CV

PDF version

Education

Work experience

Main Collaborators

More Collaborators

Co-tutoring

Skills

Reviewer

Publications

  1. A time-adaptive algorithm for pressure dominated flows: a heuristic estimator

    Prusak, I., Torlo, D., Nonino, M., Rozza, G. (2025). A Time-Adaptive Algorithm for Pressure Dominated Flows: A Heuristic Estimator. In: Marmo, F., Cuomo, S., Cutolo, A. (eds) Computational Mechanics and Applied Mathematics: Perspectives from Young Scholars. GIMC SIMAI Young 2024. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-76591-9_24 PDF DOI

  2. Optimisation–Based Coupling of Finite Element Model and Reduced Order Model for Computational Fluid Dynamics

    Prusak, I., Torlo, D., Nonino, M., Rozza, G. (2025). Optimisation–Based Coupling of Finite Element Model and Reduced Order Model for Computational Fluid Dynamics. In: Sequeira, A., Silvestre, A., Valtchev, S.S., Janela, J. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 2. ENUMATH 2023. Lecture Notes in Computational Science and Engineering, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-031-86169-7_28. PDF DOI

  3. Computations for Sustainability

    Salavatidezfouli, S., Nikishova, A., Torlo, D., Teruzzi, M., Rozza, G. (2024). Computations for Sustainability. In: Fantoni, S., Casagli, N., Solidoro, C., Cobal, M. (eds) Quantitative Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-031-39311-2_7 PDF DOI

  4. Weighted Reduced Order Methods for Uncertainty Quantification

    Davide Torlo, Maria Strazzullo, Francesco Ballarin, and Gianluigi Rozza. Weighted reduced order methods for uncertainty quantification. In Francesco Ballarin Gianluigi Rozza, Giovanni Stabile, editor, Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics, chapter 12, pages 251-264. Society for Industrial & Applied Mathematics, U.S., 2022. https://doi.org/10.1137/1.9781611977257.ch12 PDF DOI

  5. Model Reduction for Advection Dominated Hyperbolic Problems in an ALE Framework: Offline and Online Phases

    Torlo, D. (2025). Model Reduction for Advection Dominated Hyperbolic Problems in an ALE Framework: Offline, Online Phases and Error Estimator. In: Sequeira, A., Silvestre, A., Valtchev, S.S., Janela, J. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2023, Volume 2. ENUMATH 2023. Lecture Notes in Computational Science and Engineering, vol 154. Springer, Cham. https://doi.org/10.1007/978-3-031-86169-7_42 PDF DOI

Service and leadership