,1], with as initial
conditions an oscillation dumped at the boundaries. This problem can develop in finite time a
shock and it can travel in both directions with nonlinear speed, according to the parameter µµµ . The
initial conditions are, more precisely,

u0(x,µµµ) = sin(2π(x+0.1µ1))e−(60+20µ2)(x−0.5)2
(1+0.5µ3x), µ1 ∈ [0,1], µ2,µ3 ∈ [−1,1],

(7.28)
with a = µ0 ∈ [0,2] till final time T = 0.6. We use homogeneous Dirichlet boundary conditions
and the dilatation (7.18) as calibration map. The detection criterion for the calibration point is
chosen checking the point of the function that crosses the x–axis.

In this test, the calibration parameters are much harder to be found. In fig. 7.10(a) we see that
all the regression maps just barely touch the threshold line. This is also due to the larger number
of parameters of the problem. Nevertheless, we test the third order polynomials, which seem able
to capture the behavior of the calibration curve. For our simulations we choose also the ANN to
compare the results.
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Figure 7.10: Burgers oscillation
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Figure 7.11: Online phases of Burgers oscillation

In figs. 7.11(a) to 7.11(d) we plot the offline phase for the classical Eulerian algorithm and
we see that it really needs many EIM basis functions before the error can decrease and we do not
even reach the tolerance of 10−3. In table 7.1 are stored the other values for the offline phases of
the Poly3 ALE–PODEI–Greedy and the ANN ALE–PODEI–Greedy. For this simulation, in all
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algorithms the convergence is slower, since the problem is more involved. In the ALE framework,
nevertheless, with 50 RB functions and 60 EIM bases we obtain the tolerance sought, while with
the Eulerian algorithm the EIM space must span more than one third of the FOM space, leading
to very high dimensional EIM and RB spaces and long computational times. In table 7.1 we
observe a strong advantage in the computational time of the new methodology.

In fig. 7.11(b) we see the quality of the solutions in the ALE framework, while in fig. 7.11(d)
in the Eulerian framework we notice again the even higher spurious oscillations.

7.4.4 Burgers Sine

In this test, we solve the Burgers’ equation (7.23) on the domain Ω = [0,π], with the absolute
value of the sine as initial conditions. This problem develop in finite time a shock and it travels
with a speed that depends nonlinearly on the parameters of the problem. The initial conditions
are, more precisely,

u0(x,µµµ) = |sin(x+µ1)|+0.1, µ1 ∈ [0,π], (7.29)

with the coefficient of the Burgers’ equation a = µ0 ∈ [0,2] till final time T = 0.15. We use peri-
odic boundary conditions and the translation (7.16) as calibration map. We select the calibration
point as the minimum value of the solution.
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Figure 7.12: Burgers sine

This problem is particularly tough to be analyzed. First of all, the shock is moving very
quickly along the domain, secondly the speed is not a linear function of time and this makes the
regression of the calibration map particularly hard. In fig. 7.12(a) we see that both polynomials
of degree 1 and 2 can not at all represent this map, while third order and fourth order polynomials
need more parameters to get a good enough regression map. We choose to use polynomials of
fourth order in this example.

In fig. 7.12(b) we see that the error decay reaches with relatively few bases (19,41) the thresh-
old, even if the algorithm needs to refine the EIM space a bit longer before having meaningful
results. If compared with the failure of the algorithm in the Eulerian framework, it is impressive
how few bases we need.
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Figure 7.13: Online phases of Burgers sine

The simulation in fig. 7.13(a) shows the qualitatively behavior of a solution in the Eulerian
framework and in fig. 7.13(b) we see how the solutions are aligned in the ALE framework and
the quality of the reduced solution.

7.4.5 Buckley Equation

In this test, we solve the Buckley–Leverett equation (7.24) on the domain Ω = [0,1], with a
sine wave as initial conditions. This problem can develop in finite time a shock, accordingly to
parameters. The initial conditions are, more precisely,

u0(x,µµµ) = 0.5+0.2µ1 +0.3µ1 sin(2π(x−µ1−0.5)), µ1 ∈ [0.1,1], (7.30)

with a = µ0 ∈ [0.001,2] till final time T = 0.25. We use periodic boundary conditions and the
translation (7.16) as calibration map. We select the steepest descending point as calibration point.
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Figure 7.14: Regression and Eulerian FOM simulations of Buckley equation

In fig. 7.14(a) we observe that also in this test the calibration map is not linear with respect to
time. Indeed, all the polynomials struggle in obtaining a good approximation. Even the error of
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the ANN is decaying too slowly to be used for the simulations. So, we pick the piecewise linear
transformation to perform the ALE simulations since it can reach bigger area of the domain if
we consider a bigger training set Ntrain = 100. In fig. 7.15(a) the offline phase of the classical
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Figure 7.15: Offline and online phases of Buckley simulations

Eulerian is shown and we see that the algorithm fails in reaching the tolerance error even with 270
EIM basis functions. We used, anyway, the resulting reduced spaces to perform an online phase
in fig. 7.15(c), where we see the difficulties in catching the right behavior of the solution. The
data of these offline and online performances are stored in table 7.1. In fig. 7.15(b) the error of the
ALE–PODEI–Greedy algorithm decays mush faster, overcoming some problems and resulting in
final RB and EIM spaces of dimensions (25,45). The related simulation in the online phase in
fig. 7.15(d) shows a better resolved solution which almost coincides with the exact one.

7.5 Limitations and Perspectives

We have presented a new MOR technique that is able to effectively reduce the dimensions
of the solution manifold of many advection dominated problems and is able to solve them in an
online phase gaining computational time. It is applicable when there is one feature traveling in
the domain that depends on time and parameters. The algorithm is capable of aligning all these
features through a calibration map which is learned with different techniques, e.g. polynomial
regression or artificial neural networks. The offline and the online phases of the MOR algorithm
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are run on an ALE framework which modifies the original equation accordingly to the calibration
process. The preformed tests show that this algorithm is more robust than classical ones and
obtains bigger reductions. It is also general enough to deal with many nonlinear fluxes and
different types of boundary conditions.

At the moment the ALE PODEI–Greedy has been tested on 1D scalar problem, but the
generalization to systems with one speed is straightforward and it will be object of future studies,
even if these type of problems are not common at all. Also the generalization to 2D problems with
one leading speed is possible and it can be done with different calibration maps. For example, the
Gordon–Hall maps proposed in [32] can serve the purpose. There, the calibration map would
be a parametrized curve that follows the feature of interests, e.g. the shock or the wave. It is
possible to use this algorithm even for different advection dominated equations with few changes,
according to the used scheme.

This approach still does not give an answer to more complicated problems, for example
Riemann problems for systems of hyperbolic equations, where more shocks propagate from the
same point. The algorithm here proposed would fail in the inversion of the calibration map when
the shocks meet and a singularity arises in it. The techniques used in other works for this situation
do not meet the requirements of the proposed online phase.

In future, we plan to extend this work to this type of problems, introducing a classification of
different regimes or an usage of different nonlinear tools.
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8CONCLUSIONS AND PERSPECTIVES

In this last chapter of the thesis, I provide a summary of the work and I suggest perspectives
for possible future extensions.

8.1 Summary and Achievements

In the first part of the thesis I focused on high order time integration schemes. In particular,
on the arbitrarily high order deferred correction methods. I have proposed an A–stability analysis
of these methods. Then, I have introduced a new class of linearly implicit methods based
on the deferred correction methods, called modified Patankar deferred correction methods.
These methods can guarantee the positivity and the conservation of the quantities involved in a
production–destruction system of ODEs. This work proposes for the first time arbitrarily high
order methods for this kind of problems. Before, the maximum order reached was three. A
tentative A–stability analysis was also carried out in this context, where the classical Dahlquist’s
equation can not be purely consider.

In a second part, I considered time–dependent hyperbolic PDEs and high order numerical
methods to solve them. I focused on the residual distribution spatial discretization, combined with
deferred correction time integration. First of all, I computed a von Neumann stability analysis
of these schemes, which suggests optimal values for the stabilization coefficients, in order to
minimize the computational costs. Then, I proposed an implicit–explicit version of the residual
distribution deferred correction scheme, which I applied to kinetic models. This version of the
scheme can solve with arbitrarily high order accuracy in space and time the kinetic equations,
without the restrictions that the stiff source term would impose to an explicit scheme. Moreover, I
proved the scheme to be asymptotic preserving, meaning that when the kinetic model converges
to the macroscopic regime, also the numerical solutions do the same.

The last part is focused on model order reduction techniques. First of all, I studied the
benchmark algorithms that can be applied to hyperbolic problems. The variety of methods
available for elliptic and parabolic problems are not directly applicable to hyperbolic problems
and, hence, many tools have to be replaced or they are simply missing in this area. I proposed
an uncertainty quantification application of these methods, where I studied the quality of the
reduction for this many–query task. Finally, I introduced a modification of the previously
presented algorithm, in order to better fit the hyperbolic problems, which are often advection
dominated. I contextualized the algorithm in an arbitrary Lagrangian–Eulerian framework, which
allows to calibrate the solutions in order to align the interesting features like shocks or waves.
This was the first time that a complete model order reduction algorithm, containing the offline
and the online phases, was presented with specific treatments for advection dominated problems.
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In order to have a complete algorithm, the learning of the transformation map of the arbitrary
Lagrangian–Eulerian framework is necessary. Hence, different regression techniques were studied
and compared.

8.2 Perspectives

During my PhD I had the opportunity to work with many researchers and to get in contact
with many technologies. This gave me the possibility to expand my expertise in many fields of
the numerical analysis. Nevertheless, my time was finite and I still have many ideas to test and
share with the scientific community.

In the following, I present some of the suggestions for continuing the presented works and
some projects that are currently in progress.

First of all, there are a couple of open projects that I intend to continue after the submission
of the thesis. In particular, I am extending the concept of stability for ODEs, since it is possible
to obtain A–stable schemes that are oscillating in stiff regimes. The plan is to define new criteria
of stability and to test the schemes that have been proposed in the last years [88].

A comparison between the deferred correction method and the arbitrary derivative (ADER)
method has been already performed [149]. There I showed the strong analogies between the two
methods, that were historically presented for different applications, and a stability analysis is
performed.

Another ongoing work is the study of the stability of different high order numerical schemes
for hyperbolic PDEs [103]. This is a von Neumann analysis that compares many different finite
element based methods with different stabilizations and time integration methods. I expect this
study to give indications on the optimal choice of the stabilization parameters and to decide which
method obtains a better stability.

Then, two extensions of the schemes for the kinetic model are already ongoing. The first one
is a von Neumann stability analysis of the schemes presented for this model. There I suggest the
optimal values for the stabilization coefficients in order to maximize the time steps [15]. The
second one, is an application of the kinetic model to shallow water equations. The plan is to have
a scheme that in the macroscopic regime could be positive preserving and well–balanced [145].
As the previous work, it will be arbitrarily high order thanks to the residual distribution and
deferred correction algorithms. This work is the outcome of my visit to Dr. Mario Ricchiuto at
INRIA Bordeaux.

Other extensions are possible in many parts of this thesis. One direction could be the study
of the combination of Runge–Kutta and deferred correction methods for residual distribution
schemes. This has been already started in [22], but some technical problems have been raised
in [44]. This could be the beginning of new investigations on the topic as I was discussing during
my visit to prof. Russo at University of Catania.

The kinetic model presented in chapter 5 is not the only one that can benefit of an implicit–
explicit residual distribution deferred correction scheme. Many other models, such as multiphase
flows, viscoelasticity problems or BGK equations could be approximated with this kind of
schemes. More careful studies must be done in order to extend the implicit scheme without
incurring in nonlinear equations that may complicate the method. This project is actually being
partially developed by our working group.

Finally, I still see much room of improvement in the model order reduction algorithm for
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advection dominated problems. I believe that it is possible to extend it to more complicated
transformations in multidimensional domains or for systems of equations and, hence, to multiple
interacting waves and shocks. This will require the development of new techniques that track the
different features or that classify different regimes for the solution manifold.

I hope I will be able to continue many of these works in the next years and to share with the
community new ideas and perspectives.
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